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ABSTRACT

Scatter artifacts is one of the limitations of cone-beam computed tomography(CBCT) image quality, this paper
proposed a novel scatter correction method for CBCT via combining the deep learning and forward projection
algorithm. This method can be mainly divided follow steps: Firstly, raw projections were used to reconstruct raw
CBCT via FDK algorithm, and then the raw CBCT was processed by CycleGAN network to generate synthetic
CT, after that the synthetic CT was used to forward projection based on the Beer’s laws to generate scatter free
primary projections. The raw scatters can be estimated via subtracting the primary projections from the raw
projections, and then a median and low-pass Gaussian filter was used to smooth the raw scatters. Finally, The
scatter corrected projections can be acquired by subtracting the filtered scatters form raw projections. The study
results of pelvis and chest validated the effective of proposed correction method in reducing scatter artifacts of
CBCT. Compared with uncorrected CBCT and CBCT corrected by scatter kernel superposition(SKS) method,
the proposed method can more effectively improve the quality of reconstructed CBCT, reducing the CT number
errors and increasing contrast-to-noise(CNR) and so on. All results show that this method has strong scatter
artifacts restriction ability, so it has significant promising for clinical application.
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1. INTRODUCTION

Cone-beam CT (CBCT) has been widely used in image-guide radiation therapy, it can provided accurate patient
position, and also can track the tumor positon in therapy. But as the existing of scatter signals in CBCT,
it will lead to strong noise and CT number errors. This is one of reasons to limit the application of CBCT
in dose calculation, adaptive radiation therapy and so on. Scatter correction technology for CBCT has been
widely study, those methods can be mainly divided three categories: software-based,1–4 hardware-based5,6 and
software-hardware hybrid methods.7–11 In earlier study, many hardware-based methods been proposed, such as
anti-scatter grid method, air gap method and so on. Software-based mainly contains Monte Carlo, deep learning
and SKS methods. Furthermore, there are also some methods combined the hardware and software, those study
usually include beam stop array, primary modulation method and so on. Above scatter correction methods
mainly via direction measurement or theoretical calculation to estimate scatter, considering the characteristic
of existing planning CT in radiation therapy, there are also methods estimate scatter signals via planning CT
forward projection and then subtracted it from raw projections.12–15 Nui et al12 via rigid registration of the
planning CT with CBCT, and then forward projection process be used in planning CT to acquire primary
projections, so the scatter signals can be estimated easily and be smoothed. To further decrease the estimated
scatter errors, they also used some improvement technologies such as deformable registration, gas pocket matching
in this method. As the mismatching of CBCT with planning CT, it will leads serious errors for scatter estimation,
Cui et al16 used local filtration technique for the estimated scatter signals to improvement the accuracy of scatter
estimation furthermore.

Nui and Cui’s method just can used in those situation there are planning CT and it significantly rely on the
accuracy of registration. In this paper, We proposed a novel scatter correction method via combine the deep
learning and forward projection technique. A CycleGAN deep learning network was used to convert the CBCT
to synthetic CT, and then use synthetic CT to generate primary projections, and estimating scatter signals. Our
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method has significant advantages that it didn’t need any prior information, so the application regions are more
extensive, and proposed method also avoided the scatter estimation errors bring by registration.

2. METHODS

2.1 Generating Synthetic CT

We used CycleGAN network[16] as basic deep learning network to convert raw CBCT to synthetic CT, it used
two generators and discriminators to convert images between two cycle networks. We used a U-net architec-
ture for generators and a patchGAN for discriminators. Generators are used to generate synthetic CT, while
discriminators are used to distinguish real or fake data, Fig2 shows the architecture of CycleGAN network in
this paper, it mainly include two cycles. In cycle one, CBCT is converted to synthetic CT via generator G1,
and discriminator D2 is used to discriminate synthetic CT and real fan-beam computed tomography(FBCT) to
restrain generator G1, generator G2 is used to generator synthetic CBCT from synthetic CT. In cycle two, FBCT
is firstly converted to synthetic CBCT by generator G2, while discriminator D2 discriminates between synthetic
CBCT and real CBCT, and the same time synthetic CBCT is converted to synthetic CT using generator G2.
We used 24 patients dataset as training, 5 patients dataset as validation, and 2 patients dataset as test to train
CycleGAN network. Every patient contains 270 CBCT slices with 512x512 axial pixel and thickness 1mm, the
corresponding FBCT also was resampled to same size with CBCT.

