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ABSTRACT   

Near-perfect diffracting crystals have many uses in X-ray optics including as monochromators, energy analyzers, and 

phase retarders. The usefulness of a particular Bragg reflection is often related to its angular acceptance and efficiency, as 

is determined by the reflection’s structure factor. Silicon crystals, which belong to the same face-centered cubic space 

group 𝐹𝑑3̅𝑚 as germanium and diamond, are readily available in large and highly pure ingots. Combined with their high 

thermal conductivity and low thermal expansion, this makes them suitable for synchrotron X-ray beamlines. However, less 

symmetric trigonal crystals such as sapphire, lithium niobate, and α-quartz offer a better choice of high-energy-resolution 

Bragg reflections near backscattering with less likelihood of parasitic Bragg reflections. Because these crystals’ atoms 

vibrate anisotropically and shift relative to each other with temperature, the temperature dependence of their structure 

factors is not a given by a simple Debye-Waller factor. Also, many crystal structures may be described by several different 

conventions of origin and lattice vectors. A Python 3 software package, PyCSFex, is presented here for the rapid 

calculation of large numbers of structure factors of any crystal described in any convention. It can run on its own or as part 

of an already existing software package. Users can extend the package to new crystals by writing their own material files. 

α-Quartz is chosen as an example because it has already been successfully used in backscattering X-ray energy analyzers 

and presents the complexities previously mentioned. 
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1. INTRODUCTION  

For many years, X-ray beamlines at synchrotrons and free electron lasers have used silicon crystal optics because of the 

combination of highly favorable thermal, mechanical, and material properties that such crystals offer. Because silicon is a 

critical material for the manufacture of semiconductors, large ingots up to 125 mm in diameter and 1 m long with extremely 

low impurity and defect concentrations are regularly grown by industrial suppliers using the float-zone method. Silicon’s 

high thermal conductivity1 allows it to dissipate high thermal loads, and because its linear thermal expansion coefficient is 

zero2 at 120 K, silicon crystals suffer relatively little distortion under such loads when cooled by liquid nitrogen. Silicon 

crystals are hard enough to take a high polish, yet they can still be cut and shaped by diamond saws, and after fabrication, 

surface damage can be removed by etching with aqueous mixtures of nitric and hydrofluoric acid. Finally, silicon crystal 

optics remain undamaged through years of operation. Therefore, silicon crystals are the preferred material for X-ray 

monochromators, especially those exposed to beams of high power. 

Germanium and diamond crystals are also sometimes used as X-ray diffracting optics, though each has some disadvantages 

compared with silicon. Germanium absorbs X-rays more strongly, has a higher linear thermal expansion coefficient2, and 

has lower thermal conductivity1 than silicon. Nonetheless, germanium crystals are frequently used along with silicon 

crystals as high-resolution energy analyzers for measurements of X-ray fluorescence and inelastic scattering, which do not 

impose high thermal loads. Large and defect-free crystals of diamond are difficult to produce and also difficult to machine 

and etch. They are therefore unsuitable for making crystal energy analyzers. However, their low thermal expansion3 and 

high thermal conductivity4 make them attractive as filters for removing X-rays of energy < 5 keV, which at some beamlines 

are not used and would impose intolerable thermal loads on optics downstream. Moreover, their low absorption makes 

them the material of choice for phase retarders, which alter the polarization state of an X-ray beam and thus are useful for 

measurements of circular dichroism, as well as for multiplexing monochromators. 
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All three materials, silicon, germanium and diamond, form crystal structures whose symmetry operations are those of the 

face-centered cubic space group 𝐹𝑑3̅𝑚. The set of symmetry operations is remarkable for its large number of rotations, 

mirror planes, and glide planes, as well as for including inversion (that is, these materials are centrosymmetric)5. As a 

result, the number of atomic planes in these crystals that are related by symmetry and thus have the same spacing 𝑑 is 

much larger than in crystals whose structures have fewer symmetry operations. This particularly affects the design of 

crystal energy analyzers, which achieve their best resolution if they diffract X-rays close to backscattering6,7. Since the 

energy of the X-rays to be analyzed is often fixed, for example at an emission line or absorption edge of some element, the 

likelihood that silicon and germanium can diffract those X-rays near backscattering is low. Furthermore, diffraction in 

