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ABSTRACT   

When dealing with complex tasks, such as robots imitating human actions and autonomous vehicles driving in urban 

environments, it can be difficult to determine the reward function of the Markov decision-making process.  In contrast to 

reinforcement learning, inverse reinforcement learning (IRL) can infer the reward function through the finite state space 

and the linear combination of reward features, given the optimal strategy or expert trajectory. At present, IRL has many 

challenges, such as ambiguity, large computation and generalization. As part of this paper, we discuss existing research 

related to these issues, describe the existing traditional IRL methods, implement the model, and then propose future 

direction for further research. 
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1. INTRODUCTION  

In recent years, reinforcement learning (RL) has played a great role in artificial intelligence, such as defeating the world's 

top Go players through alpha go, and robots imitating and learning human actions and expressions. Reinforcement 

learning is to update the strategy according to the known reward function through the interaction between the agent and 

the environment, so as to promote the agent to make the best action and maximize the reward [1]. However, 

reinforcement learning is no longer applicable to complex scenarios where the reward function is difficult to determine. 

For example, the task of driving a vehicle from the starting point to the destination in a complex urban environment 

needs to consider factors such as traffic rules, passenger comfort and efficiency of reaching the destination, which is 

difficult to build a suitable reward function [2]. However, an experienced driver can fully consider the above problems. 

Therefore, we can learn the reactions of drivers in different environments during driving to help machines understand the 

reward. Contrary to the process of reinforcement learning, inverse reinforcement learning (IRL) is to find the reward 

function that can explain these strategies with the optimal strategies or expert demonstrations. The RL and IRL models 

are shown in Figure 1, where dynamic model represents the state distribution at the next moment corresponding to the 

action in the current state, optimal strategy represents the action taken in the current state that maximizes the reward 

function, and reward function refers to the reward mapping obtained by taking the action in the current state.  

 

Figure 1. Reinforcement learning and inverse reinforcement learning model. 

Inverse reinforcement learning, also known as inverse optimal control, has developed rapidly in the past decade with the 

upsurge of deep learning since it appeared 20 years ago. On the one hand, IRL can be applied to decision-making and 

planning areas to reduce manual adjustment in tasks. For example, for multi-objective optimization problems, the 

relative importance of each task can be determined through IRL. On the other hand, through IRL and RL, robots can 

imitate human actions or decisions. Imitation learning uses demonstration to infer hidden reward functions, and then uses 

inferenced reward functions in reinforcement learning to learn imitation strategies [3-4]. The application of inverse 
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reinforcement learning is shown in Figure 2. Fig (a) shows that the robot arm pushes the cup onto the coaster, and the 

initial position of the cup is random. Fig (b) shows the robot arm insert a book into the empty slot in the bookshelf. Fig (c) 

shows planning task of automatic driving. 

 

Figure 2. Application of inverse reinforcement learning.  

Inverse reinforcement learning is a new subject in the field of machine learning developed in recent years, so there are 

many challenges. First, because of the limited number of expert examples, the strategy will correspond to a variety of 

reward functions, and the ambiguity problem will hinder the accuracy of inference. Secondly, practical inverse 

reinforcement learning should show good generalization. The model needs to infer other unobserved learned state actions, 

and the application cannot be limited to specific scenarios, which challenges the correct extension of a small part of data 

to unobserved space. Third, considering that there are a large number of noise data in the environment, inaccurate prior 

information will enter the characteristic equation of IRL, so the model should be robust enough and ensure accuracy. 

Finally, IRL needs to consider the complexity of space and time. Due to the complexity of the task, the state and action 

space are generally high-dimensional vectors after discretization, and the computation is exponential with the state vector, 

which consumes much computing time and space [5].  

This paper mainly introduces the current situation and challenges of inverse reinforcement learning. In the following 

sections: we list the significance and existing problems of IRL in section 1. Next, we introduce the basic principles and 

models of IRL in section 2. The third part mainly introduces two basic IRL methods. Then, we implement IRL model in 

a vehicle planning tasks in section 4. Finally, the paper puts forward possible future development trends in section 5. 

2. BASIC PRINCIPLE  

Markov decision process (MDP) is the model foundation of reinforcement learning, multi-task decision making, and 

interaction between agents and environment. By assuming Markov properties, MDP means that the current state is only 

related to the state at the last time and unrelated with the previous state. MDP is to find an optimal strategy to maximize 

the state reward function [6]. Therefore, we define S as a finite set of States, A as an action set. The policy represents the 

mapping function between the current state and the action at the next moment. It can be defined as  . Reward 

function  is a scalar return obtained by taking actions  in the current state . The Markov decision process model 

is shown in Figure 3. 
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Figure 3. Markov decision process model. 

Inverse reinforcement learning assumes that expert behavior is based on a certain strategy. If the strategy is unknown, it 

can be obtained by observing the state action pair of expert behavior. General reward functions are defined as linear 

combinations of reward features. 
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These reward features  is feature function about state  and action , with the corresponding weight .The IRL 

algorithm flow is shown in Table 1. 

