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ABSTRACT. 

In this paper, a fast tunnel cable state identification method based on a sparse online hybrid Gaussian multi-classification 

algorithm is proposed for real-time monitoring of the state of tunnel cables and their changes. The method first reduces the 

size of the training set using the data subset approximation method, then uses the hybrid Gaussian multi-classification 

algorithm to train the tunnel cable state fast identification model, and finally performs the parameter update online when 

necessary. The proposed method takes less time in the model training phase, and the trained tunnel cable state fast 

identification model can maintain good recognition accuracy under complex operating conditions and can be updated 

quickly. 

Keywords: Cable condition recognition; Mixed Gaussian process; Multi-classification; Online model update; Sparse 

technology. 

1. INTRODUCTION 

With the development of urbanization, cables are more and more widely used in power systems. Compared with primary 

equipment such as transformers, switches, and circuit breakers, which are more centralized in the power grid, cables have 

a large number, long mileage, and wide distribution, and it is not easy to realize comprehensive monitoring and exact 

perception of their status. Moreover, the operation and maintenance management of cables has not yet formed a system, 

especially for 10 kV distribution cables, which are mostly randomly placed in cable trenches, which are often full of water 

and have poor air circulation [1]. Such a harsh operating environment is likely to cause damage to the cables, accelerating 

the aging of the cable insulation and leading to failures. 

Therefore, it is necessary to accurately diagnose faults on faulty cables in order to formulate appropriate maintenance and 

disposal plans, especially for early faults, which need to be paid attention to and handled before they develop into 

permanent faults, so as to prevent the deterioration of cable insulation from causing serious faults [2]. For normal cables 

in service, it is necessary to accurately assess the state of their insulation and grasp their current state of health in order to 

provide a reasonable maintenance program [3]. Accurate diagnosis of cable faults and reliable assessment of cable 

insulation status, and comprehensive monitoring of cable status are of great significance for the timely detection of 

potential cable faults [4], slowing down the occurrence of permanent faults, reducing the risk of grid operation, and 

ensuring the reliability of power supply in the power system. 

Along with the development of artificial intelligence technology in recent years, some scholars have begun to apply data-

driven ideas to the research of cable fault state diagnosis, and have also achieved certain results [5]. Southwest Jiaotong 

University realized the identification of early cable faults based on the probabilistic neural network [6] and support vector 

machine [7] respectively; Wang and Lu applied a restricted Boltzmann machine and stacked autoencoder to classify cable 

faults in distribution networks [8]; Professor Shin Yong-jun of Yonsei University in South Korea took fault waveforms 

and their reflection waveforms as the research object, and extracted the three features of fault waveforms, namely, the time 

delay, peak voltage, and time-frequency phase difference, as the inputs of generalized regression neural network as the 

input of the generalized regression neural network, so as to diagnose a variety of cable fault states [9]. From this type of 

research, it is not difficult to find that in the field of cable fault identification, artificial intelligence has a greater potential 

for development [10]. 
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Compared with the traditional electrical threshold method and other state diagnosis methods, the data-driven cable fault 

state method is more adaptable and robust [11]. However, the current data-driven cable fault state diagnosis method still 

has shortcomings such as less research on cable weak fault diagnosis [12] and lack of generalization ability of the cable 

fault state diagnosis model [13]. Therefore, in this paper, the identification of weak cable faults is incorporated into the 

diagnostic model to achieve more comprehensive cable fault state identification; the data subset approximation method is 

used to reduce the size of the training set and improve the model training speed. At the same time, a hybrid Gaussian multi-

classification algorithm is used to train the tunnel cable state fast identification model, and the correlation between cable 

states is deeply explored. Finally, an online updating mechanism of the model is proposed to improve the generalization 

performance of the cable fault state diagnosis model. 

2. ACQUISITION OF MODEL TRAINING DATA 

By analyzing the mechanism of weak and permanent faults of cables, suitable models are selected to simulate weak and 

permanent faults of cables. Use MATLAB or PSCAD/EMTDC to establish the cable model [14] and build the cable weak 

fault [15], permanent fault and overcurrent [16], and overvoltage perturbation model [17]. By simulating different cable 

fault conditions, different grounding resistances and forms of perturbation, the fault current, grounding current, partial 

discharge and other data under different conditions are obtained, and at the same time, the cable network operation 

temperature is obtained through the cable modem and the cable trench modeling simulation, and the monitoring quantities 

of the fault current, grounding current, partial discharge, and the cable network operation temperature are used as the input 

variable x, and the cable state is used as the output variable m, and the value of m is taken as follows: 
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At the same time, cable factory experimental data, online monitoring data, and power failure detection data can be added 

to the database. The data under each operating condition and fault condition form the original data set. K samples are 

uniformly selected from the original dataset as the new dataset by the data subset approximation method. 

