
Research on power grid topology data management technology for
multi-temporality

Sen Pan*,a,b, Aihua Zhou a,b, Jing Jiang a,b, Hongbin Qiu a,b, Junfeng Qiao a,b, Xingde Huang c

aState Grid Smart Grid Research Institute Co.,LTD.,nanjing, Jiangsu,210003, China; bState grid key
laboratory of information & Network Security, Nanjing,210003, China; cState Grid Shanghai

Municipal Electric Power Company, Shanghai,200025, China

ABSTRACT

Aiming at the typical characteristics of constant changes in the power grid topology caused by multiple factors such as
large-scale access of distributed power supply and diversified loads, this paper analyzes the shortcomings of existing
power grid topology data management methods in temporal management of topology data, designs a power grid
topology data model integrating time dimension based on big data and graph computing technology, and establishes a
multi - temporal power network topology data management method. This method realizes the importing, processing,
storage and reading of multi-temporal power grid topology, which provides a new solution for the power grid topology
data management with multi-temporal version attribute, and also provides a powerful data support for the subsequent
analysis and application of multi-temporal power grid topology data.

Keywords:Multi-temporal; power grid topology; graph calculation; data management

1. INTRODUCTION
The grid topology data is mainly derived from the internal data of power enterprises, including the equipment model
connection relationship in the power grid production management system (PMS), the power grid common information
model (CIM) in the grid dispatching automation system, and the topology location information in the grid geographic
information system (GIS). At present, the general process of power grid topology data management is: establish the
graph data model of the power grid topology network, use the graph database software to import the topology
information data of the current time section from the relational database, and then form the grid topology network to
support the subsequent topology analysis, and synchronize and update in the graph database when the grid topology
information changes. With the development and application of new energy 1, the new construction and migration of
power stations, the expansion and transformation of power equipment, etc., the power grid topology information,
especially the connection relationship of equipment, the number of equipment access, the spatial location information,
etc. are also changing with time, especially the large-scale access of distributed power generation and diversified loads 2,
which directly affects the original power grid topology network structure, and the current mode of online update of
topology data after importing into the graph database can no longer meet the management needs of large-scale changes
in power grid topology data in the current complex environment. Therefore, the time characteristics of the data need to
be considered when managing and applying grid topology information. Taking photovoltaic energy as an example 3-6,
large-scale household photovoltaic power supply is continuously connected, making the grid topology more and more
large, and its intermittent power characteristics make it constantly change between load and power supply, which further
aggravates the complexity of the power grid topology, and then brings certain inconvenience to the existing power grid
topology analysis, reducing the real-time and accuracy of power grid topology analysis. Therefore, the current single grid
topology data management method and mode without considering the time attribute can no longer meet the topology
analysis needs of complex power grids in the new situation.

*yingzi108@126.com

Seventh International Conference on Mechatronics and Intelligent Robotics (ICMIR 2023), edited by Srikanta Patnaik,
Tao Shen, Proc. of SPIE Vol. 12779, 1277905 · © 2023 SPIE · 0277-786X · Published under a

Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.2688669

Proc. of SPIE Vol. 12779 1277905-1

2. TOPOLOGY DATA MANAGEMENT IDEAS
In order to solve the data management requirements of complex power grid topology in the new situation and overcome
the modeling and storage problems of multi-time versions of grid topology data, this paper designs a multi-temporal
power grid topology data management method.

In terms of data storage, Hadoop is comprehensively used to support multi-temporal grid topology data storage through
the integration of Hbase and Spark. As a distributed database based on Hadoop Distributed File System (HDFS), HBase
can be easily expanded horizontally by adding nodes, expanding the storage scale, and meeting the capacity requirements
of massive data storage 7. At the same time, HBase has the characteristics of multi-version storage, which can control
data versions through timestamp labels, and support custom configuration of timestamps according to the needs of
business scenarios to meet the needs of multi-temporal data storage. Through the integration of Spark and HBase, the use
of Spark's memory-based large-scale fast parallel processing characteristics, the underlying storage system to achieve the
support of high concurrency data storage and query requirements, Spark itself provides rich operators, reduces the
complexity of data processing transformation, simplifies the development of data storage and access interfaces, and
improves ease of use 8.