Table 1. IRL algorithm flow [7] 

IRL algorithm flow:  

Input: example trajectory or expert strategy, features of reward function;  

Output: inferred expert reward function;  

1. Modeling expert behavior as rewarding unknown MDP;  

2. Initialize the parameters of the reward function (linear feature parameters or distribution of rewards to 

states); 

3. Use the current reward function to solve the MDP and get the current strategy and behavior sequence (online 

algorithm);  

4. Optimize parameters: minimize the difference between the sample behavior sequence (or strategy) and the 

current behavior sequence (or strategy); 

5. Repeat step 3 and step 4: reduce the difference to the set value. 

3. METHODS 

The current mainstream IRL methods can be divided into margin-based optimization and entropy-based optimization 

through different reward functions. Among them, the milestone research breakthrough node is Ziebart's maximum 

entropy optimization method, which solves the ambiguity of IRL.  

3.1 Margin optimization method  

The purpose of the margin-based optimization method is to find a reward function that is better in the example strategy 

than in the learning strategy, that is, the margin between the two strategies is the largest [8]. When the margin decreases 

to the set value, convergence is considered. For any track , margin formula is as follows.  
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Margin based optimization is to solve the ambiguity of IRL solution by convergence maximum margin.  

Proc. of SPIE Vol. 12462  124620E-3



 

 
 

 

 

 

Later, Ratliff proposed an improved method, learn to search (LEARCH) [9], so as to convert the quadratic programming 

problem into an optimization problem, and then solve it by solving Hessian matrix and gradient, so as to solve the 

difficult problem of solving high-dimensional continuous time problems. 

3.2 Entropy optimization method  

IRL method has the problem of ambiguity, which means more than one reward functions can explain the behavior of 

experts, so the maximum marginal method will introduce a random bias. In order to eliminate this bias, the maximum 

entropy optimization (MaxEnt) obtains the behavior distribution through the maximum entropy principle. Specifically, 

this method assumes that all trajectory distributions are probability distributions, and only needs to solve the probability 

model that generates the expert trajectory distribution [10]. Since the probability distribution of maximum entropy does 

not make any assumptions about any other unknown information except for constraints, this method can avoid ambiguity, 

and parameterized by the weight of the reward function.  

MaxEnt method needs to solve the model with maximum entropy, which is essentially a nonlinear convex optimization 

problem. The maximum entropy of the policy distribution [11] is as follows. 
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where  represents all distributed spaces. For probability distribution  and  , the improved relative entropy model [12] 

is as follows. 
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4. EXPERIMENT AND ANALISIS 

In this paper, IRL based on maximum entropy optimization is used to modify the trajectory prediction index in 

unmanned missions. Traditional metrics, such as average or final displacement error (ADE / FDE), do not consider the 

follow-up planning tasks. Therefore, IRL is used for metric improvement, and the linear combination as shown in 

formula (1) is constructed by considering the factors of vehicle collision, control term and distance to the target point 

[13]. 

        ( ) ( ) ( ) ( ) ( )
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where 
t

egos  is the position ,x y  of the ego-vehicle at time t and as is the obstacles’ position; 
1

ego
ˆts +

 is the predicted 

position of the ego-vehicle at time t + 1, the same applies to obstacles; u  is a control variable, including heading and 

velocity control. 

Build the experiment based on the gym-collision-avoidance simulation environment and use limited-memory BFGS (L-

BFGS) to optimize. The time step of the model is 0.1s, and the number of time steps of each track is 50. By selecting the 

reward features of the above formula, the weights are obtained as follows in Table 2, where the slack variable is the 

minimum value that the optimizer can reach for convergence, 2

v  means only use velocity to control and 2

head  means 

only use heading to control. 

Table 2. Different learned weight and variable according to reward features. 

Number Reward features Learned weight Slack variable 

1 
1 2 3 4, , ,     [1.214, 4.188, 0.366, 0.352] 1e-07 

2 
1 2 4, ,v    

[2.508, 4.607, 1.097] 0.18 

3 
1 2 4, ,head    

Not converge None 

4 
1 4,   [0.345, 0.085] 0.25 
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By training the first reward function, the convergence results of the model are as follows in Figure 4. The left figure is 

the change curve of slack variable. It can be seen that as the number of iterations increases, it gradually converges to 

approach the best point. The right figure shows the training loss of negative loglikelihood (NLL). The weight change 

curves of four reward features are as follows in Figure 5. After 2.0 iterations, the weight gradually converges to a fixed 

value. 

 
Figure 4. Convergence results of the model. 

 
Figure 5. Weight change curve of four reward features.  

5. SUMMARY AND FUTURE DIRECTION 

Aiming at the fuzziness of IRL, the entropy optimization method models the uncertainty of reward as the probability 

distribution on the trajectory of reward. In addition to the above two methods, IRL algorithms also include models based 

on Bayesian update, which can be divided into Boltzmann distribution (BIRL), Gaussian process (GPIRL) [14] and 

maximum likelihood estimation according to different models of observation likelihood.  

At present, scholars are exploring new solutions for practical application. When the trajectory is too long and the 

dimension is too large, considering suboptimal algorithm or local optimization becomes a solution. For example, in the 

task from city a to city B, mature drivers can complete it perfectly at every intersection, but it is still difficult to consider 

the overall optimization. In the future, we may study the direct and indirect learning algorithm and analyze the 

complexity and accuracy of the IRL algorithm in view of the high-dimensional number of states, so as to better apply to 

reality. 
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