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ABSTRACT 
 
The design of complex systems to achieve desired outcomes – complex systems engineering – is achievable in numerous 
natural systems and in some systems of human construction.  This paper concerns multi-agent complex systems that 
comprise a large number of autonomous, interacting elements.  Emergence presents a rich variety of behaviours for the 
designer to use; however, the unpredictability of emergence is a barrier to conventional engineering methodology.  By 
probing examples of engineered systems and looking for common features, a design methodology may be sought. 
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1.   INTRODUCTION 
 
The study of complex systems is now over two decades old and much has been discovered about such systems, whose 
best-known characteristic is the emergence of self-organised global properties from the aggregate behaviour of its 
constituent components [1].  A good definition of self-organisation is given by Hermann Haken [2]: a system is self-
organizing if it acquires a spatial, temporal or functional structure without specific interference from the outside.  By 
“specific” we mean that the structure or functioning is not impressed on the system, but that the system is acted upon 
from the outside in an non-specific fashion.  Quantitative measures of complexity have been formulated [3]. 
 
Most complex systems research has employed the traditional scientific method of hypothesis and test, a “bottom-up” 
approach which works from fundamental knowledge and experimentation to derive new principles about the world.   
However, the very property which characterises complex systems also works to make difficult the formulation of general 
theories: the inherent unpredictability of emergent behaviour.  There is no reason to suppose that this situation will 
change in the near future. 
 
In contrast, engineering design is a “top-down” process which starts with a global goal and seeks methods to achieve it 
using available scientific knowledge.  For complex systems this has proven to be difficult for reasons stated above: 
general scientific principles are hard to come by. 
 
There are two approaches to the design of complex systems.  The first is to use evolutionary computation or similar 
methods to obtain designs for specific instances [4, 5].  However, such designs rarely generalise to allow generic design 
principles, again because of the unpredictability of the underlying system.  The second approach is to modify or restrict 
the system to remove emergence, allowing traditional design methods to apply [6].  Solutions found this way are likely to 
be inferior because of the loss of the rich solution space provided by complexity, which biological systems use to such 
advantage.  A methodology that balances these approaches is desirable. 
 
Growing experience in designing complex systems has led to useful results in several application domains and suggests 
that such a methodology might be developed.  Two examples of multi-agent complex systems, self-assembly for 
nanotechnology and management of distributed electrical loads and generators, are presented below for illustration and 
comparison.  These are research activities at different stages on the path to adoption.  Self-assembly is a recognised 
feature of the nano-scale world, presently in natural systems and the laboratory rather than the foundry, and self-
assembly studies have given valuable insights towards new methodologies.  Distributed energy management is an 
immediate practical concern, with some existing algorithms using complex-systems techniques, and it remains to be seen 
whether similar methodologies may be applied.  In these and other domains, the coming few years are likely to see many 
cultural and technical barriers disappear as complex systems engineering begins to gain wide acceptance. 
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2.   NANO-SCALE: SELF-ASSEMBLY SIMULATION ENVIRONMENT 

 
A number of research groups have developed means for the self-assembly of small components into regular lattice-like 
arrangements as analogues of natural systems [7].  The size of components ranges from millimetres to centimetres, 
sometimes referred to as “meso-scale”, so they may called “mesoblocks”.  Such small scale components may be regarded 
as agents that interact due to their edge properties.  They are interesting in themselves but also function as simplified 
analogues of nano-scale chemical or biochemical components, and it is hoped that knowledge of self-assembly gained at 
meso-scale, in simulation or in the laboratory, may lead to advances in nanotechnology. 
 
2.1   Self-assembly of stable structures 
 
A simulation environment has been developed [8, 9, 10] to explore self-assembly of two-dimensional mesoblocks, and in 
particular to discover how to produce stable self-assembled structures to serve as primitive building blocks for the self-
assembly of more complex objects.  This multi-agent environment has a large number of identical two-dimensional “sea” 
blocks, moving randomly in a liquid suspension, and interacting by sticking together or becoming unstuck.  The blocks’ 
edges have a positive (+1), negative (-1) or neutral (0) polarity, and blocks can stick together at edges with opposite 
polarity.  A rich variety of self-assembled objects is possible by allowing edge polarities to change following a sticking 
or unsticking event under the control of an internal state machine.  For simplicity all “sea” blocks are assumed to have 
the same fixed physical shape and the same state machine. 
 

 
 
Figure 1: Structure of each agent in the mesoblock system.  Edge_1 is positive (+1), Edge_4 is negative (-1), and Edge_2 and Edge_3 
are neutral (0).  The state machine implements rules for changing these polarities in response to “sticking” or “unsticking” events. 
 
