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ABSTRACT 

Quantum dense coding is an important protocol in quantum communication, and it utilizes the quantum entanglement to 

increase the capacity of quantum communication. This article introduces the basic protocol of quantum dense coding, and 

also extends the concept of quantum dense coding to higher dimensions and with more participants. The security of 

quantum dense coding in those conditions is also discussed; and the discussion shows the potential of quantum dense 

coding in various applications. 
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1. INTRODUCTION TO QUANTUM DENSE CODING 

The development of quantum information technology provides a more efficient and secure way of communication. 

Quantum dense coding, one of the foundations of quantum information technology, allows information carriers to transmit 

more information than using traditional means. Over the years, researchers have made significant progress in understanding 

the theoretical foundations of quantum dense coding and exploring its practical implementations. The development in 

encoding schemes, error correction techniques, and quantum technologies lays a solid foundation for the experimental 

realization of dense coding protocols [1]. Experimental demonstrations have been conducted using various physical 

systems, including photons, trapped ions, and superconducting qubits [2-4]. These experiments validate the feasibility of 

quantum dense coding and prove its potential in real-world applications. 

2. QUANTUM DENSE CODING IN VARIOUS CONDITIONS 

To delve into the depths of quantum dense coding, it is essential to understand its foundations. Charles H. Bennett and 

Stephen J. Wiesner introduce the concept of quantum dense coding first in 1992, and by using the properties of quantum 

entangled pairs, the purpose of their protocol is to transmit more information than the traditional method for every EPR 

pairs transmitted [5, 6].  

2.1 Bennett-Wiesner Scheme 

Supposed Alice want to send 2 bits of information to Bob. The quantum dense coding allows Alice to pass two bits of 

information to Bob by sending one quantum bit. In the following example, the maximally entangled state (Bell state) is 

used [7]. 

Alice and Bob share a EPR pair: 

|ϕ+⟩ =
1

√2
(|00⟩ +  |11⟩) 

To preparing the quantum states, the Hadamard gate and the CNOT gate is used. 

CNOT(H ⊗ I)|00⟩ = |ϕ+⟩ 

 
1*gggliu@ucdavis.edu  

 

The International Conference Optoelectronic Information and Optical Engineering (OIOE2024), edited by 
Yang Yue, Lu Leng, Proc. of SPIE Vol. 13513, 1351325 · © 2025 SPIE · 0277-786X · © The Authors. 

Published under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.3045649

Proc. of SPIE Vol. 13513  1351325-1



The classic bit that Alice want to pass to Bob only have four possibilities, which are “00”, “01”, “10”, “11”. For which 

possibility, a unitary matrix U is used to operate on the particle that owned by Alice. The Alice needs to do U ⊗ I |ϕ+⟩ 
operation to her particle. 

If Alice wants to pass cbit = 00 to Bob, after the operation she would get: 

I ⊗ I |ϕ+⟩  =  |ϕ+⟩ 

If Alice wants to pass cbit = 01 to Bob, after the operation she would get: 

σx ⊗ I|ϕ+⟩ = |ψ+⟩ 

If Alice wants to pass cbit = 10 to Bob, after the operation she would get: 

σy ⊗ I|ϕ+⟩ = |ϕ−⟩ 

If Alice wants to pass cbit = 11 to Bob, after the operation she would get: 

σz ⊗ I|ϕ+⟩ = |ψ−⟩ 

After this operation, Alice could pass her particle to Bob, and Bob could apply a proper unitary operation (expressing by 

unitary matrix B) on the matrix to measure the particle and get the classic information. To obtain the classic information: 

B = (CNOT(H ⊗ I))
−1

= (H ⊗ I)CNOT 

B|ϕ+⟩  =  |00⟩ 

B|ψ+⟩  =  |01⟩ 

B|ϕ−⟩  =  |10⟩ 

B|ψ−⟩  =  |11⟩ 

2.2 Dense coding with three participants (two information sender and one receiver) 

Traditionally, quantum dense coding has been studied in the context of two participants (Alice and Bob) using a maximally 

entangled state such as the Bell state. This article shows the possibility of extending the concept of quantum dense coding 

into high dimensions and with more participants. Assume both Alice and Bob want to deliver a message to Charlie using 

quantum dense coding. The entangled particle pair shared by them is: 

|ϕ+⟩ABC =
1

√2
(|000⟩ + |111⟩) 

To prepare the quantum state, the Hadamard gate is used as the normal dense coding. 

