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ABSTRACT  

A novel automated workflow for the recovery of image resolution using deep convolutional neural networks (CNNs) 

trained using spatially registered multiscale data is presented. Spatial priors, coupled with high order voxel-based image 

registration, are used to correct for uncertainties in image magnification and position. A network is then trained to 

remove the effects of point spread from the low-resolution data, improving resolution while reducing image noise & 

artefact levels. While benchmarking on real materials, including biological, materials science and electronics samples, 

we find that resolution recovery improves quantitative and qualitative measurements, even if certain image details 

cannot be easily identified from the original low-resolution data. 
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1. INTRODUCTION  

One of the principal challenges in tomographic imaging is image sharpness. Effects such as system instability, 

detector blurring, and a finite source spot size can induce imaging artefacts. This is compounded by partial volume 

effects, where material interfaces lie within the volume described by a voxel, leading to a reconstructed intensity to spill 

over material phases. These effects can be modelled as a Point Spread Function (PSF) convolved with a structure 

function. The removal of a PSF from X-ray CT data is extremely challenging, however, as the definition of the PSF is 

strongly dependent on system / analytical conditions, requires specific measurement, and typically cannot account for 

spatially variable effects (e.g. due to beam hardening, PSF anisotropy or scatter).  The removal via PSF deconvolution 

can also greatly increase image noise and be computationally expensive. 

In this paper we present a novel workflow for the recovery of image resolution using a deep convolutional neural 

network (CNN) trained using spatially registered multiscale data. Spatial priors, coupled with high order voxel-based 

image registration is used to correct for residual uncertainties in image magnification and position. A network is then 

trained to remove the effects of point spread from the low-resolution data, recovering blurred features and aiding in 

image segmentation and analysis. This network effectively learns the coupled effects of a finite PSF and partial volume 

artifacts present in the low resolution data by correlating it to high resolution data. As sources of spurious signal (noise 

and sampling artefacts) are uncorrelated between the low- and high-resolution data, the network also has the effect of 

removing these noise and artefacts from the recovered image, in contrast to traditional techniques for PSF removal 

which typically amplify noise.  

This approach is qualitatively and quantitatively benchmarked across a range of samples, including plant science, 

energy materials and electronic samples. In all cases small structures are effectively recovered. Quantitative 

measurements also find that structural properties (such as porosity, pore size, pore number, and pore volume), critical for 

material characterization, are accurately predicted after the use of the resolution recovery network even if they were not 

accurately predicted from the original low-resolution data. 

2. METHODS 

System image blur arises from a range of sources, including source spot size, sample stability limits, scintillator light 

spread, and optical / diffraction resolution limitations. Traditional approaches for the reduction of this image blur center 

around the concept of spatial PSF deconvolution whereby the whole system PSF (usually described by its Fourier 

transform the Modulation Transfer Function (MTF)) is deconvolved from the detected image. The practical application 

of this technique, however, faces many challenges. MTF determination requires significant approximations / 

simplifications based on analytical geometry definitions and / or fitted calibration phantoms which may not be 

appropriate for use in real samples. The deconvolution process is often slow and computationally expensive, it typically 

increases image noise (by up-weighting high frequency components). Finally, the MTF is usually assumed to be 
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spatially invariant, making it non-adaptive to anisotropic effects such as scatter or beam hardening. In this paper we 

prepose a novel approach to image resolution recovery whereby this deconvolution step is replaced a convolutional 

neural network trained specifically on the low-to-high feature map specific for the structures being imaged.  

 
Figure 1: Contrasting traditional (analytical) PSF removal to Deep Learning based resolution recovery. 

 

The fundamental advantage of X-ray imaging, relative to other microanalytical techniques, is that it is non-invasive. 

This allows for the imaging of high-resolution regions-of-interests (ROIs) within large objects, and the relative stage 

coordinates used for this workflow allow for strong spatial priors for multiscale image registration techniques [1], [2]. 

Such multiscale imaging is often challenging in laboratory micro-CT systems as the requirement for geometric 

magnification from a point source of X-rays limits the magnification attainable on large objects within a limited system 

geometry. The use of objective-coupled scintillators allows for extremely small pixels on the imaging (scintillator) plane, 

and correspondingly high resolutions even at limited geometric magnifications. These “Scout-and-Zoom” workflows 

have been broadly used for the targeting of high-resolution regions-of-interest based on macroscopic context, however 

the ability to use multiscale data quantitatively, even when registered perfectly to sub-pixel precision, has, to date, been 

limited.  