In terms of data model construction, based on graph data modeling theory 9, the equipment properties in the power grid
topology and the connection relationship and information between the devices are analyzed, and a multi-temporal power
grid topology data model including time labels is formed, including vertex collections and edge collections, to meet the
model requirements of multi-time versions of power grid topology data. The GraphX framework 10 is introduced and
developed twice, the multi-temporal grid topology data model is technically realized, and the integration of timestamp
information is realized by reconstructing edge EdgeRDD and vertex VertexRDD, and Graph objects are generated in real
time to support subsequent data storage and reading. At the same time, GraphX provides rich graph calculation and
graph mining algorithms and corresponding interfaces, which can provide strong support for the subsequent analysis and
application of multi-temporal grid topology data.

3. TOPOLOGY DATA MANAGEMENT DESIGN
3.1 Topology data management framework

Based on the traditional grid topology data management method, this paper integrates the time dimension data of the grid
topology and constructs a multi-temporal grid topology data management framework, including grid topology data
model management, grid topology data import, multi-temporal grid topology data storage and multi-temporal grid
topology data access as shown in Figure 1.

Figure 1. Multitemporal grid topology data management framework

Proc. of SPIE Vol. 12779 1277905-2

3.2 Topology data model

In view of the fact that the original grid topology data model is difficult to support the management of multi-temporal
grid topology data, this paper designs a grid topology data model that integrates time dimensions based on the basic
theory of graph computing and graph data model, and realizes the model support of multi-temporal grid topology data
management.

(1)Multi-temporal grid topology data model definition. Sort out the key equipment and components in the power grid
topology, analyze the typical characteristics of the power grid topology, abstract the interconnected equipment and
components such as power points, busbars, substations, circuit breakers, and load points in the power grid into vertices,
and abstract the power lines connecting these vertices into edges to form vertex entities and edge entities, and define and
describe them through entity definitions, entity properties, time labels, etc. respectively. Entity definitions mainly include
entity numbers, entity names, entity space characteristics, etc., entity attributes mainly include entity types, entity
information, power attributes, management information, entity descriptions, etc., and time labels describe the time
version characteristics of entities in the form of timestamps. Table 1 shows the detailed model of vertex solid models,
including vertex definitions, vertex properties, and timestamps. Table 2 describes the detailed model of edge entity
models, including edge definitions, edge attributes, and timestamps.

Table 1. Vertex entities

category name illustrate

Vertices definition

Id numbering
Name name

Coordinate_x Longitude value x
Coordinate_y The latitude value y

Vertex properties

Type Node type
Info Node information

Electricity_attributes Power properties
Manager administrator
Ower Affiliation
Address Installation address
Desc Node description

timestamp Timestamp Time version

Table 2. Edge entities

category name illustrate

Edge definition

Id numbering
Name name

Starting_node Edge start
Terminal_node Edge end

Edge properties

Type Edge type
Info Edge information

Electricity_attributes Power properties
Manager administrator
Ower Affiliation
Length Edge length
Desc Node description

timestamp Timestamp Time version

Proc. of SPIE Vol. 12779 1277905-3

(2)Design of multi-temporal grid topology data model based on GraphX. GraphX defines a Property Graph data model
that creates graphs in vertices and edges. GraphX stores graph data in the form of Resilient Distributed Datasets(RDD)
distributed on the nodes of the cluster, where the vertex RDD name corresponding to Vertics is VertexRDD, and the
attributes include vertex ID and vertex attribute for storing vertex collections. The RDD name corresponding to Edges is
EdgeRDD, and the attributes include source vertex ID, target vertex ID, and edge attribute to store edge collections. This
paper designs a multi-temporal grid topology data model based on GraphX to support the management of multi-temporal
grid topology data. The specific steps are as follows:

1）Define the vertex model: def VertexUnit(keys: Long, attribute:String, timestamp: Long)

2）Mapping the vertex model, mapping the ID of the vertex to keys, using the timestamp of the vertex as timestamp,
building an attribute with other properties of the vertex, and "|" to form a property string with the expression:Name|
Coordinate_x|Coordinate_y|Type|Info|Electricity_attributes|Manager|Ower|Address|Desc

3）Create a vertex RDD with a timestamp: vertexTSRDD[VertexUnit]

4）Define the edge model: def EdgeUnit(src: Long, dst: Long, attribute: String, timestamp: Long)

5）Perform mapping transformations of edge models, map Starting_node to src, map Terminal_node to dst, use the
timestamp of the edge as timestamp, build an attribute with other attributes of the edge, and use the | A concatenation is
made to form a property string with the expression:Id|Name|Type|Info|Electricity_attributes|Manager|Ower|Length|Desc

6）Create an edge RDD that contains the timestamp: edgeTSRDD[EdgeUnit]