An example mesoblock is illustrated in Figure 1.  In the simulation environment used in [8, 9] the blocks interact in the 
following manner: 

1) Edges of opposite polarity stick together, generating a “sticking” event which is passed to the internal state 
machines of both sticking blocks. 

2) Like polarities repel and will cause connected blocks to unstick, generating an “unsticking” event which also 
may be passed to the blocks’ internal state machines, although this event has not been used by rule sets 
developed thus far. 

3) Edges of neutral polarity will neither attract nor repel any other edges. 
4) Blocks move randomly in the two-dimensional environment under discretised Brownian-like motion by steps 

which are multiples of the block width, with rotation of multiples of 90˚. 
The state machine implements a set of rules dictating how each edge’s polarity changes in response to sticking and 
unsticking events at any edge.  For a given rule set many different structures may self-assemble; however, the simulation 
focuses on only one randomly chosen structure in the environment.  Implementing state machines will require nano- or 
molecular-scale analogues with rudimentary intelligence; several authors have suggested mechanisms which may allow 
such properties, for example, those cited in [9]. 
 
A block will separate from a structure if there is no net “sticking force” to hold it on.  The stability of a structure may be 
estimated in several ways.  A measure of the proportion of neutral exterior edges indicates the likelihood of further 
structural growth, but doesn’t account for the development of internal fractures.  A measure of the total number of stuck 
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pairs of edges compared to repelling edges indicates crudely the likelihood of internal fractures.  A correct estimate of 
the stability of structures of any size is a difficult problem which is hardly worth addressing due to the artificial nature of 
the simulation environment.  Crude stability measures are sufficient to demonstrate principles of self-assembly.  Correct 
measures should be developed when a realistic self-assembly system can be properly modelled; for example, Gerasimov 
et al. [10] report a simulation environment that accurately represents Newtonian motion of particles with separated 
charges, and such an environment can be enhanced by introducing other forms of well-characterised interactions. 
 
Genetic algorithms with fitness functions chosen to target stability are used as a tool for exploring the range of possible 
rules sets for the state machine.  Figure 2 shows some structures arising from one such rule set. 
 

           

      
 
Figure 2: Several stable and semi-stable structures produced by a rule set obtained by a genetic algorithm.  A line is drawn across pairs 
of “stuck” faces so the pattern of connections can be seen.  This rule set favours spiral-type structures. 
 
2.2   Top-down bottom-up methodology 
 
In contrast to this rather undirected search for mesoblock rules that lead to stable and semi-stable structures, engineering 
design begins with a system goal and employs a top-down approach to formulate more achievable intermediate goals.  In 
the mesoblock environment it is possible to meet in the middle – to use a bottom-up emergent process to create 
intermediate structures that are useful in fulfilling an overall goal.  The mechanism chosen to achieve this is a structure 
that repeatedly creates another structure when immersed in a sea of mesoblocks.  This is termed an “enzyme” structure 
and its properties are defined as follows: 

1) An enzyme is a stable structure comprising several blocks. 
2) Each block in the same enzyme has the same rule set. 
3) Blocks in the environment (“sea” blocks), whilst identical, can have a different rule set from the enzyme blocks. 
4) An enzyme must remain unchanged after the self-assembly process.  During the process it may change in size 

and shape, but it must return finally to its initial state. 
 
An example of an enzyme enabling a self-assembly process is shown in Figure 3.  A different enzyme is put to work in in 
Figure 4 to produce regular structures of a desired size and shape.  There are two large L-shape enzymes in this 
environment.  These enzymes, and the rule sets of the sea blocks, are designed to ensure that L-shape structures of 
determined size are generated with neutral exterior edge polarities apart from two sites that function as open ends.  When 
these structures, moving freely in the environment, meet at their open ends, they stick together and generate a rectangle 
whose dimensions are determined by the L-shaped structures produced by the enzymes.  These dimensions are set by the 
positions of the “terminal” blocks in the enzymes, shown in black in Figure 4.  Without external intervention only 
rectangles of a fixed size will be produced.  However, external global messages may be used to shift the positions of the 
terminal blocks, and hence the size and shape of the rectangles produced.  A combination of emergent outcomes and 
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simple engineering has created a rectangle factory.  It is not a great stretch of the imagination to extend this idea to the 
manufacture of nano-scale electrical circuits or micro-electromechanical machines (MEMS). 
 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

 
 
Figure 3: A simple example of an enzyme.  This is an artificially constructed 10-block structure sitting in a “sea” of blocks with all 
negative sides and an identical rule set.  This enzyme produces linear groups of three blocks with all exterior polarities neutral except 
for one end, which is positive. 
 
