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ABSTRACT 

Real-time detection of Remote Sensing Imagery (RSI) with a wide background and small targets is challeng- ing in various 
fields. Multimodal data fusion and enhanc- ing CNNs with Transformers can improve detection perfor- mance. The approach 
combines complementary information from different modalities and leverages CNNs’ feature ex- traction capabilities. 
Transformers capture global informa- tion and learn sequence dependency without requiring large data samples.  The goal is 
to achieve accurate and efficient target detection in applications such as fire detection, military reconnaissance, and 
autonomous obstacle avoidance. 

We  developed  MSTR-Darknet,  an  improved  backbone network  for  object  detection  in  Remote  Sensing  Imagery. We 
removed the focal module in YOLOv5 to maintain high- resolution characteristics and achieve better performance by 
sacrificing a small amount of speed.   We replaced the last layer  with  a  STR  module  for  improved  connectivity  with 
global information. We also used pixel-level fusion to ex- tract information from different modalities for more effective 
feature representation of small objects in RSI. 

Secondly, in the multi-scale feature fusion stage, we de- signed Tini-BiFPN, a more effective weighted feature fusion 
network, for efficient cross-scale feature fusion. Given the ex- cellent contextual relationship integration capabilities of tra- 
nsformers, we also integrated transformer modules into the feature fusion network to identify attention regions in scen- arios 
with dense objects, leading to an improvement in mAP performance 

Keywords: Multimodal fusion, Transformer, RS im- age Object detection 

1. INTRODUCTION

Object  detection  technology  is  widely  applied  in  various fields, including aerial photography, fast delivery, and urban 
monitoring.  However, in remote sensing, there are specific challenges that make accurate object detection more difficult. 
The challenges include a small number of labeled samples,the small size of objects in remote sensing images (typically 
occupying only a few dozen pixels relative to the complex background)[1], and the diverse scale and multiple categories of 
objects[2].  These challenges pose a significant obstacle to general object detectors based on ordinary convolutional networks.   
Modern  detectors  typically  use  pure  convolu- tional networks as feature extractors,  such as VGG[3] and ResNet[4] 
backbones for detectors like Faster RCNN[5] and RetinaNet[6].   The YOLO series detectors[7], on the other hand, utilize 
Darknet, a novel residual network that improves feature extraction efficiency. 

However,convolutional networks have limitations in cap- turing global contextual information due to the locality of 
convolution operations. In contrast, transformers excel at cap- turing inter-dependencies among image feature patches on a 
global scale through multi-head self-attention. This preserves spatial information for object detection.  Additionally, object 
detection models need improved domain adaptability and dy- namic receptive field to handle viewpoint changes in aerial 
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images.domain adaptability and dynamic receptive field. The study in literature [8] showed that compared with CNN, vi- 
sual transformers have stronger robustness against severe oc- clusion, disturbance, and domain shift.To improve detection 
performance, transformer layers can be added to pure convo- lutional backbones to incorporate more contextual informa- 
tion and learn better feature representations. 

Currently, most object detection techniques are solely de- signed and applied for a single modality such as RGB and In- 
frared (IR) [9], [10]. Consequently, with respect to object de- tection, its capability to recognize objects on the Earth’s sur- 
face remains insufficient due to the deficiency of complemen- tary information between different modalities[11].  As imag- 
ing technology flourishes, RSIs collected from multimodality become available and provide an opportunity to improve the 
detection accuracy.  For example, as shown in Figure.1, the fu- sion of two different multimodalities (RGB and IR)can effec- 
tively enhance the detection accuracy in RSI. 

On the other hand, the size of objects in RSI images varies greatly, and the representation power of single-layer feature maps 
in convolutional neural networks is limited. Therefore, it is essential to effectively represent and process multi-scale features. 
A  classical  method  is to combine low-level and high-level features through summation or concatenation op- erations, but 
simply summarizing or concatenating may lead to feature mismatch and performance degradation.   In  this regard, we 
introduce learnable weights to learn the impor- tance of different input features, while repeatedly applying top-down and 
bottom-up multi-scale feature fusion 

In summary, this article proposes the following contribu- tions: 

•  Based  on  the  original  CSP-Darknet  backbone,   we introduced  an  improved  backbone  network,  MSTR- Darknet,  
which not only removes the Focus module that hinders the definition of dense small targets but also introduces the STR 
multi-head self-attention block to bring more contextual information and learn more distinguishable feature representations. 