4. DATA MANAGEMENT FUNCTION REALIZATION
4.1 Multitemporal data storage implementation

(1) The underlying storage system. Hbase divides the storage of data by column family, and sets several columns under
the column family to achieve flexible data access, and uniquely distinguishes the data of a row by introducing Rowkey as
the primary key. HBase uses regions for partitioned data storage, allocating the data of a large table to different regions
based on different ranges of Rowkey, and each region is responsible for a certain range of data access and storage,
providing access speed and reducing data latency. HBase's time version data storage is achieved through timestamps, by
using different timestamps to identify the same Rowkey row corresponding to the different versions of the data, the same
Rowkey data according to timestamp reverse order, users can read the old version of the data with the specified
timestamp value. According to HBase, Key-Value(KV) mode is adopted, and the data storage mode of the underlying
storage system of the multitemporal data storage module is (Rowkey, Family, Column, Timestamp) -> Value, where
(Rowkey, Family, Column, Timestamp) is the key, which is used to identify the storage and reading of data, as shown in
Figure 2.

Figure 2. Key-value model of the multitemporal data storage module

(2) Data storage and access methods. The way to store and access is to combine Spark with HBase, and use the HBase-
Spark connection tool class provided by HBase to support Spark to read and write HBase in batches in RDD by creating
HBaseContext objects. The HBaseContext creation process is as follows:

val conf = new SparkConf().setAppName("SparkOnHBase").set("spark.master", "yarn")

Proc. of SPIE Vol. 12779 1277905-4

.set("spark.submit.deployMode", "client")
val spark = SparkSession.builder().config(conf).getOrCreate()
val hbaseconf = HBaseConfiguration.create()
Val hbaseContext = new HBaseContext(spark.sparkContext, hbaseconf)

The HBaseContext object provides an interface for batch processing of HBase data, where bulkPut method is used to
send put operations to HBase massively parallel, bulkDelete method is used to send delete operations to HBase
massively parallel, and bulkGet method is used to send get operations to HBase massively parallel. Based on the
interface provided by HBaseContext, secondary development and encapsulation are carried out to form a batch
processing method that supports temporal data storage and reading, as shown in Table 3.

Table 3. Temporal data processing methods

Method name Underlying interface illustrate

timeVersionDataBulkPut bulkPut Temporal data is stored in bulk

timeVersionDataBulkGet bulkGet Temporal data is read in batches

timeVersionDataBulkDelete bulkDelete Temporal data is deleted in bulk

4.2 Power grid topology data management implementation

(1) GraphX-based data storage and reading. Storage methods include storage for vertex collections and storage for edge
collections. Vertex storage is done by creating a vertex RDD (vertexTSRDD[VertexUnit]) containing a timestamp and
calling the timeVersionDataBulkPut method to store the collection of vertices in the HBase data table. Edge storage is
done by creating an edge RDD (edgeTSRDD[EdgeUnit]) containing timestamps, and calling the
timeVersionDataBulkPut(rdd:RDD, rdd_table:String) method of the underlying storage to store the collection of edges in
the specified table (rdd_table) in HBase. For different graph objects, vertex data RDDs and edge data RDDs are stored in
different HBase tables, vertex data RDDs with different temporals of the same graph object will be stored in the same
HBase table (such as vertex_table), and edge data RDDs with different temporal states will also be stored in the same
HBase table (such as edge_table), and the data time version will be defined by timestamp. The process of data access is
to obtain the RDD of vertex data and RDD of edge data by calling the underlying storage method, and then build a graph
object (Graph) after conversion to provide access to the graph. The specific steps are: first call the
timeVersionDataBulkGet(rdd_table:String, timestamp: Long) method to get vertexTSRDD[VertexUnit] and
edgeTSRDD[EdgeUnit], respectively, and then perform Map conversion to vertexRDD[keys: Long, values:String]
respectively. and edgeRDD[src: Long, dst: Long, values: String], and finally create a graph object (Graph) via Graph
(VertexRDD, EdgeRDD).

(2) Data import. The data import module includes a data connection part, a data preprocessing part and a Data
transformation storage part, as shown in Figure 3.

Figure 3. Flow chart of the data import module

Data connection. Based on Spark components, data connection modules for different data storage forms such as
relational databases, non-relational databases, text data, and data streams have been developed, JDBC is used for
database connection, text data is directly read, and SparkStreaming is used for data streaming. The main methods of
JDBC-based database connections are as follows:

Val jdbcDF = spark.read.format("jdbc").option("url", "jdbc:xxx:xxxserver").option("dbtable", "schema

Proc. of SPIE Vol. 12779 1277905-5

.tablename").option("user", "username").option("password", "password").load()

Data preprocessing. Based on the DataFrame formed after data connection, using the rich DataFrame operator provided
by Spark, retrieve duplicate data and deduplicate them, find missing data and fill them according to the average value of
neighboring data or set default values, analyze abnormal data and replace outliers according to the change trend of
neighboring data. Then, the DataFrame.rdd method is used to convert the DataFrame into RDD, and finally the vertex
RDD dataset and edge RDD dataset that meet the data quality requirements are formed.