CNOT ⊗ CNOT(H ⊗ I)|000⟩ = |ϕ+⟩ABC 

The classic information that Alice and Bob try to deliver could only be 0 or 1. A unitary matrix is needed to operate on the 

particle pair in order to deliver the classic information. 

The unitary matrix UA for Alice is defined as: 

UA: {I2, σx} → {0,1} 

The unitary matrix UB for Bob is defined as: 

UB: {I2, σx} → {0,1} 

Therefore, when both Alice and Bob is delivering their information, the operation on the particle is: 
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(UA ⊗ UB ⊗ IC)|ϕ+⟩ABC 

To be more specific, the four conditions are: 

(IA ⊗ IB ⊗ IC)|ϕ+⟩ABC  =  
1

√2
(|000⟩ + |111⟩) 

(IA ⊗ σB ⊗ IC)|ϕ+⟩ABC  =  
1

√2
(|010⟩ + |101⟩) 

(σA ⊗ IB ⊗ IC)|ϕ+⟩ABC  =  
1

√2
(|100⟩ + |011⟩) 

(σA ⊗ σB ⊗ IC)|ϕ+⟩ABC  =  
1

√2
(|110⟩ + |001⟩) 

The four quantum states got from the operation are orthogonal to each other. After this operation, Alice and Bob need to 

give their particle to Bob, and Bob would apply a proper unitary matrix B to the particle in order to obtain the classic 

information. 

B = (CNOT ⊗ CNOT(H ⊗ I))
−1

= (H ⊗ I)CNOT ⊗ CNOT 

2.3 Considering the communication with more participants 

Supposed that we have 4 participants, Alice, Bob, Charlie, and David, and Alice, Bob, and Charlie try to deliver a message 

to David using quantum dense coding. 

The entangled particles shared by them is: 

|ψ⟩ABCD =
1

√2
(|0000⟩ + |1111⟩) 

The following operation is used for them to prepare the entangled particles. 

CNOT ⊗ CNOT ⊗ CNOT(H ⊗ I4)|0000⟩ = |ψ⟩ABC 

The classic information that Alice, Bob, and Charlie try to deliver could only be 0 or 1. A unitary matrix is needed to 

operate on the particle pair in order to deliver the classic information. 

The unitary matrix UA for Alice is defined as: 

UA: {I2, σx} → {0,1} 

The unitary matrix UB for Bob is defined as: 

UB: {I2, σx} → {0,1} 

The unitary matrix UC for Charlie is defined as: 

UC: {I2, σx} → {0,1} 

Therefore, when all of them is delivering their information, the operation on the particle is: 

(UA ⊗ UB ⊗ UC ⊗ ID)|ψ⟩ABCD 

To be more specific, the four conditions are: 
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(IA ⊗ IB ⊗ IC ⊗ ID)|ψ⟩ABCD  =  
1

√2
(|0000⟩ + |1111⟩) 

(IA ⊗ IB ⊗ σC ⊗ ID)|ψ⟩ABCD  =  
1

√2
(|0010⟩ + |1101⟩) 

(IA ⊗ σB ⊗ IC ⊗ ID)|ψ⟩ABCD  =  
1

√2
(|0100⟩ + |1011⟩) 

(σA ⊗ IB ⊗ IC ⊗ ID)|ψ⟩ABCD  =  
1

√2
(|1000⟩ + |0111⟩) 

(IA ⊗ σB ⊗ σC ⊗ ID)|ψ⟩ABCD  =  
1

√2
(|0110⟩ + |1001⟩) 

(σA ⊗ IB ⊗ σC ⊗ ID)|ψ⟩ABCD  =  
1

√2
(|1010⟩ + |0101⟩) 

(σA ⊗ σB ⊗ IC ⊗ ID)|ψ⟩ABCD  =  
1

√2
(|1100⟩ + |0011⟩) 

(σA ⊗ σB ⊗ σC ⊗ ID)|ψ⟩ABCD  =  
1

√2
(|1110⟩ + |0001⟩) 

2.4 Extend to n-qubit 

For n-qubit, the quantum state that is shared by participants is shown below. The formula has n number of 0s and n number 

of 1s. 

|ψ⟩ABC =
1

√2
(|0. . .0⟩ + |1. . .1⟩) 

To prepare the quantum state, the Hadamard gate is used as the normal dense coding. 