backscattering from these materials is accompanied by parasitic reflections that remove the desired flux and affect the 

energy resolution. For instance, when the (12 4 0) atomic planes of silicon and germanium diffract in backscattering, 22 

additional reflections are also excited8. For these reasons, non-cubic crystals that have fewer symmetry operations are 

being considered as possible materials for crystal energy analyzers of X-rays. Sapphire, lithium niobate, and α (or “low”) 

quartz have attracted the most interest9; they are described in Table 1. All these form trigonal crystal systems. Note that 

although the space groups of sapphire and lithium niobate appear similar, they are quite different. The crystal structure of 

sapphire is centrosymmetric, whereas that of lithium niobate is polar. The latter is therefore ferroelectric while the former 

is not. It is also notable that α quartz is piezoelectric; as is possible because it is also non-centrosymmetric. 

Table 1: Crystals with trigonal systems that are being considered for use as high-resolution X-ray energy analyzers. Names 

of space groups are as listed in the International Tables for Crystallography5. The two space groups in which the crystal 

structure of α quartz may exist are both chiral and are enantiomorphs (mirror images) of each other. 

Crystal Chemical formula Space group Lattice system 

α quartz SiO2 𝑃3121 or 𝑃3221 Hexagonal 

Sapphire Al2O3 𝑅3̅𝑐 Rhombohedral 

Lithium niobate LiNbO3 𝑅3𝑐 Rhombohedral 

 

α quartz crystals synthetically grown by the hydrothermal process10 are commercially available. Their low defect 

concentration has been demonstrated11-14. They have already been put to work as spherically diced analyzers for the Ni Kα 

emission line and the Ir L3 absorption edge15,16 and as a flat crystal analyzer accompanied by a collimating Montel optic 

after the sample for the Ir L3 absorption edge17. In the last example, the energy resolution of the analyzer was estimated to 

be  ~4 meV.  Sapphire and lithium niobate crystals have also been tested, and although the samples currently available do 

not yet attain such a low concentration of defects9, future specimens may benefit from improved fabrication methods. 

Therefore, the development of methods for determining the performance of these materials as crystal energy analyzers of 

X-rays will be well worth the effort. In the future other crystalline materials may find applications as X-ray optics, and 

these methods will have to be extended to include them. Finally, for ease of use, these methods should be readily integrated 

with currently existing software packages for X-ray optics simulations, such as OASYS18 and SRW19. 

However, to achieve this goal, crystals more complex than silicon, germanium, and diamond will have to be treated. In 

general, their thermal expansion will be anisotropic, as will the thermally induced vibration of their atoms. In addition, 

whereas the relative positions of the atoms in silicon, germanium, and diamond are independent of temperature, the same 

is not true for all crystals. Because crystal X-ray energy analyzers are often tuned by deliberately varying their temperature, 

all these factors need to be considered if the analyzer’s performance is to be predicted accurately. 

A difficulty well known to crystallographers, but less so to many designers of X-ray optics, is that many crystal structures 

can be defined by multiple choices of origin and lattice vectors. A simple example is the choice between two possible 

coordinate origins for silicon, germanium, diamond, and other crystal structures belonging to the face-centered cubic space 

group 𝐹𝑑3̅𝑚. All these structures have a basis of two atoms separated by one-fourth of the body diagonal of the cubic unit 

cell. The origin may be placed either on the first atom of the basis or at the inversion center between the two atoms of the 

basis, and there is no universal agreement on which choice is better. For more complex crystal structures, the number of 

possible descriptions can be even greater, and though proposals for standardizing crystallographic data have been 

published20,21, none has been completely adopted. α quartz is an extreme example that has been discussed at length22-24. 

The structure factors of a crystal’s Bragg reflections are a critical parameter for the design of diffracting X-ray optics, and 

they depend on both the temperature and the atomic positions. A software package PyCSFex (“Python crystal structure 
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factor extensible”) for calculating X-ray structure factors in any crystal while leaving users free to choose their preferred 

description of the crystal structure has recently been published25. It is available at 

https://github.com/DiamondLightSource/PyCSFex. Each crystal is described by a material file written by a user and 

processed by a set of core modules. Material files have been provided for silicon, germanium, diamond, and α quartz. The 

package is written entirely in Python 3 for easy integration with many already released software modules. Some less 

commonly discussed aspects of the theory on which PyCSFex is based are discussed below, with α quartz being used as 

an example. 

