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ABSTRACT

In this work related to the use of a commercial medical CT scanner for the non-destructive analysis of highly
attenuating materials (mineral samples), the effect of backprojection techniques and truncation artifacts cor-
rections were explored. For small ROIs, the CT couch interferes significantly in images of small samples (few
centimeters). An iterative reconstruction algorithm (OSC-TV) was used to perform reconstructions from uncor-
rected raw projection data made available through a collaboration with the CT vendor, who provided binaries
and methods to remove low-level, proprietary data corrections (for beam hardening). The OSC-TV algorithm is
customizable, allowing for the use of different forward-projection and backprojection techniques. Reconstruction
parameters were tuned by performing simulations in a virtual phantom involving highly attenuating materials.
Strategies to reconstruct small ROIs were also explored, with the objective of reducing truncation artifacts. Three
samples were scanned to compare a ray-driven backprojection and a voxel-driven backprojection technique based
on bilinear interpolation. The voxel-driven approach led to better results in terms of noise and reconstruction
artifacts. An iterative ROI reconstruction technique was used to reconstruct small ROIs. This technique allows
obtaining a sinogram with the projections of the ROI only. With that, truncation artifacts were reduced, which
led to images with less blurring.

Keywords: tomographic reconstruction algorithm, Iterative reconstruction, Proprietary data format, backpro-
jection by bilinear interpolation, GPU acceleration

1. INTRODUCTION

X-ray Computed Tomography (CT) is nowadays ubiquitous in medicine for diagnosis, treatment planning and
treatment responses purposes. This technology is also increasingly used for non-medical purposes in many fields,
providing several advantages such as: (i) non-destructive testing and (ii) high spatial and density resolution.1

In clinical CT scanners, raw acquisition data are stored as sinograms and are typically processed by proprietary
methods, notably to reduce beam hardening artifacts in reconstructed images. Raw sinograms are relatively large
from a storage perspective and are typically not kept on the long term, as opposed to reconstructed images which
are normally sent to a PACS. Even though it is possible to archive sinograms, their proprietary format typically
prevents users from reading them. The sinograms could also be preprocessed (e.g. calibration, beam-hardening
correction), and in this respect might not truly represent raw CT data, i.e. measures of the attenuation along a
ray. In some cases, including for research purposes, it might be desirable to access this raw attenuation data.

Previous works have shown the importance of the forward projection model on image quality.2 The aim of this
work was to explore how the reconstruction of small samples with small voxel size (e.g. 512 pixels × 512 pixels,
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and a pixel size in x and y of 0.00977 cm), are affected by the backprojection technique implemented on a iterative
reconstruction algorithm, OSC-TV (Ordered subset convex algorithm with total variation minimization).3

Besides, a technique used to reconstruct regions-of-interest with this class of algorithms was also analyzed,4

as they allow reducing truncation artifacts caused by objects outside the reconstruction matrix.

2. MATERIALS AND METHODS

We have developed a framework where an in-house iterative algorithm can be used to reconstruct images based
on genuinely raw attenuation data. First, the sinogram data in proprietary format are converted through the
use of binaries provided by the manufacturer. The conversion generates usable sinogram data, and also provides
associated geometry data. These data provided by the vendor is then used to perform the reconstruction with the
iterative algorithm OSC-TV. Two backprojection techniques were evaluated in this work with regards to their
impact on image features: a Siddon-based (ray-driven)5 and a bilinear interpolation (voxel-driven) approach.

2.1 Projection and backprojection techniques

In the OSC-TV algorithm, the estimated image is forward-projected and backprojected several times, depending
on the number of iterations and subsets.3

In this work, the estimated image is forward projected using Siddon’s algorithm,5 which is a ray-based
technique that can be efficiently implemented on the GPU.3 Backprojection was performed in this work with
two techniques: (i) ray-based or (ii) voxel-driven by bilinear interpolation.

