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ABSTRACT

The directional total variation algorithm (DTV) reported in the literature achieves promising results for limited
angle reconstructions, especially when the scanning angular range is very small. However, the visible edge prior
for limited-angle CT is not explicitly considered by DTV. In this paper, a variant of the DTV model is proposed
which explicitly builds into the visible edge prior developed by Quinto et al. Numerical experiments show that
the proposed model and algorithm produce very competitive results compared to DTV.
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1. INTRODUCTION

In certain computed tomography (CT) applications, due to the restrictions on the scanning condition or the
geometrical shapes of scanning objects, the projection data could be only acquired in a limited angular range
which leads to the challenging limited-angle reconstruction problem. This happens in both medical diagnosis
like breast imaging1 and industrial inspection like the C-arm neuro imaging.2

Conventional reconstruction methods like filtered back-projection (FBP) and (simultaneous) algebraic recon-
struction technique ((S)ART) perform poorly with limited-angle data, introducing heavy image blurring along
the directions perpendicular to the missing projection rays. The limited-angle reconstruction problem has been
extensively studied for decades, including theoretical characterization and practical reconstruction algorithms.

An early method views it as a projection domain inpainting problem3 and incorporate the smoothness prior
of projection data into the reconstruction process. However, since a local extrapolation error in the projection
domain may cause global artifacts in the image domain, this kind of methods suffers from severe stability
issue. Another method is based on optimization models encoded with various hand-crafted priors. In certain
applications, CT images can be approximated well by piecewise constant functions which should possess the
gradient sparsity property. This property can be encoded by the total variation (TV) regularizer, extensively
used in image processing. The first method adopting TV regularization is introduced in4 for divergent CT
reconstruction. Since then, various modifications and improvements have been proposed, including the adaptive
steepest descent-projection onto a convex set method,5 prior image constrained compressed sensing method,6

adaptive-weighted TV model,7 TV-l0 gradient minimization,? etc. These methods could effectively improve the
reconstruction quality and achieve promising results.

For limited-angle reconstruction, there is a vital prior described by the theory of visible and invisible bound-
aries8 developed by Quinto et al. This prior is first considered by the anisotropic total variation (ATV) method.9

Later on, the reweighted ATV10 method takes projection directions as prior information and combines them into
the TV formulation. Especially, the alternating edge-reserving diffusion and smoothing (AEDS) algorithm11

takes the visible edges prior to its full advantage. By designing separated x- and y-direction regularizers, the
AEDS model encodes explicitly the visible edges prior, and by adopting the alternating minimization technique,
the AEDS algorithm decouples the x-direction regularization from the y-direction regularization such that the
visible edges are protected and utilized to their full advantages.
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Figure 1: Illustration of the theory of visible and invisible boundaries. (a) The rectangle phantom; (b) the
scanning configuration; (c) the limited-angle reconstruction for the scanning angular range ([π4 ,

3π
4 ]).

A very recent algorithm named DTV (directional total variation) is proposed in,12 which shows very promising
reconstructions, especially for very small scanning angular ranges. The energy functional associated with DTV
can be seen as a reformulation or constrained version of the AEDS model when the regularizers are specified by x-
direction TV (TVx) and y-direction TV (TVy). The workhorse of DTV is the primal-dual based Chambolle-Pock
(CP) algorithm.

Motivated by the success of the DTV algorithm, we propose to reformulate the DTV model such that the
new model treats the visible edges prior (corresponding to TVx) differently from TVy. This is achieved by
exchanging the roles of TVx and the data fidelity terms. Since the TVx term goes into the energy functional
while the TVy term is specified as a constraint, the new model shall treat them differently. In this way, we think
that the visible edges prior could be better utilized.

The remainder of this paper is organized as follows. We present our approach to the limited-angle CT
reconstruction problem in Section 2. In Section 3, experiments are carried out to validate the proposed method.
Finally, we conclude the paper in Section 4.

2. METHOD

2.1 The limited-angle CT reconstruction problem

Assume that the size of reconstruction image u is M ×N . The vector −→u ∈ RJ , J = M ×N is a concatenate form
along the columns of u, and ui describes the ith entry of −→u , i = 1, 2, . . . , J . The CT reconstruction problem
could be formulated as solving a linear system

A−→u =
−→
b +−→ε , (1)

where A ∈ RI×J is the system matrix and
−→
b is a vector of length I = V × D which represents the acquired

projection data. V and D denote the number of projection views and the number of detector cells, respectively.
−→ε accounts for any measurement bias and additive noise.