2. THEORY 

2.1 Definition of structure factors of crystals 

Crystals are indispensable for studies of all types of materials because their long-range periodicity on scales comparable 

to X-ray wavelengths enables them to diffract X-rays with high efficiency provided Bragg’s Law is fulfilled: 

𝑛𝜆 = 2𝑑 sin 𝜃 , (1) 

where 𝑛 is a positive integer giving the order of the diffraction, 𝜆 is the wavelength of the X-rays, 𝑑 is the spacing of a 

particular set of parallel atomic planes in the crystal, and 𝜃 is the “Bragg angle” between the atomic planes and the X-ray 

beam. For every crystal one may define a set of lattice vectors a, b, and c from which reciprocal lattice vectors a*, b*, and 

c* can be determined: 

a* =
b × c

a ∙ b × c
;  b* =

c × a

a ∙ b × c
;  c* =

a × b

a ∙ b × c
. (2) 

Each set of atomic planes is labelled with Miller indices (ℎ𝑘𝑙). The vector H = ℎa* + 𝑘b* + 𝑙c* is perpendicular to all the 

planes in this set, and 𝑑 = 1/|H|. The crystal’s lattice vectors define a unit cell whose volume 𝑉 = |a ∙ b × c|. If the unit 

cell is hexagonal, the Miller-Bravais indices (ℎ𝑘𝑖𝑙) where 𝑖 = −(ℎ + 𝑘) are often used to make the symmetry of different 

sets of planes more obvious. 

The characteristics of the Bragg reflection from a set of atomic planes (ℎ𝑘𝑙) are given by the structure factor, which is the 

complex-valued scattering amplitude of one unit cell of the crystal in units of scattering from a single free electron. The 

structure factor depends on the momentum q transferred to the photon by the scattering process. Bragg reflection can occur 

if q is one of the crystal’s reciprocal lattice vectors. If the phase term of a plane wave of wave vector k is exp(−2𝜋𝑖k ∙ r), 

the structure factor at momentum transfer q is 

𝐹(q) = ∑ 𝑓𝑗(q)𝐷𝑗(q)exp(2𝜋𝑖q ∙ r𝑗)

𝑗

, (3𝑎) 

where 𝑗 denotes a particular atom within the unit cell, 𝑓𝑗(q) is the total atomic scattering factor of the 𝑗th atom, 𝐷𝑗(q) is 

the Debye-Waller factor of the 𝑗th atom, and r𝑗 = 𝑋𝑗a + 𝑌𝑗b + 𝑍𝑗c is the position of the 𝑗th atom. 

At a Bragg reflection from the atomic planes (ℎ𝑘𝑙), q = ℎa* + 𝑘b* + 𝑙c*: 

𝐹(ℎ𝑘𝑙) = ∑ 𝑓𝑗(ℎ𝑘𝑙)𝐷𝑗(ℎ𝑘𝑙)exp[2𝜋𝑖(ℎ𝑋𝑗 + 𝑘𝑌𝑗 + 𝑙𝑍𝑗)]

𝑗

, (3𝑏) 

Some authors use exp(+2𝜋𝑖k ∙ r) as the phase term of a plane wave; if this is chosen, the value of 𝐹(ℎ𝑘𝑙) is the complex 

conjugate of that defined above. 

The importance of accurate calculations of structure factors in the design of diffracting crystal optics, particularly when 

used as monochromators, energy analyzers, and phase retarders, should be clear. The angular acceptance and peak 

reflectivity of a Bragg reflection depend critically on its structure factor, as is shown by many standard texts26-28. Phase 

retarders, which depend on the birefringence of a crystal oriented to an angle close to a Bragg reflection, also require the 

structure factor of the Bragg reflection to be known for the alignment’s precision to be predicted accurately.29 

2.2 General thermal vibration of the atoms in a crystal 

The thermal vibration of the atoms in a crystal enters the calculation of X-ray structure factors through the Debye-Waller 

factor 𝐷𝑗 . In silicon and germanium, the amplitude of this vibration for all atoms is generally assumed to be isotropic and 
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its temperature dependence is usually characterized by respective Debye temperatures of 543 ± 8 K and 290 ± 5 K30. For 