 

 
 
Figure 4: Self-assembled rectangles of size 3 by 4 (circled).  Self-assembly was assisted by an enzyme (shown on the left panel) that 
generates L-shaped objects.  These then joined when random motion brought them close enough to each other. 
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This illustrates a balance between science and engineering approaches: science to develop new knowledge of what is 
achievable by working from the bottom-up, and engineering to reduce overall goals to simpler goals using existing 
knowledge.  The expansive solution space created by emergent behaviour is not entirely removed by reductionism which, 
at the same time, is necessary to some extent for robust engineering.  Successful design of complex systems is possible 
when this balance can be achieved, which depends on identifying an intermediate layer of entities at the meeting point.  
This theme is explored in more depth by Poulton et al. [9]. 
 

3.   MACRO-SCALE: DISTRIBUTED ENERGY MANAGEMENT 
 
Electricity networks are stressed by peak summer and winter loads due largely to domestic heating and cooling.  The 
State of NSW in Australia, for example, expects to run out of peak generating capacity by 2010/11 and base (average) 
capacity by 2016/17.  An alternative to installing new centralised generation, most likely coal-fired and increasing 
Australia’s greenhouse gas output still further, is to manage demand more intelligently and incorporate greenhouse-
friendly distributed generation technology.  Flexibility, engagement with the customer, and scalability would all be 
enhanced by the use of intelligent software agents, installed locally, to control customer loads and generators [11].  The 
use of deployed multi-agent technology, measuring, acting, and communicating in the real world rather than a simulated 
environment, is increasingly of interest in distributed energy [12] and other domains, offering the prospect of harnessing 
complexity to achieve new and useful emergent behaviours.  At the same time, harmful behaviours must be avoided; the 
failure of the north-eastern US grid in August 2003 demonstrated that electricity networks with centralised generation 
and regional interconnections are complex systems subject to instability when under stress [13].  Increased levels of 
distributed generation, located close to load centres, and local intelligence designed to encourage the formation of 
sustainable “minigrids” are seen as important contributors to the security of future electricity networks. 
 
3.1   Coordination by planning 
 
The purpose of coordinating distributed energy agents is to aggregate sufficient quantities of distributed capacity to be of 
strategic value to the electricity industry.  Retailers exposed to volatile wholesale prices and network businesses making 
infrastructure investment decisions would be significant beneficiaries of such aggregates.  One way to express the 
aggregation goal is as a problem of cost minimisation across a set of loads and generators controlled by local agents and 
connected to the electricity grid at market rates.  A cap on the total power drawn from the grid that can be a local offering 
to a large-scale aggregation of distributed capacity. 
 
Simulated experiments have used genetic algorithms to optimise load and generator operation during a planning interval 
based on predicted environmental and market conditions [14].  Predicted outdoor temperature determines the behaviour 
of heating/cooling loads, predicted solar intensity and wind speed determine the capacity of photovoltaic and wind 
generators, and predicted market price determines the most cost-effective mix of generation technologies.  The resulting 
switching plans for loads and generators would be in force through one or several market cycles during which the 
achieved cost saving or demand cap would be valuable.  This is not a real-time algorithm because genetic optimisation of 
plans requires a significant part of a market cycle (30 minutes in Australia).  To achieve soft-real-time operation, plans 
are optimised for future market cycles while executing the previously optimised plans. 
 

 
 
Figure 5: Resource (generator or load) actions during one day as parameterised for the genetic algorithm, a continuously variable 
resource on the left and a switched resource on the right. 
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Generators and loads are represented by their physical model and a sequence of states due to switching actions.  The 
physical model for a cool room or refrigerator, for example, includes the thermal mass and the heat-transfer capacity of 
the compressor implicitly in a linear recursion on discrete time steps.  Figure 5 illustrates the two possible kinds of 
switching permitted in plans: continuously variable between fully on and off, represented as a fraction of fully on, and 
discretely switched between fully on and off, represented as a binary value.  When acting independently, heating/cooling 
loads operate a control loop to maintain temperature between given limits, as shown in Figure 7 for three loads, and there 
is no management of the total power drawn.  Figure 8 shows what is achieved by planned coordination.  Genetic 
optimisation of this kind has been applied, with some adaptation, to systems of up to 500 generators and loads. 
 
3.2   Real-time coordination 
 
Coordination by planning suffers from a lack of real-time responsiveness and the need for a central agent or computer to 
run the genetic algorithm for each market cycle.  As an alternative, a multi-agent algorithm has been developed to 
maintain a capped demand by continuously coordinating switching actions within a group of agents.  This algorithm does 
not yet include any optimisation of agent responses, so the resulting group behaviour may be inferior when compared to 
the planned approach.  However, its speed is more than adequate compensation.  
 
Regrettably, details of this algorithm cannot be published yet due to commercial sensitivities, but some preliminary 
results can be shared.  The upper 6 graphs in Figure 9 show temperature and power for three refrigeration loads.  The 
bottom graph shows the total power consumption averaged into 5-minute market-dispatch cycles, which are intervals 
during which generation in Australia is planned to meet the predicted load.  The desired load cap of 5 kW is exceeded in 
3 out of 6 cycles.  Figure 10 shows the result of the multi-agent algorithm which causes agents to shift their times of 
operation away from cycles these 3 cycles without causing new excesses in the other cycles. 
 