(⨂ CNOT)

n−1

i=1

(H ⊗ I)|0. . .0⟩ = |ψ⟩ABC 

For each qubit, the unitary matrices used to transform the quantum state are defined as: 

Ui: {I2, σx} → {0,1}, i ∈ [1, n] 

Therefore, the operation for all n participants to deliver their information is: 

(⨂ Ui

n

i=1

)|ψ⟩ABC 

After the recipient gets the information from n sender, the recipient could decipher the classic information by applying 

operation B onto the quantum state. The matrix B is defined as: 

B = (CNOTn−1(H ⊗ I))
−1

= (H ⊗ I)CNOTn−1 
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3. EXTEND THE QUANTUM DENSE CODING WITH THREE PARTICIPANTS INTO 

THREE-DIMENSION 

Alice, Bob, and Charlie need to prepare a entangle state, and they would possess the first, second, and third quantum bit 

respectively. 

|ϕ+⟩ABC =
1

√3
(|000⟩ + |111⟩ + |222⟩) 

To prepare the quantum state, the 3-dimensional Hadamard gate is needed. 

CNOT(H3 ⊗ I)|00⟩ = |ϕ+⟩ 

H3 =
1

√3
(

1 1 1
1 w w2

1 w2 w
) 

Where 𝑤 = 𝑒𝑖
2𝜋

3  

The operation that Alice and Bob apply on the particles are defined as: 

Alice’s operation is UA: {I3, Va, Vb }  → {0, 1,2}, where Va =  (
0 1 0
0 0 1
1 0 0

), Vb = (
0 0 1
1 0 0
0 1 0

). 

Bob’s operation is UB: {I3, Va, Vb }  → {0, 1,2}, where Va =  (
0 1 0
0 0 1
1 0 0

), Vb = (
0 0 1
1 0 0
0 1 0

). 

The basic operations are: 

(IA ⊗ IB ⊗ IC)|ϕ+⟩ABC  =  
1

√3
(|000⟩ + |111⟩ + |222⟩) 

(IA ⊗ Va ⊗ IC)|ϕ+⟩ABC  =  
1

√3
(|020⟩ + |101⟩ + |212⟩) 

(IA ⊗ Vb ⊗ IC)|ϕ+⟩ABC  =  
1

√3
(|010⟩ + |121⟩ + |202⟩) 

(Va ⊗ IB ⊗ IC)|ϕ+⟩ABC  =  
1

√3
(|200⟩ + |011⟩ + |122⟩) 

(Vb ⊗ IB ⊗ IC)|ϕ+⟩ABC  =  
1

√3
(|100⟩ + |211⟩ + |022⟩) 

(Va ⊗ Va ⊗ IC)|ϕ+⟩ABC  =  
1

√3
(|220⟩ + |001⟩ + |112⟩) 

(Va ⊗ Vb ⊗ IC)|ϕ+⟩ABC  =  
1

√3
(|210⟩ + |021⟩ + |102⟩) 
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(Vb ⊗ Va ⊗ IC)|ϕ+⟩ABC  =  
1

√3
(|120⟩ + |201⟩ + |012⟩) 

(Vb ⊗ Vb ⊗ IC)|ϕ+⟩ABC  =  
1

√3
(|110⟩ + |221⟩ + |002⟩) 

By replacing 1 in matrix Va and Vb with w and w2, w = ei
2π

3 , we could get other operations. 

3.1 Extend the quantum communication into high-dimensional 

Alice, Bob, and Charlie need to prepare a entangle state, and they would possess the first, second, and third quantum bit 

respectively. 

|ψ⟩ABC =
1

2
(|000⟩ + |111⟩ + |222⟩  +  |333⟩) 

To prepare the quantum state, the 3-dimensional Hadamard gate is needed. 