This paper presents a novel workflow for the recovery of small-scale structures from larger scale data. The use of 

multiscale data allows resolution recovery to be automatically tailored to a sample class and acquisition settings and 

removes any challenging “calibration” steps. First a multiscale dataset is acquired, consisting of a low resolution, Large 

Field-of-View (LFOV) data and a high-resolution smaller ROI data entirely contained in the volume of the LFOV 

image. Partial pixel dithering is used on both acquisitions, both to remove image artefacts and to encode sub-resolution 

information into the projection dataset. The stage positions of the high-resolution ROI are used to calculate the volume 

of interest within the LFOV volume, and a sub-region of the LFOV image is directly reconstructed to the smaller voxel 

size of the high-resolution data using sub-pixel FDK reconstruction [3]. While, for a well aligned system, the ROI and 

high-resolution reconstructions will be well aligned, residual offsets (due to imperfect alignment in the optical train and 

uncertainties in stage position) lead to small offsets between the different resolutions and data positions. AI based image-

to-image regression is extremely sensitive to image offsets (e.g. [4]), and so the images must first be registered to sub-

pixel precision. This was performed using a multiscale registration process using a normalized Matte’s mutual 

information image metric [5], a LBFGS optimizer [6], and a translation transform in the first step, followed by a full 9 

degree of freedom transform in the second. The transformed LFOV subpixel image was then interpolated onto the voxel 

grid of the high-resolution dataset, creating a well-formed image regression match. 

Resolution recovery networks were then trained using a modification of well-established image-to-image regression 

techniques [7], [8], with loss functions, network structures and data augmentation tailored to the 3D tomographic 

imaging problem, modified to ensure rapid convergence and high performance even with early stopping [9]. Network 

structures were adapted from the U-Net architecture [10]. Both noise and most artefacts were uncorrelated between the 

input and target datasets (because of measurement independence and differing system geometry respectively), while the 
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LFOV to High Resolution structures (and the features that predict those structures) are strongly correlated. This causes 

networks to learn both this feature map and remove noise and artefacts simultaneously, with noise and artefact removal 

occurring due to a process conceptually analogous to Noise-to-Noise denoising [7]. Data was dynamically augmented 

during training for variations in intensity and orientation during training, improving model robustness. Once model 

training is complete, inference can be performed across the entire LFOV image, as reconstructed onto the high-

resolution image grid, or specific regions of interest within the LFOV image.  

Image training is performed in a Python-based TensorFlow 2.8 environment, after which network weights were 

transferred into an .onnx format and inference performed using NVIDIA TensorRT 8.0 runtime. An already trained 

model can also be applied to any other structurally similar sample if the acquisition conditions still match the conditions 

for which the model has been trained for. This greatly expands effective high-resolution field of view and improves 

throughput required to image multiple samples at high-resolution. 

 
Figure 2. Proof of principle (sanity check) of the proposed Deep Learning assisted resolution recovery. Here, the low 

resolution image is used as an input, and high resolution image serves as target, neural network is able to near perfectly 

learn the mapping (in other words, point spread function) between the low resolution and high resolution data. 

3. RESULTS AND DISCUSSION 

This technique was benchmarked on a range of samples, with both quantitative and qualitative performance metrics 

analyzed from inside and outside the field of view used for training. The acquisition settings for all samples are shown in 

table 1. 

First, the multiscale imaging workflow described above was applied to a 1-2 mm tomato seed. This sample was 

chosen to show the performance of the workflow on typical life science samples, with structures typical to life science 

systems, as well as provide a feature rich system to evaluate the performance of the resolution recovery workflow as the 

imaging approaches the limiting resolution of the system. The high-resolution data showed distinct cell boundaries and 

clear sub-cellular features, but at a much more constrained FOV. After resolution recovery the subcellular features are 

much clearer and cell boundaries are distinct, even in portions of the sample outside of the training region.  
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Sample Tomato seed Cathode particle A12 Chip 

System Versa XRM Ultra XRM Context micro-CT 

Tube voltage, kVp  

(low res / high res) 

80 / 40 N/A  

(monochromatic 5.4keV) 

160 / 120 

Detector  

(low res / high res) 

4X / 4X LFOV objective /  

HRES  objective 

FPX / FPX 

Projection array  

(low res / high res) 

20482 / 20482 10242 / 5122 30722 / 15362 

Number of Projections 

(low res / high res) 

2401 / 4001 901 / 901 1601 / 2401 

Voxel size, µm  

(low res / high res) 

1.7 / 0.7 0.065 / 0.032 10.35 / 2.1 

Volumetric FOV, mm3 

(low res / high res) 

44.2 / 2.9 0.00027 / 0.0000041 20,000 / 170 

Acquisition time, hrs 

(low res / high res) 

2 / 14 12 / 40 1.5 / 2.5 

Volume adjusted throughput 

improvement, X 

100 215 200 

Table 1. Acquisition settings for the sample images presented in this paper.  
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Figure 3: Resolution recovery on a tomato seed sample, showing significant boosts in image quality both inside and 

outside the training region. 