For limited-angle data, the linear system (1) with I � J is severely ill-posed, therefore, images reconstructed
by conventional reconstruction algorithms will introduce streak and blurring artifacts. This is demonstrated in
Fig.(1). Without loss of generality, here, we consider the fan-beam scanning with limited-angle range ([π4 ,

3π
4 ]).

The rectangle phantom and the scanning configuration are shown in Fig.(1a) and Fig.(1b), respectively. Under
this scanning configuration, according to the theory of visible and invisible boundaries, the edges close to vertical
are visible and can be easily reconstructed, while for the edges close to be horizontal will be invisible and cannot
be recovered well by conventional reconstruction algorithms like FBP or SART, as shown in Fig.(1c).

2.2 The DTV model

The DTV algorithm12 is to solve the following minimization problem

−→u ? = min
u

1

2
‖A−→u −

−→
b ‖22

s.t. ‖∇x−→u ‖1 ≤ tx, ‖∇y−→u ‖1 ≤ ty, −→u ≥ 0,
(2)
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where ∇x and ∇y represent matrices size of J × J , corresponding to the discrete x-direction and y-direction
gradient operators, respectively, and tx and ty are two scalars, specifying the allowed total variations along
the x-direction and y-direction, respectively. Since the model (2) is convex, the CP algorithm could be em-
ployed to compute a global minimizer. It should be noted that for limited-angle problems, the matrix A has a
very large kernel space, so that the model (2) could possess multiple global minimizers. In this case, different
parameterizations or different initializations could lead to different solutions.

2.3 The visible edge aware DTV model (VEA-DTV)

As mentioned earlier, to better utilize the visible edges prior, we reformulate the DTV model (2) as the following
one −→u ? = min

u
‖∇x−→u ‖1

s.t. ‖A−→u −
−→
b ‖2 ≤ ε, ‖∇y−→u ‖1 ≤ ty, −→u ≥ 0.

(3)

The parameter ε controls the noise-level of reconstructed image, which has a clear physical meaning.13 It’s easy
to check that

ker(A) ∩ (ker(∇x) ∪ ker(∇y)) = {0}, (4)

so the proposed VEA-DTV model (3) is theoretically equivalent to the DTV model (2). However, since the
two formulations are not the same, when applying the CP algorithm, the resulting solving algorithms would be
different. As mentioned earlier, for limited-angle problems, the models (3) and (2) are not strictly convex and
since the system matrix A has a large kernel space, each of the two models admits multiple solutions, in which
case different algorithms might reach different global minimizers. So, starting from the formulation (3), the
CP algorithm might compute a solution different from that of the DTV algorithm. This is also the case when
comparing AEDS and DTV. The model AEDS(l1, l1) coincides exactly with that of DTV, since condition (4)
is met. However, since AEDS and DTV employ different minimization algorithms, their performance could be
different. In fact, the alternating minimization algorithm adopted by AEDS takes constant step-sizes, according
to the framework of incremental methods,14 it only converges to a neighbourhood of the optimum. On the other
hand, the CP algorithm can be proved to converges to a saddle point corresponding to a optimum.

2.4 Numerical algorithm

The CP algorithm is adapted to develop an iterative algorithm for solving (3) by

−→u ? = min
u
ν1‖∇x−→u ‖1 + δBall(ε)(A

−→u −
−→
b )

+ δDiamond(ν2ty)(ν2|∇y
−→u |1) + δP(µ−→u ),

(5)

where indicator functions δBall(
−→x ), δP (−→x ), δDiamond(a)(

−→x ) are defined as:

δBall(ε)(
−→x ) =

{
0, ‖−→x ‖2 ≤ ε
∞, ‖−→x ‖2 > ε

, δP(−→x ) =

{
0, −→x ≥ 0

∞, −→x < 0
,

δDiamond(a)(
−→x ) =

{
0, ‖−→x ‖1 ≤ a
∞, ‖−→x ‖1 > a

.