3. FAST IDENTIFICATION OF TUNNEL CABLE STATUS BASED ON SPARSE 

ONLINE HYBRID GAUSSIAN MULTI-CLASSIFICATION ALGORITHM 

3.1 Gaussian mixture modeling 

The input variable x and the output variable m are combined into a new vector of variables y = [xT mT], then the training 

set is 𝑌 = [𝑦1, 𝑦2, ⋯ , 𝑦𝐾]. A Gaussian mixture model of the joint probability density of the inputs and outputs is built [18]: 

 𝑝(𝑦) = ∑ 𝑝(𝑗)𝑝(𝑦/𝑗)𝑀
𝑗=1  (2) 

where M is the number of unknown Gaussian components, j represents the jth Gaussian component, p(y) represents the 

probability density function of y, and p(j) represents the probability density function of j, which is calculated as follows: 

 𝑝(𝑗) = 𝛾𝑗𝑓(𝑗|𝛿𝑗) (3) 

where 𝛾𝑗 is the probability weight of the jth Gaussian component, 𝛿𝑗 = {𝜂𝑗 , ∑𝑗},𝑓(𝑗|𝛿𝑗) is calculated as follows: 

 

 𝑓(𝑗|𝛿𝑗) =
1

√(2𝜋)𝑒|∑𝑗|
𝑒𝑥𝑝{ − 1/2(𝑗 − 𝜂𝑗)𝑇∑𝑗

−1(𝑗 − 𝜂𝑗)} (4) 

where e is the dimension of y, where 𝜂𝑗 is the mean vector of the jth Gaussian component, and∑𝑗 is the covariance matrix 

of the jth Gaussian component. p(y/j) represents the conditional probability density function of y with respect to j: 
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 𝑝(𝑦/𝑗) =
𝑝(𝑦𝑗)

𝑝(𝑗)
 (5) 

3.2 Acquisition of model parameters 

It is first necessary to determine the range of M, i.e., to determine the maximum value, Mmax, and the minimum value, Mmin, 

of M. The absolute increasing log-likelihood criterion (AIL) is chosen to select the optimal Gaussian component [19]. The 

AIL criterion is defined as 

 AIL(𝛼̂(𝑀), 𝑀) = 𝑙𝑜𝑔 𝐹 (𝑌, 𝛼̂(𝑀)) − 𝑙𝑜𝑔 𝐹 (𝑌, 𝛼̂(𝑀−1)) (6) 

where 𝑙𝑜𝑔 𝐹 (𝑌, 𝛼̂(𝑀)) and 𝑙𝑜𝑔 𝐹 (𝑌, 𝛼̂(𝑀−1)) denote the maximum log-likelihood function of a Gaussian mixture model 

with M and M-1 Gaussian components, respectively, and the maximum log-likelihood function of a Gaussian mixture 

model with M Gaussian components is computed as follows: 

 𝑙𝑜𝑔 𝐹 (𝑌, 𝛼̂) = ∑ 𝑙𝑜𝑔(𝐾
𝑛=1 ∑ 𝛾𝑗𝑓(𝑦𝑛|𝛿𝑗)𝑀

𝑗=1 ) (7) 

The maximum log-likelihood function for a Gaussian mixture model with M-1 Gaussian components is similar. where K 

is the number of samples and 𝛼̂ = {{𝛾1, 𝜂1, ∑1}, {𝛾2, 𝜂2, ∑2}, ⋯ {𝛾𝑀, 𝜂𝑀, ∑𝑀}}is the total parameters in the complete 

Gaussian mixture model with M components [20]. 

Let M be equal to Mmax and use the K-means algorithm to initialize the parameters of the Gaussian mixture model with M 

Gaussian components, denoted as 𝛼̂𝑀
(1)

. 