•  We propose a simple and efficient Tini-BiFPN structure with weighted bidirectional feature pyramid networks to  reduce  
computational  cost  and  parameters  while enhancing  multi-scale  feature  fusion  and  enriching semantic features. 

•  We not only incorpoate the STR attention mechanism into backbone also incorporate it into feature fusion to enhance the 
overall feature fusion ability of the net- work. Our exploration shows that Transformers can be flexibly used not only in 
feature extraction or detection heads but also in feature fusion stages with good per- formance 

•  We  explore  different  fusion  alternatives  and  choose the computation-friendly pixel-level fusion method for multi-
modal information combinations to further en- hance the detection accuracy. The proposed pixel-level efficiently  decreases  
the  computation  cost  compared with feature-level fusion. 

2. RELATED WORKS 

2.1.  Transformer 
Swim-Transformer It is an attention mechanism-based neu- ral network architecture designed for sequential data model- ing. 
Rather than relying on recurrent neural networks (RNNs) which can be computationally expensive, Swim-Transformer uses 
Transformer blocks with relative positional embeddings to  effectively  capture  long-term  dependencies  in  sequen- tial 
data.  Compared to existing state-of-the-art models such as Faster R-CNN and Mask R-CNN, Swim-Transformer has shown 
better performance on several benchmark object detec- tion datasets including COCO and PASCAL VOC. It offers a 
promising alternative approach for modeling visual data with sequential structures.Cross-Transformer It introduces a self-
attention mech- anism across modes, bringing the information from multiple modes together in the same model.The core idea 
of Cross- Transformer is to use self-attention mechanisms to capture relationships  within  sequence  data  as  well  as  
interactions across  modalities.    It  computes  the  correlation  within  the mode by encoding each mode separately and then 
using the multi-mode attention mechanism.  Next, in the cross-modal layer, the corresponding attention weights are used to 
fuse the information between the different modalities.Through  self- attention computation of cross modes, Cross-
Transformer can effectively mine the feature links between different modes to better understand and process multimodal data. 
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2.2.  Muti-scale feature fusion 
Multi-scale feature fusion is a computer vision technique uti- lized to enhance the performance of models in object detec- 
tion tasks, particularly for detecting objects of different sizes. This technique involves the integration of features from vari- 
ous layers or levels of a convolutional neural network(CNN) to obtain a more complete and informative representation of an 
image.  Different levels in a CNN capture different levels of abstraction and spatial resolution, which makes them better 
suited for detecting objects of different sizes. 

For example, features obtained from lower layers have higher spatial resolution than those from higher layers, which can be 
useful for detecting small objects.   Conversely, fea- tures from higher layers are better suited for detecting larger and more 
complex objects.  By fusing these features at mul- tiple scales, the model can benefit from the strengths of each layer and 
achieve better overall object detection performance. 

There are several ways to implement multi-scale feature fusion,  including  using  skip  connections  to  pass  features 
between  different  layers,  using  feature  pyramid  networks (FPNs) to merge features  across different resolutions,  and 
using top-down and bottom-up pathways to aggregate infor- mation from different scales.   These  techniques have been 
proven successful in various computer vision tasks, such as object detection, semantic segmentation, and imageclassifi- 
cation. 

3.  METHODOLOGY 

3.1.  Overall Architecture 
The proposed network architecture, called MSTR-YOLO(shown in Figure 1), is a hybrid model that combines convolution 
and self-attention. Firstly,  we use  STR-Darknet (Section3.2)as the backbone,  which  not  only removes the Focus module 
but also integrates multi-head self-attention into the original CSP-Darknet to extract more Individualized features.   Sec- 
ondly, The Tini-BiFPN, which replaces PANet, is designed to aggregate features from different backbone levels .(Section 3.3) 
Lastly, we explore different fusion methods and select pixel-level fusion for high computational efficiency to fuse IR and 
RGB modes 

 
Figure. 1: The architecture of the MSTR-YOLOv5.  a) MSTR-Darknet backbone with transformer encoder blocks at the end.  b) 
The Neck use the structure Tini-BiFPN which combines the advantages of BiFPN and Transformer 

 
3.2.  STR-Darknet 
The purpose of the Focus module in the YOLOv5 backbone is to gather the pixel values from the input image and 
then reconstruct them into smaller complementary images.   The size of the reconstructed image decreases as the 
number of channels increases.  Therefore, it will lead to a decrease in resolution and loss of spatial information for 
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small targets. Considering that the Focus module in the YOLOv5 backbone was replaced with the CBS module to 
improve the detection of small targets, which relies on higher resolution. 