The next example application is a set of battery cathode particles, where porosity, pore size and distribution is critical 

to understand battery performance and degradation. The sample was scanned at very high resolution using ZEISS Xradia 

Ultra XRM, which is a zone plate microscope with two objectives. First, a “Large Field of View” objective with an 
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effective voxel size of 65nm, a field of view of around 65µm, and a spatial resolution of around 100nm, and also a high 

resolution objective with a voxel size of 32nm, a spatial resolution of 50nm and a field of view of 16µm. Three scans 

were performed, one with the LFOV objective, of the entire particle set, taking 12 hours, and two individual particles 

were scanned at high resolution, taking 40 hours each (figure 4). The LFOV scans had a volumetric field of view 

equivalent to 64x the volumetric field of view on the high resolution scans, equivalent of a volume-normalized 

throughput boost of 215X. The same procedure for multiscale 3D volumetric registration followed by network training 

and inference was followed. Quantitative analysis of the cathode particle porosity was also performed, shown below in 

table 2. 

Measure LFOV HRES Recovered 

Whole particle volume, µm3 1137 1137 1137 

Porosity 3.6% 2.4% 2.8% 

Total pore count 1154 3055 2600 

Pore Volume, um3 40.7 28.4 33.0 

Table 2. Analysis results from cathode particle dataset. 

 

Whole (filled) particle volume measurement for the three techniques agreed very closely, due the relatively large size 

of the individual particle (approximately 10-15um). This also shows that the image segmentation routine used for each 

dataset introduced very little bias between the measurements. For each other measurement, the resolution recovered 

volume measured much closer to the high resolution dataset than the original large field of view image, while offering a 

greatly expanded field of view relative to the high resolution dataset. 
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Figure 4: Resolution recovery on battery cathode particle dataset. High resolution porosity is more clearly visible in 

the resolution recovered dataset than in the original Large FOV datasets, even outside of the training region. 

 

The final example is a commercially acquired A12 ARM system-on-a-chip (SOC), with the package targeted for an 

ROI (a sample typical to semiconductor failure analysis (FA) applications). In this application field of view is critical as 

there may be large arrays of solder bumps to be which need to be examined for defects, misalignments or cracks. The 

sample was thermally cycled 1,000 times to force fatigue and induce cracking according to the JEDEC standard. It was 

scanned at a large field of view which allowed for the entire package solder bump array to be seen, the high resolution 

scan of package solder bumps acquired to show specific crack distributions. The cracks / defects were easily visible on 

both the high resolution and resolution recovered datasets, but were obscured in the original large FOV dataset (figure 

5). 
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Figure 5: A12 chip scan, with the board position show with the first box (top left). A 3D rendering shows high resolution 

positions (top right). 2D slices of the large FOV dataset, high resolution and resolution recovered datasets are shown, as 

well as digital zooms of two solder bumps with a region of interest indicated by the blue box. The fracture region is 

shown with the red box. The fractures are evident in both high resolution and resolution recovered data, but not in the 

large FOV data.  

4. CONCLUSIONS 

A novel workflow for automated resolution recovery using a combination of multiscale imaging, automated 

registration and AI based PSF deconvolution is presented. This is benchmarked on a range of samples, including a 

tomato seed, cathode particle and system-on-a-chip. For each of these samples, image quality was dramatically improved 

without sacrificing field of view or throughput. In the case of the tomato seed, subcellular features became much clearer 

and cell boundaries become much more distinct with an effective throughput boost of around 100X. In the case of the 

cathode particle quantitative analyses showed much closer agreement to high resolution results after resolution recovery 

than before. In the case of the system on a chip fractures were apparent in the resolution recovered dataset, whereas they 

were not clear on the original LFOV dataset. The tradeoff between resolution and field of view is one of the fundamental 

limitations in microscopy and microanalysis. Imaging technologies such as AI based resolution recovery and PSF 

removal have the potential to break these fundamental limitations, allowing for much larger fields of view, throughput 

and novel applications for X-ray imaging. 
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