α quartz, however, this simple assumption fails. Both Le Page et al31 and Kihara32 agree that the thermal vibrations of both 

the Si and the O atoms in α quartz are strongly anisotropic. The correct calculation of the Debye-Waller factor for each 

atom of α quartz therefore requires the use of the thermal displacement ellipsoids, which are explained by Downs33. An 

ellipsoid is characterized by a symmetric 3 × 3 matrix 𝛽. The Debye-Waller factor 𝐷 of an atom with this ellipsoid for a 

Bragg reflection from the (ℎ𝑘𝑙) atomic planes of the crystal is given by 

𝐷 = exp[−(𝛽11ℎ2 + 𝛽22𝑘2 + 𝛽33𝑙2 + 2𝛽12ℎ𝑘 + 2𝛽13ℎ𝑙 + 2𝛽23𝑘𝑙)]. (4) 

Often reference works give the thermal ellipsoid matrix 𝛽 for only one atom of each species. If 𝑆 is the 3 × 3 matrix of the 

symmetry operation that transforms the lattice coordinates of this atom into those of another atom in the crystal, the thermal 

ellipsoid of the second atom is described by the symmetric 3 × 3 matrix 

𝛽′ = 𝑆𝛽𝑆𝑡, (5) 

where the superscript 𝑡 denotes the matrix transpose.  

2.3 Nonlinear temperature dependence of crystal structure 

For sufficiently small temperature ranges, the temperature dependence of the lattice parameters can be taken as linear, 

while the temperature dependence of the atomic positions and the Debye-Waller factors can be neglected. However, this 

is no longer possible even for silicon, germanium, and diamond if the structure factors are to be calculated from the boiling 

point of liquid nitrogen at atmospheric pressure (77 K) to room temperature, which is the usual operating range of 

diffracting crystal optics for X-rays. In α quartz, the lattice parameters, atomic positions, and thermal displacement 

ellipsoids vary highly non-linearly over the temperature range from 13 K to 838 K, which is just below the transition 

temperature 𝑇𝐶 = 846 K at which trigonal α (low) quartz transforms into hexagonal β (high) quartz. References are 

provided in Table 9 of Sutter et al25. It was found there that the temperature dependence of these quantities followed the 

general form 

𝑓(𝑇) = 𝑓0 + 𝑃 exp (
−𝑄

{ln [
𝑇𝑐

(𝑇𝑐 − 𝑇)
]}

𝑛) , (6) 

where the values of the fitting parameters 𝑓0, 𝑃, 𝑄, and 𝑛 are given in Table 10 of Sutter et al25 for a right-handed coordinate 

system in dextro α quartz in the 𝑧(+) setting, which will be explained below. Conversions to other settings are given in 

Table 8 of that paper. Figure 1 shows how the theoretical fit in Equation (6) matches the experimental data on the lattice 

parameters 𝑎 and 𝑐 of α quartz. 

 

Figure 1: Temperature dependence of the lattice parameters 𝑎 (left) and 𝑐 (right) of α quartz over the range 13-838 K. The 

theoretical fit was obtained by fitting Equation (6) to the experimental data. See text for details. 
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2.4 Choice of convention for describing a crystal structure 

As stated before, some crystal structures may be described in multiple ways. These conventions may differ in one or more 

of the following. The atomic positions to be used to determine the structure factor will differ accordingly. If the axes differ, 

then so too will the assignment of Miller indices to the crystal’s atomic planes. 

1.) Placement of the coordinate system’s origin. The two choices available for crystal structures of the 𝐹𝑑3̅𝑚 space 

group, which include silicon, germanium, and diamond, have already been mentioned. In α quartz, there are also 

different choices that can be made. The origin is always placed at the intersection of the c axis, which is the 3-

fold screw axis, with one of the three 2-fold axes perpendicular to c, on which the Si atoms are located. However, 

Donnay and Le Page22 place the origin so that the first Si atom is at coordinates (𝑢, 0,0), while the International 

Tables for Crystallography5 place the origin so that the first Si atom is at (𝑢, 0,
2

3
) if the screw axis is left-handed 

and at (𝑢, 0,
1

3
) if the screw axis is right-handed. 