 
Figure 6: Decentralised clustering in action: two clusters are forming and one unhappy agent is not yet committed to either one. 
 
Another direction of present research is to adapt decentralised clustering to coordinate distributed energy agents.  This is 
an attractive multi-agent algorithm because it has been shown to scale better than a centralised algorithm performing the 
same task [15].  Through local comparison of agents’ properties in a connected network, as shown schematically in 
Figure 6, clustering forms groups of agents that are similar with respect to some properties.  Coordination of switching 
actions within such groups may be achieved using algorithms such as those discussed above; it may also be that 
clustering alone, in its more sophisticated forms, is capable of achieving detailed coordination.  Whichever direction this 
research takes, a key challenge will be to find a balance of (top-down) engineering and (bottom-up) scientific principles 
like that achieved in at least some instances of mesoblock self-assembly. 
 

Some parameter space 
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Figure 7: Uncoordinated switching of three heating and cooling loads during a four-hour period (units 0=off, 1=on). 
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Figure 8: Coordinated switching: in the lower graph the three loads are never simultaneously on. 
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Figure 9: Three uncoordinated refrigeration loads (units kW and degrees Celsius against time in minutes).  The lower graph shows 
total power consumption averaged into 5-minute intervals, and on this basis the specified 5 kW demand cap is exceeded 3 times. 
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Figure 10: Three refrigeration loads coordinated using a real-time algorithm to meet the specified 5 kW demand cap. 
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4.   CONCLUSION 
 
Possibilities for nano-scale self-assembly can be explored using a simulation environment that idealizes the nature and 
interactions of nano-scale particles using a mesoblock analogue.  The idealization allows design methods for complex 
systems to be explored in isolation from the complications of implementation in a real physical, chemical, or bio-
chemical environment.  A two-layer methodology shows promise while implementation of such self-assembly 
techniques requires much more work.  Electricity networks have increasing levels of distributed generation and present 
an opportunity for intelligent coordination to relieve network and market pressures.  Solutions to this complex-system 
design problem are immediately applicable using multi-agent technology that is ready for deployment to electricity 
customers’ loads and generators, calling for a pragmatic approach.  It is valuable to compare these apparently disparate 
environments and seek design principles that help to make good use of the diversity of possible emergent behaviours. 
 
A comparison in broad terms is tabulated in Figure 11.  In the self-assembly environment intermediate entities are 
created by a process of emergence that could then be used in a conventional construction process.  Intermediate 
mesoblock entities are of two kinds: stable structures that self-assemble without assistance, and “enzymes” that assist the 
formation of stable structures with greater repeatability and sometimes at a much greater rate.  Self-assembly is governed 
by random interactions among a sea of mesoblocks in a simulated liquid.  Distributed energy agents do not move in 
physical space, yet their states change due to local imperatives determined by environment and usage, so they may be 
said to move independently in a state space.  Their interactions are governed by a communication protocol that is random 
only through its lack of synchronicity, and the link between communication and state is governed by algorithms 
unrelated to motion in a liquid.  Nevertheless, there is a desired distributed energy “structure” which is a group of agents 
coordinated to achieve an aggregated capacity, stability being maintained by either the repeated evolution of plans or by 
a real-time coordination technique.  It may be that decentralized clustering is an effective means of constructing stable 
structures of this kind, and it may also be that comparison with self-assembly gives valuable insight to this research.  
This would be a sign that an engineering methodology for complex systems was imminent. 
 
 

Feature Self-assembly environment Distributed energy management 
Agents Mesoblocks Loads and generators 
Movement In a liquid In a state space 
Communication By contact By asynchronous messaging 
Senses Sticking and unsticking Environment and user preferences 
Events Sticking and unsticking Switching on and off 

Agent intelligence Internal state machine implementing 
rules for changing face polarities 

Load and generator models, control 
loops, rules for handling messages 

System goal Useful structures Safe network or stable wholesale price 
Intermediate goal Small stable structures Groups with aggregated capacity 
Intermediate entities in 
two-layer hierarchy Stable structures or enzymes Perhaps aggregation groups? 

Emergent process 
Sticking and unsticking as mesoblocks 
come close enough for their edge 
polarities to interact 

Switching on and off or joining 
clusters in response to local 
imperatives or messages 

Design technique Manual or evolutionary optimization Manual or evolutionary optimization 
 
Figure 11: Comparison of self-assembly and distributed energy environments.  A two-layer hierarchy has not yet been rigorously 
developed for distributed energy management. 
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