In the voxel-driven backprojection by bilinear interpolation (BLI), the center of each voxel is projected on
the detector and the reading corresponds to the weighted sum of the four neighboring pixels (the position is
calculated relative to the detector pixel centers).

On the other hand, for a ray-driven backprojection, the detector readings are smeared back across the image.
The voxels that are incremented in this process depend on the ray path, from the detector reading to the source.
Typically, a finite number of rays are defined (e.g. one ray per detector). In this approach, depending on the angle
between rays and the voxel size, some voxels might not be traversed by a given ray, or they are under-utilized,
for the intersection length is negligible. This problem is not unique to the backprojection, but it is also present
in the forward-projection in different techniques (e.g. Siddon, Joseph’s method and bilinear interpolation).2

2.2 Working with proprietary format

For this work, a Siemens SOMATOM Definition AS+ 128 scanner was used. This device is installed at the
Institut national de la recherche scientifique, in Québec City, Canada. This platform is used for several non-
medical applications, including material characterization and custom beam hardening corrections with dual-
energy techniques.6,7

The process of using raw data from this medical CT scanner is illustrated in Fig. 1. In summary, a vendor-
provided calibration table is used for acquisitions to cancel any vendor-specific beam hardening corrections
(detector calibration is still applied). The raw data is stored in the host system and copied to a different
machine for archiving purposes, along with calibration data. These raw data, free of vendor-specific beam
hardening corrections, can be read with vendor-provided binaries. These genuinely raw data (except for detector
calibration), can thereafter be used in custom reconstruction algorithms designed to handle corrections from first
principles, notably through dual-energy approaches.7

2.3 Convergence of OSC-TV in numerical simulations

In order to verify the convergence of the reconstructed image, a virtual phantom was defined (see Fig. 2). It
is composed of a water cylinder with 25.2 cm of diameter and 9 cylinder rods of distinct materials, each one
with a diameter of 2.4 cm. The X-ray absorption properties of the phantom, defined by the linear attenuation
coefficient, was retrieved from the NIST XCOM database.8

A noise-free monoenergetic step-and-shoot acquisition of the virtual phantom at 83 keV was simulated by
using the geometry of the medical CT scanner Siemens SOMATOM Definition AS+ 128.
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Figure 1. Flowchart depicting how raw data is processed to perform tomographic reconstructions with OSC-TV.
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Figure 2. Virtual phantom.

The convergence of the reconstruction to an optimal result is tuned by the reconstruction parameters: number
of iterations, number of subsets, final number of subsets, and initial image; regularization parameters also play an
important role in decreasing the overall noise and controlling the spatial resolution: gradient steps and strength
of regularization (rms).3

A high number of subsets, equivalent to half the number of projections and a final number of subsets rep-
resenting 1/10 of that value, can be used to achieve optimal convergence, as already suggested with few-view
acquisitions.9

Different combinations of reconstruction parameters are used to reconstruct the virtual phantom in order to
assess the convergence: 5, 9 and 12 iterations; 84, 576 (1/4 projections) and 1152 (1/2 projections) subsets. A
total of 9 reconstructions are performed (3×3), with the regularization constant and gradient steps fixed at 0.02
and 20, respectively.

2.4 Scanning protocols

Four samples were imaged in the experimental protocol (see Fig. 3): (a) water phantom, (b,c) small mineral
sample (approximately 5 cm) of granite and chalcopyrite, respectively, and (d) a sandstone, with a diameter of
10.0 cm, henceforth called BEC A196-6.

Different scan protocols were used for the samples, and for some cases proprietary beam-hardening correction
(BHC) was neutralized (neutral): water phantom and chalcopyrite (neutral) at 140 kVp, BEC A196-6 (neutral)
and granite (neutral) at 100 kVp. Tomographic reconstructions performed with the Siemens algorithm, filtered
backprojection, used the B30s (smooth) kernel.
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Figure 3. Samples: (a) water phantom, (b) granite, (c) chalcopyrite, (d) BEC A196-6.