3.2.1 EM algorithm [21] for obtaining estimated model parameters 𝜶̂𝑴 

E step, calculate the posterior probability of the ith training sample for the jth Gaussian component at the kth iteration: 

 𝜑(𝑘)(𝑦𝑖 , 𝛼(𝑘)) =
𝛾𝑗

(𝑘)
𝑓(𝑦𝑖|𝜂𝑗

(𝑘)
,∑𝑗

(𝑘)
)

∑ 𝛾𝑙
(𝑘)

𝑓(𝑦𝑖|𝜂𝑙
(𝑘)

,∑𝑙
(𝑘)

)𝑀
𝑙=1

 (8) 

M step, the probability weight 𝛾𝑗
(𝑘+1)

, mean 𝜂𝑗
(𝑘+1)

 and covariance ∑𝑗
(𝑘+1)

 of the jth Gaussian component at the (k+1)st 

iteration are computed: 

 𝛾𝑗
(𝑘+1)

=
∑ 𝜑(𝑘)(𝑦𝑖,𝛼(𝑘))𝐾

𝑖=1

𝐾
 (9) 

 

 𝜂𝑗
(𝑘+1)

=
∑ 𝜑(𝑘)(𝑦𝑖,𝛼(𝑘))𝐾

𝑖=1 𝑦𝑖

∑ 𝜑(𝑘)(𝑦𝑖,𝛼(𝑘))𝐾
𝑖=1

 (10) 

 ∑𝑗
(𝑘+1)

=
∑ 𝜑(𝑘)(𝑦𝑖,𝛼(𝑘))𝐾

𝑖=1 (𝑦𝑖−𝜂𝑗
(𝑘+1)

)(𝑦𝑖−𝜂𝑗
(𝑘+1)

)𝑇

∑ 𝜑(𝑘)(𝑦𝑖,𝛼(𝑘))𝐾
𝑖=1

 (11) 

Let 𝛼(𝑘+1) = {{𝛾1
𝑘+1, 𝜂1

𝑘+1, ∑1
𝑘+1}, {𝛾2

𝑘+1, 𝜂2
𝑘+1, ∑2

𝑘+1}, ⋯ {𝛾𝑀
𝑘+1, 𝜂𝑀

𝑘+1, ∑𝑀
𝑘+1}}, denote the (k+1)th total model parameter. 

The total parameters obtained from each iteration are combined to obtain the sequence {𝛼}, where each element is 𝛼 . 

Maximize the log-likelihood function to find the model parameters 𝛼̂𝑀 : 

 𝛼̂𝑀 = 𝑎𝑟𝑔  max
𝛼

(𝑙𝑜𝑔 𝐹 (𝑌, 𝛼)) (12) 

3.2.2 Calculate the corresponding absolute increasing log-likelihood criterion AIL(𝜶̂(𝑴), 𝑴) 

Remove the least probable Gaussian component and merge it to the closest Gaussian component. Select the least likely 

component by finding the component with the smallest mixing probability: 

 𝑟 = 𝑎𝑟𝑔  min
𝑗

{𝛾𝑗 , 𝑗 = 1,2, … 𝑀} (13) 

Then the component s closest to the rth component is chosen. 

 𝑠 = 𝑎𝑟𝑔  min
𝑖

{𝐵𝑠[𝑓(𝑦|𝜂𝑟 , ∑𝑟 , 𝑓(𝑦|𝜂𝑖 , ∑𝑖], 𝑖 = 1,2, … 𝑀, 𝑖 ≠ 𝑟} (14) 

where the Bs function is the symmetric KL scatter between the rth Gaussian component and the other components, and the 

symmetric KL scatter is a common measure of the difference between probability density functions: 

Proc. of SPIE Vol. 13513  135131B-3



 𝐵𝑠[𝑓(𝑦|𝜂𝑟 , ∑𝑟 , 𝑓(𝑦|𝜂𝑖 , ∑𝑖] =
1

2
𝑡𝑟[(∑𝑟 − ∑𝑖)(∑𝑖

−1 − ∑𝑟
−1)] 

+
1

2
(𝜂𝑟 − 𝜂𝑖)

𝑇(∑𝑟
−1 + ∑𝑖

−1)(𝜂𝑟 − 𝜂𝑖), 𝑖 = 1,2, … 𝑀, 𝑖 ≠ 𝑟 (15) 

The rth and sth Gaussian components are combined into a single component whose mixed probability, mean, and 

covariance are updated as 

 𝛾′ = 𝛾𝑟 + 𝛾𝑠 (16) 