2.) Right- or left-handedness of the lattice coordinate system. This is particularly an issue for chiral crystal structures, 

which may exist in either of two mirror-imaged forms that cannot be superimposed on each other and therefore 

also have a handedness. α quartz crystals possess such a structure. The handedness of the coordinate system may 

be chosen to match that of the crystal structure, or else the coordinate system may be given the same handedness 

independently of that of the crystal structure. 

3.) Definition of the handedness of a chiral crystal structure. This causes much confusion in the treatment of α quartz 

and was therefore discussed in detail by Donnay and Le Page22, and also by Glazer24. “Dextro” α quartz rotates 

the polarization of light clockwise as seen by an observer looking upstream. However, although “dextro” is Latin 

for “right,” the screw axis is actually left-handed. Similarly, “laevo” α quartz rotates the polarization of light 

counterclockwise as seen by an observer looking upstream, yet although “laevo” is Latin for “left,” the screw axis 

is actually right-handed.  

4.) Orientation of the lattice coordinate axes relative to the atoms of the crystal structure. A few examples of this are 

found 

a.) in certain crystals with orthorhombic structures such as topaz34, which belongs to the space group 𝑃𝑛𝑚𝑎, 

and potassium acid phthalate35, which belongs to the space group 𝑃𝑐𝑎21. These two crystals are included in 

the comprehensive list of diffractive elements in the X-Ray Data Booklet36. A non-standard setting 𝑃𝑏𝑛𝑚 

can be defined for the space group 𝑃𝑛𝑚𝑎 by relabeling the lattice vectors a, b, and c as c, a, and b, 

respectively. Similarly, a non-standard setting 𝑃21𝑎𝑏 can be defined for the space group 𝑃𝑐𝑎21 by relabeling 

the lattice vectors a, b, and c as b, c, and a, respectively.  

b.) in monoclinic crystals, where one of the lattice vectors is perpendicular to the other two. This may be labelled 

either b or c, with Parthé and Gelato20 preferring the former. Muscovite, recently proposed for making 

spherically bent X-ray energy analyzers37, belongs to this group. 

c.) finally, in α quartz. Although the a and b lattice vectors are always defined parallel to two of the three 2-fold 

axes, a rotation of the lattice coordinate system by 180° about c switches the setting between the “obverse” 

(r) and “reverse” (z). In the obverse setting, the (101̅1) Bragg reflection is stronger than the (101̅1̅) Bragg 

reflection, and the (303̅1) Bragg reflection is much stronger than the (303̅1̅) Bragg reflection24. Atomic 

planes in α quartz that are assigned the (ℎ𝑘𝑖𝑙) Miller-Bravais indices in the obverse setting are assigned the 

(ℎ𝑘𝑖̅̅ ̅̅ 𝑙) indices in the reverse setting. Knowing this and the symmetry relations of the α quartz crystal 

structure, one finds that in the reverse setting the (101̅1) Bragg reflection is weaker than the (101̅1̅) Bragg 

reflection, and the (303̅1) Bragg reflection is much weaker than the (303̅1̅) Bragg reflection. If a right-

handed coordinate system is chosen, Donnay and Le Page22 have labelled the obverse settings as 𝑟(−) for 

dextro α quartz and 𝑟(+) for laevo α quartz, and they have labelled the reverse settings as 𝑧(+) for dextro 

α quartz and 𝑧(−) for laevo α quartz. For a left-handed coordinate system, the names of the settings for dextro 

and laevo α quartz would be switched. 

5.) Type of unit cell. Crystal structures that have trigonal systems and whose space groups have labels beginning 

with 𝑅, such as sapphire and lithium niobate, may be described with either a rhombohedral or a hexagonal unit 

cell, although the hexagonal unit cell is much more common in practice. More complex is the case of a triclinic 
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crystal structure, which has no symmetry operations other than translations to impose any choice of lattice vectors 

a, b, and c. There are only necessary constraints on the angles between them38. The problem of choosing a standard 

unit cell that would permit different crystallographers to compare their data on the same crystal structure was by 

no means trivial. This problem was solved by Niggli, who first defined a unique unit cell that was reduced; that 

is, based on the three shortest vectors of the lattice39. The process of determining this cell for any crystal structure 

was then put on a systematic basis by Santoro and Mighell40. However, other unit cells may still be encountered 

in the literature. For instance, centered monoclinic crystal structures were still being described by non-standard 

unit cells decades after the above papers were published41. 