To  improve  the  semantic  discriminability  and  mitigate class confusion for RSI in large-scale and complex scenes, 
collecting  and  correlating  scene  information  from  a  large neighbourhood can help learn relationships between objects. 
However, convolutional networks have limitations in captur- ing global context information due to locality constraints of 
convolution operations.In contrast, transformers can globally attend  to  dependency relationships between  image  feature 
patches while preserving sufficient spatial information, en- abling multi-head self-attention based object detection.   To 
enhance transferability of learned features and capture long- range contextual information, we propose the STR-Darknet 
backbone to extract features for detectors.   The  design  of STR-Darknet is straightforward(as shown in Figure 3):  we 
embed Swim-Transformer (STR) layers into the top CSPDark block to achieve global self-attention on 2D feature maps. It’s 
worth noting that when the network is relatively shal- low and the feature maps are relatively large, early use of transformer 
layers to enforce boundary regression can lead to the loss of meaningful contextual information.  Therefore,in STR-Darknet, 
transformer layers are only applied to P5 in- stead of P3 and P4, to avoid this issue. 

3.3.  Tini-BiFPN 
The size differences of RSIs can be significant, and the rep- resentation ability of single-feature maps in conv-olutional 
neural networks is limited.   Therefore, it is essential to ef- fectively  represent  and  process  multi-scale  features.    The 
traditional top-down FPN [16][12] is essentially limited by one-way information flow. To address this, PANet [13] adds an 
additional bottom-up path aggregation network, as shown in Figure 4(b).   Further  studies on cross-scale connections were 
conducted in [14][15][16]. In those works, a simple and efficient Weighted  Bidirectional Feature  Pyramid Network 
(BiFPN), as shown in Figure 4(c), achieves two optimizations for cross-scale connections.In this paper, Inspired by BiFPN, 
we have designed a lightweight neck network which we call Tini-BiFPN, it not only implifies BiFPN to fit the P5 structure 
but also introduce the Swim-Transformer into it.as shown in Figure 4(d) and Figure 5. 

3.4.  Multimodal Fusion 
Multimodal fusion is an effective approach for integrating di- verse information from multiple sensors.The more informa- 
tion is utilized to distinguish objects, the better performance can be achieved in object detection.  there are three promi- nent 
fusion methods:  decision-level fusion,feature-level fu- sion, and pixel-level fusion.  However, decision-level fusion, due to 
its high computational requirements, is not considered 

 

Figure. 2: The backbone structure of YOLOv5s.  The low-level texture and high-level semantic features are extracted by stacked 
CSP, CBS, and SPP structures. 

in this paper.  Instead, we focus on describing our proposed feature-level fusion and pixel-level fusion techniques, which 
enable the integration of information at different processing depths within the network. 

Figure 1 and Figure 2 illustrate show the feature-level fu- sion of various blocks works.  To ensure a fair comparison, the IR 
image is expanded to three bands. Each block’s fusion operation Cross-1,Cross-2,Cross-3, represent the fusion op- eration 
performed in the Low-Level, Mid-Level, High-Level, on the other hand, is considered to be a Feature-Level fusion operation. 

When it comes to pixel-level fusion(RGB+IR), we nor- malize the input RGB and IR images to intervals of [0,1], then 
combine them with relatively low computational effort com- pared to the other fusion methods, which fuse the information 
during later procedures to speed up the inference.  As Sec- tion will demonstrate, pixel-level fusion achieves better re- sults 
than feature-level fusion when combining different types of complementary information. 
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Q, K, V = Conv2D(X, k = (1, 1))             (1) 

when it comes to feature-level fusion ,we try to fuse three scale feature by cross transformer. In multi-head cross- atten- tion, 
we map the input patch sequence Xrgb to Q1 ,K1 ,V1 and Xir to Q2 ,K2 ,V2 in the headi  (i = 1...h, and his the the num- ber 
of head), following the Q-K-V attention in transformer 

As illustrated in Figure 4, the cross-attention layer plays a pivotal role in aggregating key information (K-V pairs) from two 
different branches to establish attention.  Specifically, the K-V pairs from the two branches are concatenated to-gether.  
Similarly, in order to aggregate K-V pairs from the RGB branch to the IR branch, we also concatenate the K-V pairs from 
these two branches. 