 𝜂′ =
𝛾𝑟𝜂𝑟+𝛾𝑠𝜂𝑠

𝛾𝑟+𝛾𝑠
 (17) 

 ∑′ =
𝛾𝑟(∑𝑟+𝜂𝑟𝜂𝑟

𝑇)+𝛾𝑠(∑𝑠+𝜂𝑠𝜂𝑠
𝑇)

𝛾𝑟+𝛾𝑠
− 𝜂′𝜂′𝑇 (18) 

Obtain a Gaussian mixture model with M-1 Gaussian components with initial parameters 𝛼̂(𝑀−1)
(1)

. 

Let M = M-1 and repeat EM algorithm flow if M ≥ Mmin, otherwise proceed to the next step. 

Obtain the optimal Mopt by maximizing the AIL. 

 𝑀opt = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑀

{AIL(𝛼̂(𝑀), 𝑀), 𝑀 = 𝑀𝑚𝑖𝑛 , 𝑀𝑚𝑖𝑛 + 1, ⋯ , 𝑀𝑚𝑎𝑥 } (19) 

The final parameter estimates of the model 𝛼̂𝐾opt
 are obtained. 

3.3 Computational model output 

Assume that the new input data is xnew and the true value of the corresponding output is mnew. divide the mean vector and 

covariance matrix of each Gaussian component into input and output parts as follows: 

 𝜂𝑛𝑒𝑤,𝑗 = [
𝜂𝑛𝑒𝑤,𝑗

𝐼

𝜂𝑛𝑒𝑤,𝑗
𝑂 ] , ∑𝑛𝑒𝑤,𝑗 = [

∑𝑛𝑒𝑤,𝑗
𝐼  ∑𝑛𝑒𝑤,𝑗

𝐼𝑂

∑𝑛𝑒𝑤,𝑗
𝑂𝐼  ∑𝑛𝑒𝑤,𝑗

𝑂 ] (20) 

Estimate the posterior probability of each Gaussian component of the new input data: 

 𝑝(𝑗|𝑥𝑛𝑒𝑤) =
𝑝(𝑥𝑛𝑒𝑤|𝛿𝑗)𝑝(𝑗)

𝑝(𝑥𝑛𝑒𝑤|𝛿𝑗)
 (21) 

Compute the conditional distribution of the output of each Gaussian component of the new input data with respect to the 

input: 

 𝑝(𝑚𝑛𝑒𝑤,𝑗
|𝑥𝑛𝑒𝑤,𝑗) ~ 𝑓 (𝑚𝑛𝑒𝑤,𝑗|𝑚̂𝑛𝑒𝑤,𝑗 , ∑̂𝑛𝑒𝑤,𝑗) (22) 

where 𝑚̂𝑛𝑒𝑤,𝑗 and ∑̂𝑛𝑒𝑤,𝑗 are the mean and covariance parameters of the jth conditional Gaussian distribution, calculated 

as follows: 

 𝑚𝑛𝑒𝑤,𝑗 = 𝜂𝑛𝑒𝑤,𝑗
𝑂 + ∑𝑛𝑒𝑤,𝑗

𝑂𝐼 (∑𝑛𝑒𝑤,𝑗
𝐼 )−1(𝑚𝑛𝑒𝑤

𝐼 − 𝜂𝑛𝑒𝑤,𝑗
𝐼 ) (23) 

 ∑̂𝑛𝑒𝑤,𝑗 = ∑𝑛𝑒𝑤,𝑗
𝑂 − ∑𝑛𝑒𝑤,𝑗

𝑂𝐼 (∑𝑛𝑒𝑤,𝑗
𝐼 )−1∑𝑛𝑒𝑤,𝑗

𝐼𝑂  (24) 

The conditional distributions of the test set output with respect to the inputs are combined into a single Gaussian 

distribution. Finally, each component is weighted and combined to obtain the final prediction of the output: 

 𝑚̂𝑛𝑒𝑤 = ∑ 𝑝(𝑚𝑛𝑒𝑤,𝑗|𝑥𝑛𝑒𝑤,𝑗)𝑚̂𝑛𝑒𝑤,𝑗
𝑀𝑜𝑝𝑡

𝑗=1
 (25) 

Set the threshold function to 

Proc. of SPIE Vol. 13513  135131B-4



 