CNOT ⊗ CNOT(H4 ⊗ I)|000⟩ = |ψ⟩ 

𝐻4 =
1

2
(

1 1
1 𝑖

1 1
−1 −𝑖

1 −1
1 −𝑖

1 −1
−1 𝑖

) 

The operation that Alice and Bob apply on the particles are defined as: 

Alice’s operation is UA: {I3, Va, Vb, Vc }  → {0, 1,2, 3}, where Va =  (

0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0

), Vb = (

0 0
1 0

0 1
0 0

0 1
0 0

0 0
1 0

), Vc =

(

0 0
0 0

0 1
1 0

1 0
0 1

0 0
0 0

). 

Bob’s operation is  UB: {I3, Va, Vb, Vc }  → {0, 1,2, 3}, where Va =  (

0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0

), Vb = (

0 0
1 0

0 1
0 0

0 1
0 0

0 0
1 0

), Vc =

(

0 0
0 0

0 1
1 0

1 0
0 1

0 0
0 0

). 

The basic operations are: 

(IA ⊗ IB ⊗ IC)|ψ⟩ABC  =  
1

2
(|000⟩ + |111⟩ + |222⟩ + |333⟩) 

(IA ⊗ Va ⊗ IC)|ψ⟩ABC  =  
1

2
(|030⟩ + |101⟩ + |212⟩ + |323⟩) 

(IA ⊗ Vb ⊗ IC)|ψ⟩ABC  =  
1

2
(|010⟩ + |121⟩ + |232⟩ + |303⟩) 
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(IA ⊗ Vc ⊗ IC)|ψ⟩ABC  =  
1

2
(|020⟩ + |131⟩ + |202⟩ + |313⟩) 

(Va ⊗ IB ⊗ IC)|ψ⟩ABC  =  
1

2
(|300⟩ + |011⟩ + |122⟩ + |233⟩) 

(Vb ⊗ IB ⊗ IC)|ψ⟩ABC  =  
1

2
(|100⟩ + |211⟩ + |322⟩ + |033⟩) 

(Vc ⊗ IB ⊗ IC)|ψ⟩ABC  =  
1

2
(|200⟩ + |311⟩ + |022⟩ + |133⟩) 

(Va ⊗ Va ⊗ IC)|ψ⟩ABC =  
1

2
(|330⟩ + |001⟩ + |112⟩ + |223⟩) 

(Va ⊗ Vb ⊗ IC)|ψ⟩ABC  =  
1

2
(|310⟩ + |021⟩ + |132⟩ + |203⟩) 

(Va ⊗ Vc ⊗ IC)|ψ⟩ABC =  
1

2
(|320⟩ + |031⟩ + |102⟩ + |213⟩) 

(Vb ⊗ Va ⊗ IC)|ψ⟩ABC  =  
1

2
(|130⟩ + |201⟩ + |312⟩ + |023⟩) 

(Vb ⊗ Vb ⊗ IC)|ψ⟩ABC  =  
1

2
(|110⟩ + |221⟩ + |332⟩ + |003⟩) 

(Vb ⊗ Vc ⊗ IC)|ψ⟩ABC  =  
1

2
(|120⟩ + |231⟩ + |302⟩ + |013⟩) 

(Vc ⊗ Va ⊗ IC)|ψ⟩ABC  =  
1

2
(|230⟩ + |301⟩ + |112⟩ + |123⟩) 

(Vc ⊗ Vb ⊗ IC)|ψ⟩ABC  =  
1

2
(|210⟩ + |321⟩ + |232⟩ + |103⟩) 

(Vc ⊗ Vc ⊗ IC)|ψ⟩ABC  =  
1

2
(|220⟩ + |331⟩ + |002⟩ + |113⟩) 

By replacing 1 in matrix Va, Vb, and Vc with I, -1, -i, we could get other operations. 

To measure the particles and decipher the information, Charlie could use the following operation: 

B = (CNOT ⊗ CNOT(H4 ⊗ I3))
−1

= (H4
3 ⊗ I3)CNOT ⊗ CNOT 

4. THE SECURITY IN QUANTUM DENSE CODING 

It is well known that the quantum teleportation is hard to be attacked by classic method. The security of quantum 

communication is generally based on the properties of the entangled quantum state and the No-cloning theorem.  