Figure 1. The architecture of CycleGAN network in this paper.

2.2 Scatter Estimation

The work flow of proposed scatter correction method as show in Fig1. Raw CBCT images were reconstructed
firstly using standard FDK algorithm, and then the CBCT images were used to generate synthetic CT images
via CycleGAN network. In forward projection procedure, HU number of synthetic CT firstly was transformed to
corresponding water density, scatter free primary projections were acquired via forward projection of synthetic
CT images based on Beer’s law. In traditional scatter correction using deep learning directly, the high-frequency
errors can not be tolerant, but in our case only the low-frequency signals of synthetic CT are used, so our
method has some tolerance for high-frequency errors of synthetic CT. To improve the calculation times and save
memory space, the primary projections and raw projections were downsampled from 1024×1024 to 256×256.
When subtracting estimated scatter form raw projections, the scatter signals will be upsampled firstly back to
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Figure 2. The pelvis study with different way: (a)no correction, display window:[-200 400]; (b)with proposed correction,
display window:[40 400]; (c)ground truth FBCT, display window:[40 400].

1024×1024. For every projection angle, subtraction of primary projections from raw CBCT projections gives
the raw scatter projection images. Synthetic CT maybe has some slight errors, so there were some mismatching
between raw CBCT projections and primary images of forward projection, and the low frequency characterize
of scatter signals, a median filter(size 45-by-45 pixels) and a low-pass Gaussian filter(size 51-by-51 pixels) was
used to smooth raw scatter projection images. Finally, subtracting smoothed scatter from raw projections, and
then using subtracting results to reconstructed via FDK algorithm.

2.3 Evaluation Metrics

To evaluate the performance of proposed correction method, using contrast and contrast-to-noise (CNR) as the
evaluation metrics, the contrast calculated as:

Contrast = HUr −HUs (1)

the CNR calculated as:

CNR =
HUr −HUs√

σ
(2)

here HUr is the mean of selected region, HUs is the mean of surrounding area, σ is the standard deviation of
selected region.

3. RESULTS AND DISCUSSION

We performed our study on United-Imaging uRT-linac 506c, it contains an advanced MV-CBCT and FBCT
system. The reconstructed FBCT images had a pixel size of 512×512×90 and voxel size of 0.97mm in axial
plane and 3mm in longitudinal direction, while the CBCT images had a pixel size of 512×512×270 and voxel
size of 0.78mm in axial plane and 1mm in longitudinal direction. To enlarge the field of view of MV-CBCT
imaging, the flat detector was shifted by 90mm, and the reconstruction system of uRT-linac 506c contains
strong denoising process. Fig3 shows a pelvis study, it contains without correction CBCT, proposed correction
CBCT and ground truth FBCT. In the pelvis case, the HU number of CBCT corrected by proposed method
has significant increase than without correction CBCT, and the serious artifacts in without correction images
had been improved via proposed method. The red line profile showed in Fig4 also demonstrate the effective of
our method, and it is more nearing the FBCT compare with without correction. To quantitatively evaluate the
performance of our method, three ROIs were chosen to calculate the CNR and contrast number as show in table1.
In the selected ROIs, the CNR and contrast of three areas had obvious increasing. To further evaluate proposed
scatter correction method, Fig5 shows the CBCT images of a chest data corrected by proposed method and SKS
correction method. SKS scatter correction has been wildly study and used in commerce, because it has good
performance and fast calculation, and don’t need any other hardware equipment. From the chest performance
at axial, coronal and sagittal plane, we can see that the contrast and HU uniformity of CBCT corrected by
proposed correction has significant improvement compared with SKS correction.
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Figure 3. 1D horizontal profile along the solid line drawn in Fig2(c).

Figure 4. The chest study with proposed and SKS correction. Left column is proposed correction, right column is SKS
correction.From top to bottom is axial, coronal and sagittal plane. All images with display window:[40 400].
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Table 1. Contrast and CNR of selected regions

Method Metrics ROI1 ROI2 ROI3

Proposed correction
Contrast 104 80 121

CNR 25.22 17.45 31.4

Without correction
Contrast 52 48 11

CNR 18.44 13.9 3.5
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