Data transformation storage. After obtaining the preprocessed RDD dataset, the multitemporal grid topology data model
is applied to add timestamp information to the RDD dataset based on GraphX, in which the structure of the vertex RDD
is converted from (keys: Long, attribute:String) to (keys: Long, attribute:String, timestamp: Long), and the structure of
the edge RDD is converted by (src: Long, dst: Long, attribute: string) is converted to (src: Long, dst: Long, attribute:
String, timestamp: Long) to form vertex datasets and edge datasets containing temporal attributes, and then stored into
the multitemporal data storage system using the data storage interface provided by the data model management module.

(3) Data access. Based on GraphX and multi-temporal grid topology data model, develop a data reader, according to the
given power topology object and time version, read the specified temporal grid topology data through the data access
interface provided by the data model management module, and provide it in the form of grid topology diagram (Graph),
and the attribute data of vertices and edges of the grid topology map is restored and read by parsing the attribute strings
of vertices and edges.

5. CONCLUSION
This paper analyzes the management requirements of existing grid topology data in multi-temporality, designs a grid
topology data model covering time information based on big data and graph computing technology, and proposes a
multitemporal grid topology management method that integrates time dimensions. This method realizes the whole life
cycle management of multi-temporal grid topology data, provides a new solution for improving the efficiency of grid
topology data management with multi-time version attributes, and strongly supports the subsequent analysis and
application of multi-temporal grid topology data.

ACKNOWLEDGMENTS

This work is supported by the Science and Technology Project of State Grid Corporation of China (Research on deep
data fusion and resource sharing technology of new distribution network, No. 5400-202258431A-2-0-ZN).

REFERENCES

[1] Gandhi, O., Rodríguez-Gallegos, C. D., Zhang, W., Srinivasan, D., Reindl, T., Economic and technical analysis
of reactive power provision from distributed energy resources in microgrids[J]. Applied Energy, 210, 827-841
(2018).

[2] Bai H., Wu K. H., Sun C. B., Kong W. Y., Qiu Y. L., Research on adaptability of distribution network access
standard under high proportion distributed power supply and diversified load conditions[J]. Electrotechnical
Application, 38(05):81-88 (2019). (In Chinese)

[3] Chang, J. L., Research on the Influence of Distributed Photovoltaic Power Access to the Distributed Network
and Grid-connected Planning Study [D]. School of Electrical Engineering and Electronics (2016). (In Chinese)

[4] Kai Qiao,Qiao Kai,Zhang Guomin,Liu Ningchao,Man Hongwei. Analysis of Abnormal Low-voltage Line Loss
in the Transformer Area Caused by Distributed Photovoltaic Access[J]. Journal of Physics: Conference Series,
(Vol. 1654, No. 1, p. 012091). IOP Publishing (2020).

[5] Singh, M., Protection coordination in distribution systems with and without distributed energy resources- a
review[J]. Protection and Control of Modern Power Systems, 2(1): 1-17 (2017).

[6] Chandraratne, C., Naayagi Ramasamy, T., Logenthiran, T., Panda, G., Adaptive Protection for Microgrid with
Distributed Energy Resources[J]. Electronics, 9(11), 1959 (2020).

Proc. of SPIE Vol. 12779 1277905-6

[7] Zhu, L., Cai, X., Le, Y., Research on Performance Optimization for Power Big Data Storage based on HBase[J].
Journal of Physics: Conference Series,(Vol. 2033, No. 1, p. 012181). IOP Publishing (2021).

[8] Park K., Peng L., A development of LDA topic association systems based on spark-hadoop framework[J].
Journal of Information Processing Systems, 14(1):140-149 (2018).

[9] Ma, Y. s., Wu, Z. G., Modeling and analysis of big data for power grid based on Neo4j[J]. Advanced
Technology of Electrical Engineering and Energy, 35(02):24-30 (2016). (In Chinese)

[10]Dharavath, R., Arora, N. S., Spark’s GraphX-based link prediction for social communication using triangle
counting[J]. Social Network Analysis and Mining, 9(1):1-12 (2019).

Proc. of SPIE Vol. 12779 1277905-7