Kcat  = [K1 , K2]                         (2) 

Vcat  = [V1 , V2]                              (3) 

In this context, the operator [ꞏ, ꞏ] refers to the concatenation along the token dimension as the default operation. The cross- 
attention feature map can be computed as:  

Attencross (Qi , Kcat , Vcat ) = softmax( )Vcat   (4) 

3.5.  Loss Function 
The loss function of our network consists of two parts: detec- tion lossLv  and SR construction lossLs  , which can be com- 
puted as : 

Ltotal  = λ 1 Lo + λ2 Ls                           (5) 

Where λ1 and λ2 refer to the coefficients used to balance two training tasks. In this case, the L1 loss (rather than L2 loss) is 
utilized to calculate the SR construction loss, denoted as Ls , between the input image X and the SR result S. This can be 
expressed as follows: 

Ls  = || S − X || 1                                          (6) 

 

Figure. 3: The backbone structure of YOLOv5s.  The low-level texture and high-level semantic features are extracted by stacked 
CSP, CBS, and SPP structures. 
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Figure. 4:  Feature network design (a) FPN (b) PANet adds an additional bottom-up pathway on top ofFPN. (c) BiFPN im- 
plements two optimizations for cross-scale connections.  (d) Tini-BiFPN simplifies BiFPN to fit the P5 structure and intro- duce 
Swim-Transformer into it 

The detection loss consists of three components: the loss for determining whether there is an object (Lobj ), the loss for ob- 
ject localization (Lloc ), and the loss for object classification (Lcls ).  These components are used to eval-uate the loss of 
prediction, which can be expressed as follows: 

Lo  = Σ λi  Xj Li , i ∈ (obj, loc,cls)X ∈ (a,b,c)   (7) 

Here, in Equation 7, the variable j represents the layer of the output in the head.  The weights aj, bj, and cj correspond to the 
weights assigned to different layers for the three loss func- tions.  The weights λloc , λobj  , and λcls  are used to regulate the 
emphasis of errors among box coordinates, box dimen- sions, objectness, no-objectness, and classification. 

 

Figure. 5: Tini-BiFPN 

4. EXPERIMENTS AND ANALYSIS 

4.1.  Datasets 
The VEDAI dataset is used for multi-class vehicle detection in aerial images. It contains 3640 vehicle instances, including 9 
categories such as ships, cars, campers, airplanes, shuttle buses, tractors, trucks, freight vehicles, and other categories. The 
dataset includes 1210 aerial images of size 1024x1024. with  four  uncompressed  color  channels,  comprising  three RGB 
color channels and one additional nearinfrared channel. 

we use the VEDIA dataset to evaluate our model,  and we report mAP (average of all 10 IoU thresholds, ranging from 

 

Figure. 6: The Cross-Attention in our cross-transformer feature backbone 

Table  1:   Distribution  of  Available  Class  Instances  in  the VEDAI Dataset Across 10 Folds. 

Class Tatal Instances Distribution Across 10 Folds 

car 1349 9 folds of 135; 1 fold of 134 
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pickup 941 9 fold of 94; 1 fold of 95 
camping 390 10 folds of 39 

truck 300 10 folds of 30 
other 200 10 folds of 20 

tractor 190 10 folds of 19 
boat 170 10 folds of 17 

van 100 10 folds of 10 
[0.5 : 0.95]) and AP50. 

4.2.  Training Environment and Details 
Our proposed framework is implemented in PyTorch and is executed on a workstation equipped with an NVIDIA 3090 GPU.  
The  VEDAI  dataset  is utilized to train  our MSTR- YOLO model. 

For training, we employ the standard Stochastic Gradi- ent Descent (SGD) optimizer with a momentum of 0.937 and weight 
decay of 0.0005 for Nesterov accelerated gradients. The batch size is set to 2 (8). Initially, the learning rate is set to 0.01.  
The entire training process consists of 300 epochs and takes approximately 12 hours to complete. 

4.3.  Model Evaluation 
The accuracy assessment evaluates the agreement and dis- crepancies between the detection results and the reference mask.   
To  evaluate  the performance of the methods being compared, the accuracy metrics used are recall, precision, and mAP 
(mean Average Precision). The calculation of precision and recall metrics is defined as follows: 

Precision = 
             (8)

 

Recall = 
     TP                          (9) 

T P  +  F N 

TP is the count of correctly classified positive samples, FP is the count of incorrectly classified positive samples, and FN is 
the count of incorrectly classified negative samples. These metrics are used to evaluate the accuracy and performance of 
detection algorithms. 

mAP =  =                    (10) 
The mAP (mean Average Precision) is a comprehensive in- dicator that averages AP values.  It calculates the area under the 
Precision-Recall curve for all categories using an integral method. This metric quantifies the overall accuracy of an ob- ject 
detection model and considers the trade-off between pre- cision and recall. 