1 1 2

2 2 3

ˆ0,     1

ˆ1,      1 2

ˆ2,     2 3

ˆ          

,    

,    

         

new

new

new

m

m

m

y

n n m n

n n m n

  


 
  


 
  

  

  (26) 

Tunnel cable equipment fault state diagnosis, online monitoring equipment, and inspection robots collected cable 

equipment running current, grounding current, partial discharge, cable network temperature, and other monitoring 

quantities as the input to the cable fault state diagnosis model, to get the model output value 𝑦̂. When 𝑦̂=0, the cable is in 

the normal state, when 𝑦̂=1, the cable is in a weak fault 1 state, when 𝑦̂=2, the cable is in a weak fault 2 state, when 𝑦̂=n1, 

the cable is in a permanent fault 1 state, when 𝑦̂=n2, the cable is in a permanent fault 2 state, and so on.  

The model is updated online when new training points are added, and the process can be regarded as a process of adding 

new training points one by one. When the number of samples in the training set is increased to K+1, let the added samples 

be yK+1=(x+1, mK+1), then the mean and covariance parameter of the jth conditional Gaussian distribution are updated as: 

 𝜂𝑗
𝐾+1 = (∑𝑗

𝐾)−1𝜂𝑗
𝐾 + ∑𝑗

𝐾(∑𝑗
𝐾 + 𝜎𝑛

2)−1𝑦𝐾+1 (27) 

 ∑𝑗
𝐾+1 = ∑𝑗

𝐾 + ∑𝑗
𝐾(∑𝑗

𝐾 + 𝜎𝑛
2)−1(𝑦𝐾+1 − 𝜂𝑗

𝐾+1) (28) 

where 𝜎𝑛
2 is Gaussian white noise with zero variance. The overall flow of the algorithm is shown in Fig. 1. 
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Figure. 1 General flow of the methodology 

4. SIMULATION ANALYSIS 

4.1 Evaluation indicators 

The common metrics of the recognition model are accuracy, precision, recall, F1 comprehensive evaluation metrics, etc., 

among which accuracy is the most commonly used evaluation metric in fault recognition, which is calculated as shown 

below: 

𝐴𝑐 =
𝑁𝑇

𝑁𝑇+𝑁𝐹
 (29) 

where NT is the number of samples correctly predicted by the recognition model and NF is the number of samples 

incorrectly predicted by the recognition model. 

The accuracy can only describe the recognition results of the recognition model for all test samples, but cannot reflect the 

recognition performance of the model in specific categories. In order to comprehensively assess the performance of the 

recognition model, the F1 comprehensive evaluation index is introduced for comprehensive evaluation. 

The accuracy is calculated as follows: 

𝑃𝑟𝑘 =
𝑁𝑇𝑘

𝑁𝑇𝑘+𝑁𝐹𝑘
 (30) 
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where NTk is the number of samples correctly predicted by the discriminative model in the kth category sample, and NFk is 

the number of samples incorrectly predicted by the discriminative model in the kth category sample. 

The F1 composite evaluation index is calculated as follows: 

𝐹1 = 𝑛
∏ 𝑃𝑟𝑘

𝑛
𝑘=1

∑ 𝑃𝑟𝑘
𝑛
𝑘=1

 (31) 

The larger the value of the F1 comprehensive evaluation index, the stronger the comprehensive performance of the 

identification model. 

4.2 Experimental setup 

There are 8 cable operation states set up, which are coded as shown in Table 1. The data obtained through the cable and 

fault modeling simulation consists of the original dataset, which has 12000 samples, of which 2000 samples obtained by 

changing the states other than the eight cable operation states in the table are used as test set 2, 8000 samples are selected 

from the remaining 1000 samples as the training set, and the remaining 2000 samples are used as test set 1. 

Table 1. Cable operation status code 

Operational state Encodings 

Normal state 1 

Capacitor switching 2 

Constant impedance 

grounding 
3 

Early semi-circular wave 

failure 
4 

Multi-Cycle Early Failure 5 

Load Shedding 6 

Motor switching 7 

Excitation surge 8 

 

SVM, DT, RF, and KNN diagnostic models are used as a comparison of the proposed method. The simulation is carried 

out on MATLAB and the processor of the simulation device is 5800X with 32G RAM. 