3. COMPUTATION AND CODING 

Evidently the accurate and rapid computation of X-ray structure factors in crystals, which is vital for the design of 

diffractive X-ray optics, needs to account for the diversity of temperature dependencies and descriptions of the many 

crystal structures that may be encountered. Moreover, even when a widely respected authority speaks in favor of a 

particular description for a given crystal structure, there may be valid reasons to use a different one. Once again, α quartz 

provides an example. As mentioned before, if one is guided by the International Tables for Crystallography5, then in a 

right-handed coordinate system, the origin of the α quartz structure should be placed so that the first silicon atom is at 

coordinates (𝑢, 0,
2

3
) in the dextro structure (space group 𝑃3221) and (𝑢, 0,

1

3
) in the laevo structure (space group 𝑃3121). 

However, at 846 K, the dextro α quartz structure transitions to left-screw β quartz (space group 𝑃6222), which according 

to the International Tables for Crystallography should have its first silicon atom at (
1

2
, 0,0). Likewise, the laevo α quartz 

structure transitions to right-screw β quartz (space group 𝑃6422). Again, the International Tables for Crystallography 

would lead one to place the first silicon atom at (
1

2
, 0,0). This leads to a discontinuity in the c coordinate of the first silicon 

atom across the transition from α quartz to β quartz. Donnay and Le Page’s choice of (𝑢, 0,0) as the coordinates of the first 

silicon atom in both dextro and laevo α quartz avoids this problem and was therefore adopted by Glazer24 despite the high 

standing of the International Tables of Crystallography. 

The software package PyCSFex does not attempt to take sides in these longstanding debates among crystallographers, 

except to require that a right-handed coordinate system be used in all cases. Other than that, it allows individual users to 

describe their crystals in the way that is most comfortable for them. It aims for the easiest possible application to new 

crystals and for the fastest possible calculation of large numbers of structure factors. Several strategies were employed to 

reach these goals. The first was the choice of the Python 3 programming language for writing the code. Python 3 is widely 

used and understood, and it makes PyCSFex compatible with OASYS18 and SRW19 as well as allowing it to function 

independently. The second was the modular architecture of the code. The modules of PyCSFex are separated into three 

clearly defined categories: 

1.) Core files. These are meant to be stable modules that users should not need to alter. They are all the files located 

in the folder Structure_Factor_Calculator and in addition the Excel spreadsheet 

Form_factor_coefficients.xlsx, which contains the coefficients for calculating non-anomalous X-ray 

atomic scattering factors according to the five-Gaussian fit of Waasmaier and Kirfel42. 

Structure_Factor_Calculator contains the following: 

a.) A folder xrpy that contains modules for the calculation of atomic X-ray scattering and absorption. These 

are based on the previous work of Brennan and Cowan43. 

b.) The definition of a class Atom for descriptions of each atom. 

c.) The definition of a class Diff_Environment for basic calculations of Bragg reflection. 

d.) A list of common physical constants. 

e.) Basic methods for vector calculations. 

f.) Methods for reading the coefficients in Form_factor_coefficients.xlsx. 

g.) The final calculation of the structure factor according to Equation (3b). 
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2.) Material files. These are all the files located in the folder general_crystals. The only files here that must 

remain unchanged are general_crystal.py, which constructs an object with basic attributes and methods 

that apply to all crystal structures, and of course __init__.py. Other files may be added by the user. Model 

material files are provided in the Github distribution. A detailed explanation is provided in the PyCSFex paper25. 

In each material file, a class for the description of a single crystal structure under a specific model of temperature 

dependencies and a chosen convention is defined. The creation of an object of this class requires three arguments: 

temperature in K, the Miller indices of the diffracting atomic planes, and the photon energy in eV. Different 

thermal models and different conventions for the same crystal structure can be easily accommodated in separate 

material files. 

3.) Scripts. These are all the files located in the folder Examples. Several model scripts are available in the Github 

distribution. Examples of the outputs of some representative scripts are provided in the PyCSFex paper; a selection 

of these will be shown here. Users may apply the procedures in the core and material files to write their own 

scripts, which they may freely add to the Examples folder. 