4.4.  Result Analysis and Ablation Experiments 
We validate the effectiveness of our proposed method by con- ducting a series of ablation experiments on the first fold of the 
validation set. These experiments enable us to analyze the importance of each component in VDEIA (Visual Detection and 
Evaluation of Image Analysis). 

4.4.1.  Ablation of STR-Darknet 
After integrating multi-head self attention into the original CSP-Darknet and remove the Focus module, the mean pre- cision 
and mean recall scores of this frameworks has been improved. 

In particular, the mean recall score of YOLOv5s is im- proved by 21.99%(51.1% →  73.09%) Removing the Focus module 
not only prevents resolution degradation but also re- tains  spatial interval information for  small objects in RSI. Moreover, 
the utilization of self-attention has a significant im- pact on detecting small objects, which is widely recognized as an 
important and challenging task in real-world object sys- tems. 

4.4.2.  Ablation of Tini-BiFPN 
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To further validate the effectiveness of Tini-BiFPN,We com- pare the network with the original network and find that its 
accuracy is higher than that of the original network.  The re- sults are shown in the TABLE 3. 

 

 

 

Table 2: Ablation of STR-Darknet 

Class CSP-Darknet STR-Darknet(ours) 

car 92.17 88.90 
pickup 86.22 87.12 

camping 78.87 76.80 

truck 76.91 81.01 
other 54.26 64.62 

tractor 80.12 83.22 
boat 60.21 71.34 
van 76.2 78.23 
all 75.62 78.91 

 
Table 3: Ablation of Tini-BiFPN 

Class PANet Tini-FPN(ours) 

car 91.64 88.90 
pickup 86.77 87.12 

camping 77.02 76.80 

truck 82.35 81.01 
other 67.53 64.62 

tractor 79.64 83.22 
boat 61.83 71.34 
van 70.23 78.23 
all 77.13 78.91 

 
4.4.3.  Ablation of Multimodal Fusion 
After evaluating the devised fusion methods, we conducted experiments using pixel-level and feature-level fusion tech- 
niques, as described in Section 3.4 of the paper. 

The results are presented in TABLE 5,6,7. The pixel-level fusion method achieved the best performance among all the 
compared methods, with a parameter size of 9.5084M and an mAP50 of 75.86%, respectively, which are the best among all 
the compared methods.  Therefore, we choose the pixel-level fusion as our final fusion strategy, which exhibits relatively 
competitive performance for the VEDAI multimodal dataset with objects that are difficult to distinguish. 

Table 4: Ablation of Multimodal Fusion 

Class RGB IR RGB+IR(ours)  
car 89.93 82.72 88.90 

pickup 82.86 77.43 87.12 
camping 71.59 72.41 76.80 

truck 75.35 67.95 81.01 
other 67.64 39.65 64.62 

tractor 80.56 60.15 83.22 
boat 58.19 49.66 71.34 
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van 72.56 88.81 78.23 
all 74.82 67.35 78.91 

 

 

 

 

Table 5: The Comparison Result of Pixel-level and Feature- level Fusions in MTR-YOLO for Multimodal Dataset on the First 
Fold of the Validation Set. 

Method Parameters mAP50 
l ion

 

9.5168M 

11.8873M 
11.8873M 
11.8873M 

78.91 
76.59 
76.20 
75.53 

 
4.4.4.  Comparisons with Previous Methods 
The results clearly demonstrate that MSTR-YOLO outper- forms other frameworks,  achieving higher AP and mAP50 scores.   
Notably,  in  multimodal  mode,  MSTR-YOLO  sur- passes YOLOv5x by a significant 13.19% mAP50 score. The detection 
performance for boat,  truck,  van,  and  other cat- egories is notably improved in MSTR-YOLO compared to other methods. 

5. CONCLUSION AND FUTURE WORK 

In  summary,  this paper proposes  a MSTR-YOLOv5  algo- rithm , realizing the organic combination of Transformer and 
CNN,meanwhile,achieving a balance of efficiency and per- formance.  MSTR-YOLOv5 uses YOLOv5n-p5 as the base- line,  
STR Block to strengthen the connection between the backbone network and the global information, Tini-BiFPN to 
strengthen the network feature extraction and lighten the network.  We also tried different methods of pixel-level fu- sion and 
feature-level fusion, and ultimately chose pixel-level fusion with better results. 