4.3 Simulation results and analysis 

Five different methods of tunnel cable equipment fault state diagnosis models were trained using the training set, and the 

diagnostic results using test set 1 as the test set are shown in Fig. 2 and Table 2. 

Actual 

state 

1 363 4  1     

2 3 232       

3   245  1    

4    240     

5    3 221 2   

6    1  274 2  

7       252  

8      1 5 154 

  1 2 3 4 5 6 7 8 

  Projected State 

Figure. 2 Confusion Matrix for Cable Condition Diagnostic Results 

Table 2. Failure evaluation indicator values for each method 

Diagnostic 

model 

Training 

set 

accuracy 

Test Set 

Accuracy 

F1 

Composite 

indicator 

SVM 91.69% 90.35% 89.83% 

DT 90.25% 89.50% 88.21% 

RF 96.48% 95.75% 94.54% 

KNN 98.43% 97.50% 97.06% 

Proposed 99.26% 99.05% 98.47% 
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In order to evaluate the generalization ability of the tunnel cable equipment fault state diagnosis models trained by each 

method, test set 2 is used as the test set. The diagnostic results are shown in Fig. 3 and Table 3. 

Actual 

state 

1 359 6 2 1     

2 4 227  3  1   

3  3 240  2 1   

4    240     

5    3 221 2   

6   1 1  272 2 1 

7    2  1 249  

8    1  3 6 150 

  1 2 3 4 5 6 7 8 

  Projected State 

Figure. 3 Confusion Matrix for Cable Condition Diagnostic Results 

Table 3. Failure evaluation indicator values for each method 

Diagnostic 

model 

Training set 

accuracy 

Test Set 

Accuracy 

F1 

Composite 

indicator 

SVM 91.69% 86.65% 86.20% 

DT 90.25% 85.70% 83.63% 

RF 96.48% 90.25% 88.78% 

KNN 98.43% 91.25% 89.37% 

Proposed 99.26% 97.70% 97.14% 

 

The simulation results of each method show that the proposed sparse online hybrid Gaussian multi-classification algorithm-

based tunnel cable state fast identification method has higher identification accuracy than the SVM, DT, RF, and KNN-

based tunnel cable state identification methods, especially in the new operating conditions, the cable fault identification 

algorithms based on MLRM, SVM, and ANN produce larger measurement errors, but the proposed recognition algorithm 

has a smaller increase in the cable fault state recognition error, which indicates that it is more capable of adapting to new 

operating conditions, i.e., the generalization ability of this soft sensor is stronger. 

The hybrid Gaussian process is the union of multiple Gaussian components, and the number of Gaussian components is 

the number of different operating conditions of the system, so different from the general global identification, the hybrid 

Gaussian will automatically identify the number of operating conditions, and judge the current operating conditions during 

the actual measurement, so as to select the corresponding Gaussian components. Due to the huge difference between 

different operating conditions, global regression methods often cannot maintain high prediction accuracy over the whole 

operating domain, and the hybrid Gaussian process divides the whole operating domain and maintains good prediction 

performance in each operating condition. 

Since it is generally not possible for the training set to contain all cable states, the online updating capability of the model 

becomes more important. In this paper, we introduce an online updating mechanism for the model, which can introduce 

new training data and update the model faster, without the need to start the whole model training process from scratch. 

Therefore, the proposed method can still maintain a good recognition accuracy under new operating conditions. 

The model training time of each method is shown in Table 4: 

Table 4. Model training time for each method (unit: s) 

SVM DT RF KNN Proposed 

5.786 4.761 4.327 6.543 1.263 

 

From the above table, it can be seen that the model training time of the proposed method is the shortest. Since the training 

time of the hybrid Gaussian multi-classification algorithm has a linear relationship with the third power of the size of the 

training samples, the introduction of the sparse technique in the proposed method in this paper can greatly reduce the 

training time of the model in the case of a small increase in the error, which provides the possibility of online identification 

of the cable fault status. 
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5. SUMMARY 

In this paper, a fast identification method of tunnel cable status based on a sparse online hybrid Gaussian multi-

classification algorithm is proposed. The main novelty of the method is the use of a sparse online hybrid Gaussian multi-

classification algorithm for modeling the fast tunnel cable condition identification model. The results show that for the 

tunnel cable state diagnosis problem with complex operating conditions and high dimensionality of variables, the method 

has high accuracy and efficiency, and can quickly obtain the current state of the tunnel cable. 
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