Then, the min-max formulation of (5) is given by(−→u ?,−→w ?,−→p ?,−→q ?,−→t ?
)

= min−→u
max

−→w,−→p ,−→q ,−→t
〈ν1∇x−→u ,−→p 〉

− δBox(1)(|−→p |) + 〈A−→u −
−→
b ,−→w 〉 − ε‖−→w ‖2 + 〈ν2∇y−→u ,−→q 〉

− ν2ty‖(|−→q |)‖∞ + 〈µ−→u ,−→t 〉 − δP(−µ−→t ),

(6)

where

δBox(ε)(
−→x ) =

{
0, ‖−→x ‖1 ≤ ε
∞, ‖−→x ‖1 > ε

.
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Applying the proximal point algorithm to solve (6) and taking an additional extrapolation step, we thus obtain
the VEA-DTV algorithm described in Algorithm 1, where ‖ · ‖2 is computed by the power method suggested
in,13 1J ∈ RJ denotes the constant vector with all elements set to 1, operator sgn(·) returns the sign of a real
number, and l1Balla(·) projects a vector onto the l1 ball with radius of a. The symbol neg(·) represents the
negative thresholding function, i.e. projects any positive elements of its argument to zero.

Algorithm 1 (VEA-DTV)

Input A,
−→
b , ε, ty, a

1: L← ‖K‖2,K =
(
A>, ν1∇>x , ν2∇>y , µI

)>
, σ ← 1

aL ,

ν1 ← ‖A‖2
‖∇x‖2 , ν2 ← ‖A‖2

‖∇y‖2 , µ← ‖A‖2
‖I‖2

2: k ← 0
3: Initialize: −→u (0),−→w (0),−→p (0),−→q (0) and

−→
t (0) to zero

4:
−→̄
u (0) ← −→u (0)

5: repeat

6: −→w ′(k) = −→w (k) + σ
(
A
−→̄
u (k) −

−→
b
)

−→w (k+1) =
−→w ′(k)

‖−→w ′(k)‖2
max(‖−→w ′(k)‖2 − σε, 0)

7: −→p ′(k) = −→p (k) + σν1∇x
−→̄
u k

−→p (k+1) =
−→p ′(k)

max(1I ,
−→p ′(k))

8: −→q ′(k) = −→q (k) + σν2∇y
−→̄
u k

−→q (k+1) = −→q ′(k) − σsgn
(−→q ′(k)) l1Ballν2ty

(
|−→q ′(k)|
σ

)
9:

−→
t ′(k) =

−→
t (k) + σµ

−→̄
u k−→

t (k+1) = neg(
−→
t ′(k))

10: −→u (k+1) = −→u (k) − τ(A>−→w (k+1) + ν1∇>x−→p (k+1)

+ν2∇>y −→q (k+1) + µ
−→
t (k+1))

11:
−→̄
u (k+1) = 2−→u (k+1) −−→u (k)

12: k ← k + 1
13: until stopping criterion is met

Output : −→u (k)

3. EXPERIMENTS

Numerical experiments with simulated data against SART and the DTV algorithm are carried out to validate
the effectiveness of the proposed reconstruction algorithm VEA-DTV. The simulated analytic projection data
are acquired by the open source software CTSim (http://www.ctsim.org), while the astra toolbox (https://
www.astra-toolbox.com/) is utilized to perform the forward and backward projections when they are required.

In terms of parameter selections, since the general CP framwork is adopted, there are totally three parameters
subject to tuning, i.e. a, ty and ε for applying VEA-DTV. Correspondingly, there are parameters: a, tx, ty, are
involved in the DTV algorithm. Ideally, tx, ty should be computed in terms of the ideal image. In our experiments,
we apply the SART method with 10 iterations on the full-angular data to provide an approximation which then
acts like the ideal image. The parameter ε relies on noise estimation of the projection data, which might be not
easy to acquire. In this work, we tune the parameters to arrive at best performance in terms of artifacts removal
and structure-preserving by sampling the parameter space.

3.1 Inverse crime test

The inverse crime occurs when employing the same forward reconstruction model to generate, as well as to invert,
synthetic data. To avoid the inverse crime, analytic projection data are acquired in CTSim. Both noise-free and
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Figure 2: The analytic rectangle phantom. From left to right, the images are reconstructed by full-angle SART,
SART, DTV, VEA-DTV, respectively. The first row shows the reconstructions without noise, while the second
row shows the results with added Poisson noise, with incidence intensity I0 = 1.5× 105. The display window is
set to [0, 0.5].

noisy projection data are tested. The scanning angular range is set to [ 2π9 ,
7π
9 ]. Poisson noise with incidence

intensity I0 = 1.5× 105 is added to the analytic projection data.