In the future, We will continue to explore effective meth- ods of pixel-level fusion combined with feature-level fusion to 
improve detection performance. Exploring more possibili- ties for multimodal fusion. 

Table 6: Class-wise Average Precision AP, Mean Average Precision mAP50, Parameters and GFLPs for Proposed MST-YOLO, 
YOLOv3, YOLOv4,YOLOv5s-x ( IR modal ConFigureurations on VEDAI Dataset ) 

Methods Car Pickup Camping Truck Other Tractor Boat Van All Params 
YOLOv3 80.21 67.03 65.55 47.78 25.86 40.11 32.67 53.33 51.54 61.5351M 
YOLOv4 80.45 67.88 68.84 53.66 30.02 44.23 25.40 51.41 52.75 52.5082M 
YOLOv5s 77.31 65.27 66.47 51.56 25.87 42.36 21.88 48.88 49.94 7.0728M 
YOLOv5m 79.23 67.32 65.43 51.75 26.66 44.28 26.64 56.14 52.19 21.0659M 
YOLOv5l 80.14 68.57 65.37 53.45 30.33 45.59 27.24 61.87 54.06 46.6383M 
YOLOv5x 79.01 66.72 65.93 58.49 31.39 41.38 31.58 58.98 54.18 87.2458M 
SuperYOLO 87.90 81.39 76.90 61.56 39.39 60.56 46.08 71.00 65.60 4.8256M 
Ours 88.63 81.69 76.31 67.26 44.86 67.86 44.77 71.08 68.43 9.5084 M 

 

Table 7: Class-wise Average Precision AP, Mean Average Precision mAP50, Parameters and GFLPs for Proposed MST-YOLO, 
YOLOv3, YOLOv4,YOLOv5s-x ( RGB modal ConFigureurations on VEDAI Dataset ) 

Methods Car Pickup Camping Truck Other Tractor Boat Van All Params 
YOLOv3 83.06 71.54 69.14 59.30 48.93 67.34 33.48 55.67 61.06 61.5351M 
YOLOv4 83.73 73.43 71.17 59.09 51.66 65.86 34.28 60.32 62.43 52.5082M 
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YOLOv5s 80.07 68.01 66.12 51.52 46.78 66.69 36.24 49.87 58.80 7.0728M 
YOLOv5m 81.14 70.26 65.53 53.98 46.78 66.69 36.24 49.87 58.80 21.0659M 
YOLOv5l 81.36 71.70 68.25 57.45 45.77 70.68 35.89 55.42 60.81 46.6383M 
YOLOv5x 81.66 72.23 68.29 59.07 48.47 66.01 39.15 61.85 62.09 87.2458M 
SuperYOLO 90.30 82.66 76.69 68.55 53.86 79.48 58.08 70.30 72.49 4.8256M 
Ours 91.18 82.75 69.50 59.48 57.51 72.64 57.49 57.49 75.86 9.5084 M 

 
Table 8: Class-wise Average Precision AP, Mean Average Precision mAP50, Parameters and GFLPs for Proposed MST-YOLO, 
YOLOv3, YOLOv4,YOLOv5s-x ( multi modal ConFigureurations on VEDAI Dataset ) 

Methods Car Pickup Camping Truck Other Tractor Boat Van All Params 
YOLOv3 84.57 72.68 67.13 61.96 43.04 65.24 37.10 58.29 61.26 61.5354M 
YOLOv4 85.46 72.84 72.38 62.82 48.94 68.99 34.28 54.66 62.55 52.5085M 
YOLOv5s 80.81 68.48 69.06 54.71 46.76 64.29 24.25 45.96 56.79 7.0739M 
YOLOv5m 82.53 72.32 68.41 59.25 46.20 66.23 33.51 57.11 60.69 21.0677M 
YOLOv5l 82.83 72.32 69.92 63.94 48.48 63.07 40.12 56.46 62.16 46.6046M 
YOLOv5x 84.33 72.95 70.09 61.15 49.94 67.35 38.71 56.65 62.65 87.2487M 
SuperYOLO 90.86 84.35 78.11 68.11 53.26 82.33 60.95 70.94 73.61 4.8259M 
Ours 90.15 83.88 78.77 72.46 60.28 79.78 60.05 73.35 75.86 9.5084 M 
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