The third strategy was to avoid redundant calculations. For example, temperature-dependent parameters such as lattice 

parameters, atomic positions, and thermal vibrations are recalculated only when the temperature is changed. Also, each 

class has a method to update its attributes when required, thus avoiding the need to create a new object of that class with 

the new attributes. 

4. RESULTS 

In the following, dextro α quartz in the 𝑧(+) setting is assumed. If laevo α quartz in the 𝑧(−) setting is assumed, the indices 

(ℎ𝑘𝑖𝑙) are replaced by (ℎ𝑘𝑖𝑙̅̅ ̅̅ ̅). A right-handed coordinate system is always chosen. 

4.1 Comparison of isotropic and anisotropic models of thermal vibration in α quartz 

The anisotropic thermal vibration of the atoms in α quartz has already been mentioned and the method for calculating the 

Debye-Waller factors from its characteristic thermal ellipsoids has been explained. However, the mathematical complexity 

of thermal ellipsoids makes it worthwhile to see how much error would be introduced to the structure factors if the thermal 

vibration were treated as isotropic. One simple approximation is an isotropic Debye model with a Debye temperature of 

470 K as given by Gray44. The four Bragg reflections (101̅1), (101̅1̅), (303̅1), and (303̅1̅) are interesting because they 

cover a wide range of strengths from very intense to very weak. Furthermore, at the transition from α quartz to β quartz, 

the first pair of these reflections becomes symmetrically equivalent, so that their structure factors become equal. The same 

is true for the second pair of these reflections. A set of calculations was therefore performed using two separate material 

files, one for the isotropic approximation and the other for the full anisotropic treatment. 

Figure 2 shows the results of calculations with PyCSFex with 10 keV X-rays. For the (101̅1) and (101̅1̅) Bragg 

reflections, the isotropic model of thermal vibration consistently gives higher estimates of the reflection’s strength. The 

discrepancy remains below 1% up to 530 K for (101̅1) and up to 412 K for (101̅1̅), but as the temperature increases 

further, the isotropic model deviates steadily more from the anisotropic model. At the highest measured temperature of 

838 K, the discrepancy has increased to 5.3%. This is still small, but for the very weak reflection (303̅1), the disagreement 

between the two thermal models is very large, especially above 600 K. It is noteworthy that in both thermal models the 

structure factor of (303̅1) passes through a minimum, though in the isotropic model the minimum is at 562 K, while in 

the anisotropic model the minimum is at 536 K. The stronger reflection (303̅1̅) is much less affected by the difference in 

the thermal models, the largest discrepancy being only 4.3% at 643 K. Here, however, the isotropic model provides a lower 

estimate of the reflection’s strength than the anisotropic model. 

4.2 Search for Bragg reflections in α quartz that backscatter X-rays of specified energy 

To determine the Bragg reflection that most nearly approaches the ideal condition of backscattering for a crystal energy 

analyzer to achieve its highest possible resolution, a large number of Bragg reflections will in general need to be searched. 

PyCSFex allowed this to be done for dextro α quartz over all temperatures from 20 K to 600 K. Table 2 shows the 

reflections that can backscatter X-rays at the Mo Kα1 energy of 17.479 keV, and Table 3 lists the reflections that can 

backscatter X-rays at the Cu Kα1 energy of 8.048 keV. 𝑇b is the temperature at which each set of diffracting atomic planes 

(ℎ𝑘𝑖𝑙) has a spacing equal to exactly half the X-ray wavelength, which is the required condition for backscattering as 

shown by Equation 1. 𝑅pk is the peak reflectivity, ∆𝐸FWHM is the full width at half maximum of the curve of reflectivity 
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versus energy, and mK/meV is the change in temperature in millikelvin required to change the backscattered X-ray energy 

by +1 meV. Each of the atomic planes (ℎ𝑘𝑖𝑙) is one of six symmetrically related planes that will all have the same 

diffractive properties: (ℎ𝑘𝑖𝑙), (𝑖ℎ𝑘𝑙), (𝑘𝑖ℎ𝑙), (ℎ𝑖𝑘𝑙)̅, (𝑘ℎ𝑖𝑙)̅, and (𝑖𝑘ℎ𝑙)̅. 