The results are shown in Fig.2. From left to right, the columns 1 and 2 show the SART (10 iterations)
reconstructions, with full data and limited data, respectively, and the columns 3 and 4 show the reconstructions of
DTV and VEA-DTV, respectively. As Fig.1 has demonstrated, in the limited-angle reconstructions, the invisible
edges are too blurred to be recognized. The first row and second row show the noise-free and noisy reconstructions,
respectively. We can easily observe that for the noise-free case, DTV and VEA-DTV achieves similar high quality
reconstructions, while for the noisy case, VEA-DTV demonstrates superior results. Distortions and blurring
could be easily recognized in the DTV reconstructions, especially at the right bottom part. For the proposed
VEA-DTV, blurring has been completely removed, and just small local distortions could be identified along the
diagonal of the big parallel gram. Same conclusion could be drawn from the quantitative measures listed in
Table 1.

Table 1: PSNR, SSIM and NRMSE for the analytic rectangle phantom.
Index SART DTV VEA-DTV

noise-free
PSNR 22.9650 38.7488 39.0063
SSIM 0.81761 0.99175 0.99195

NRMSE 0.12726 0.00336 0.00317

noisy
PSNR 21.8880 31.8155 34.2304
SSIM 0.58396 0.93394 0.99195

NRMSE 0.16308 0.02899 0.00951

3.2 Invisible edges recovery capability test

One rhombus phantom with tilt angle of 5 degrees is constructed in CTSim. Its projection data without noise
are also acquired in CTSim. Both of them are analytic, which are used to test VEA-DTV’s capacity to recover
invisible edges. Since the boundary between the two triangles are completely invisible and not distributed along
the axes, it is quite challenging to recover it.

The results are shown in Fig.3. From top to bottom, the images are reconstructed with angular ranges 130,
120 and 110 degrees, respectively. From left to right, the columns 2, 3, and 4 show the reconstructions by SART,
DTV and VEA-DTV, respectively. As shown in the second column, the SART method fails to recover the
invisible edge. For both DTV and VEA-DTV, the quality of the reconstructions decreases with reducing angular
ranges, as demonstrated in the last two columns of Fig.3. When the scanning angular range is 130 degrees, both
DTV and VEA-DTV recover the invisible edge nearly perfectly. However, when reducing the angular ranges, the

Proc. of SPIE Vol. 12304  123042N-5



Full-angle SART SART DTV

1
3
0

 
1

2
0

 

VEA-DTV

1
1
0

 

Figure 3: The rhombus phantom. From left to right, the images are reconstruction results from full-angle SART,
SART, DTV, STV, respectively. From up to bottom, each row shows the reconstructions with different angular
ranges. The display window is set to [0, 0.18].

performance of DTV deteriorates quickly, while the proposed VEA-DTV could demonstrate certain resistances
to such changes. Same conclusion could be drawn from the quantitative measures listed in Table 2.

Table 2: PSNR, SSIM and NRMSE for the rhombus phantom.
Angular range Index SART DTV VEA-DTV

[ 5π36 ,
31π
36 ]

PSNR 24.2663 33.8890 35.3223
SSIM 0.53365 0.99449 0.99557

NRMSE 0.55199 0.01048 0.00754

[π6 ,
5π
6 ]

PSNR 21.8979 31.8155 33.7639
SSIM 0.89156 0.99177 0.99376

NRMSE 0.16742 0.01690 0.01079

[ 7π36 ,
29π
36 ]

PSNR 19.78663 29.9508 30.5150
SSIM 0.85852 0.98734 0.98829

NRMSE 0.27222 0.02597 0.02279

4. CONCLUSION

We have proposed a visible edge aware convex model for limited-angle reconstruction which is derived by refor-
mulating a DTV model. By treating the visible edges and the invisible ones differently, the proposed algorithm
could make better use of the visible edges prior and achieve better reconstructions. Numerical experiments
suggest that, compared to DTV, the proposed VEA-DTV demonstrates improved stability against noise and
angular range reducing.
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