Proc. of SPIE Vol. 13513  1351325-7



The basic unit in quantum communication is qubit rather, and in classical teleportation, the basic unit is cbit. The most 

essential difference between qubit and cbit is that qubit represents a set of linear combinations but cbit could only represent 

very limited information (usually 0 and 1). Take the quantum dense coding as an example, in the previously introduced 

encoding, only two qubit is used, and each qubit could represent the linear combination of |0⟩ and |1⟩ ,which greatly 

increase the difficulty for the attackers to decipher the information. 

To elaborate, an attacker has 50% of possibility guessing a classical particle correctly because the only possibility is 0 or 

1. However, in the encoding introduced above, without help from the sender, the attacker only has 1/4 of the possibility to 

correctly gain the information [8].  

Another important property of qubit is that it cannot be duplicated. In quantum communication, a Unitary matrix operation 

can be implemented with 100% accuracy. The No-cloning theorem for the qubit could be proved by contradiction. 

Assume we have two arbitrary quantum states |ψ⟩ and |ϕ⟩, and there exist a unitary operator U that could copy them 

onto another state |k⟩ which is completely irrelevant to them. Thus, the copy operator U must satisfy the following 

equations. 

U(|ϕ⟩ ⊗ |k⟩) = |ϕ⟩ ⊗ |ϕ⟩ 

U(|ψ⟩ ⊗ |k⟩) = |ψ⟩ ⊗ |ψ⟩ 

By taking the inner product ⟨U(ϕ ⊗ ψ)|U(ψ ⊗ ϕ)⟩, the following equations could be derived. 

⟨U(ϕ ⊗ ψ)|U(ψ ⊗ ϕ)⟩  =  ⟨ϕ ⊗ ϕ| ψ ⊗ ψ⟩ 

⟨U(ϕ ⊗ ψ)|U(ψ ⊗ ϕ)⟩  =  ⟨ϕ ⊗ k| ψ ⊗ k⟩ 

Therefore, 

⟨ϕ ⊗ ϕ| ψ ⊗ ψ⟩  =  ⟨ϕ ⊗ k| ψ ⊗ k⟩ 

⟨ϕ| ψ⟩⟨ϕ| ψ⟩  =  ⟨ϕ| ψ⟩⟨k| k⟩ 

Because of ⟨k| k⟩  =  1,  

⟨ϕ|ψ⟩2 = ⟨ϕ|ψ⟩ 

This means that the only solutions are ⟨ϕ| ψ⟩  =  0 or ⟨ϕ| ψ⟩  =  1, which means either ϕ =  ψ, or they are orthogonal 

to each other. This is contradicted with the assumption that ϕ and ψ are arbitrary.  

The No-cloning theorem shows that the attacker cannot simply copy the qubit, which granted the security of quantum 

teleportation. 

4.1 The Security of quantum dense coding for multi-party communication 

In the communication protocols discussed above, it is crucial to discussed about how many information that David could 

decipher if David only gets a part of particles rather than all particles. 

Considering the situation that David only get particles from Bob, and Charlie but not from Alice: 

If Alice could not provide further help, Charlie, Bob could measure the particle that he has with the operation below: 

B3 = (CNOT3(H ⊗ I3))
−1

= (H ⊗ I3)CNOT3 

By measured with matrix B3, David could still get the information from Bob and Charlie, but he cannot get the information 

form Alice without having her particle. 

If Alice could measure her particle and send the result to David, David could decipher all the original information. 

Thinking about a more general example, supposed a receiver could only get n number of particles form m number of 

senders. The total number of combinations of information is 2m. Without any other help, the receiver has 
1

2m−n chance 
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of guessing the original information correctly. If the receiver gets p number of helps from the senders, the chance of 

guessing correctly is 
1

2m−n−p. Therefore, in order to decipher all the classic information, the receiver needs helps from at 

least m-n helps from senders. 

5. CONCLUSION 

The implementation of quantum dense coding is based on the properties of entangled quantum pairs, and the quantum 

entanglement has been widely studied and experimented, which provides a solid foundation for the development of 

quantum teleportation [9]. Due to the security and the ability of transmitted information efficiently, quantum dense coding 

could be applied to various fields, including quantum cryptography and quantum computing [10]. Moreover, the 

demonstration of that quantum dense coding could be applied to high dimensions and to more participants shows quantum 

dense coding is technology that have potential and can still be developed. 
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