 

Figure 2: Temperature dependence from 20 K to 838 K of the squared magnitude of the structure factors of the (101̅1), 

(101̅1̅), (303̅1), and (303̅1̅) Bragg reflections of dextro α quartz in the 𝑧(+) setting with X-rays of 10 keV energy. 

Table 2: Backscattering reflections of dextro α quartz in the 𝑧(+) setting for Mo Kα1 X-rays (17.479 keV). See text for 

details. 

(𝒉𝒌𝒊𝒍) 𝑻b (K) 𝑹pk ∆𝑬FWHM (meV) mK/meV 

(11̅̅̅̅  0 11 6̅) 70 0.85 2.29 −15.9 

(11̅̅̅̅  0 11 6) 70 0.79 1.64 −15.9 

(7̅ 2 5 13̅̅̅̅ ) 222 0.63 0.89 −6.7 

(7̅ 2 5 13) 222 0.70 1.08 −6.7 

(12̅̅̅̅  0 12 0) 304 0.15 0.26 −3.9 
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(13̅̅̅̅  5 8 5̅) 420 0.52 0.63 −3.6 

(13̅̅̅̅  5 8 5) 420 0.29 0.36 −3.6 

(8̅ 5̅ 13 5) 420 0.32 0.36 −3.6 

(13̅̅̅̅  3 10 3̅) 434 0.32 0.38 −3.5 

(13̅̅̅̅  3 10 3) 434 0.27 0.34 −3.5 

(10̅̅̅̅  3̅ 13 3̅) 434 0.34 0.38 −3.5 

(10̅̅̅̅  3̅ 13 3) 434 0.28 0.34 −3.5 

(12̅̅̅̅  0 12 1̅) 441 0.71 1.16 −3.4 

 

Table 3: Backscattering reflections of dextro α quartz in the 𝑧(+) setting for Cu Kα1 X-rays (8.048 keV). See text for 

details. 

(𝒉𝒌𝒊𝒍) 𝑻b (K) 𝑹pk ∆𝑬FWHM (meV) mK/meV 

(6̅ 2 4 2̅) 246 0.61 8.48 −9.5 

(6̅ 2 4 2) 246 0.83 17.96 −9.5 

(4̅ 2̅ 6 2̅) 246 0.67 8.48 −9.5 

(5̅ 0 5 3̅) 364 0.40 4.34 −8.6 

 

5. CONCLUSIONS 

Optics designers wishing to build diffractive X-ray optics such as monochromators, phase retarders, and energy analyzers 

must accurately calculate the X-ray structure factors of a wide variety of crystals. Even though the cubic crystals of silicon, 

germanium, and diamond remain by far the most popular materials for such optics because of their favorable thermal and 

mechanical properties, several trigonal crystals have also attracted notice for specific applications such as high-resolution 

energy analyzers. Sapphire, lithium niobate, and especially α quartz are being evaluated for this purpose. Of these, the 

material in which synthetic crystals of the best quality are available is α quartz, which therefore has already been used in 

experimental condensed matter studies. The use of still other crystals for X-ray energy analysis, such as topaz 

(orthorhombic), potassium acid phthalate (orthorhombic), and muscovite (monoclinic), has been recorded in the literature 

as well. However, neither the modeling of the temperature dependence nor the choice of convention used to describe the 

crystal structure is consistently made clear in current structure factor calculations that are aimed at X-ray optics designers. 

As the discussion of the obverse and reverse settings of α quartz proves, such lack of clarity can lead to gross errors. A 

new Python 3 package named PyCSFex has been published so that users can choose their own preferred thermal models 

and conventions, because even though much work has gone into the standardization of descriptions of crystal structures, 

some users may still have sound reasons to select a non-standard description. PyCSFex consists of a set of stable core files 

that are not changed, a set of material files written by the user to describe each crystal structure, and a set of scripts written 

by the user that apply the core and material files to carry out the desired calculations. Different thermal models and 

descriptions of the same crystal structure can be written in separate material files, thus minimizing the possibility of 

confusion. Examples of structure factor calculations on α quartz, which has an especially complex and challenging crystal 

structure, have been provided to demonstrate how PyCSFex can help solve practical problems in X-ray diffractive optics 

design. 
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