2.5 Conversion calibration

Tomographic reconstruction performed by the OSC-TV algorithm are inherently in units of linear attenuation
(cm−1), while the ones obtained with the Siemens algorithm are in Hounsfield units (HU). The relation between
these quantities is given by: µ =

(
HU
1000 + 1

)
× µwater. Reconstruction of the water phantom, at 100 kVp and

140 kVp, are performed with OSC-TV, and the mean value in a ROI of each case is calculated. The average
of the results provides µwater. This value is independent of the tube voltage, for the projections are always
normalized for water, so HU is always close to 0 (proprietary preprocessing of raw data).

2.6 Reconstruction of raw data using OSC-TV

Following the workflow depicted in Fig. 1, and the numerically-determined optimal reconstruction parameters
defined in Section 2.5, images were reconstructed with well-defined parameters of the OSC-TV code.

For the cases where small voxels are used with a regular grid (512 pixels × 512 pixels), a modified iterative
reconstruction of a region-of-interest (IR ROI) technique based on the work of Ziegler et al. 20084 was applied.
The CT table lies outside the image reconstruction matrix for some cases. This technique allows us to perform
reconstruction with a normal grid and small pixel size (e.g. 0.00977 cm), avoiding truncation artifacts caused by
objects outside the reconstruction matrix.

Contrariwise, high-resolution reconstructions (e.g. 2048 pixels × 2048 pixels) would have to be made to cover
the entire field-of-view (FOV) (e.g. 50 cm), for the table presents an important attenuation, even though a small
object (few centimeters) is being reconstructed.

Variations of the OSC-TV algorithm are identified by acronyms, where BLI stands for backprojection by
bilinear interpolation (voxel-driven), Siddon for ray-driven backprojection, and ROI for the IR ROI technique

3. RESULTS AND DISCUSSION

3.1 Convergence of OSC-TV in numerical simulations

The visual convergence of the OSC-TV algorithm in terms of number of iterations and subsets is depicted in
Fig. 4. As one can notice, 84 subsets is insufficient even when 12 iterations are performed, giving rise to beam-
hardening-like artifacts. As those images were reconstructed from monochromatic projections (83 keV), such
artifacts were not expected, and so are due to a non-optimal convergence. By increasing the number of subsets
(576, or 1/4 of the number of projections), and the number of iterations, such artifacts are decreased. Finally, it
is only when a high number of subsets (1152, which is equivalent to half the number of projections) is used that
those artifacts are removed, as a result of high rate convergence.

3.2 Samples

From the measurements in the central slice of the water phantom, at 100 kVp and 140 kVp, it was obtained an
average value µwater = 0.1918 cm−1, which allows conversion from HU to linear attenuation coefficient to be
performed (see Fig. 5).
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Figure 4. Convergence of virtual phantom. Percent error maps.
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Figure 5. Water phantom: (left) 100 kVp, (right) 140 kVp. Window: [0.18:0.22]

3.3 Reconstruction of ROI and small samples: OSC-TV ROI

The importance of the backprojection technique for artifact mitigation and the IR ROI technique for removing
truncation artifacts is shown in Fig 6. In (a), the CT table was not included in the reconstruction matrix. It
is worth noting that the setup uses a custom table, with much more important absorption properties than a
medical one. Secondly, in (b), the image is reconstructed using Siddon backprojection and IR ROI technique, so
the table is removed from the projection data. As not all voxels are incremented by the correspondent detector
read during backprojection, more artifacts arise, producing a noisy image. Finally, in (c), the IR ROI and
the voxel-driven backprojection by bilinear interpolation are combined. These two techniques are capable of
mitigating both artifacts: truncation and lack of data in voxel increment during backprojection.

In Figs. 7 and 8, the reconstruction of a small sample of granite and chalcopyrite (approximately 5 cm)
is shown with different techniques: (a) Siemens with the B30s kernel (smooth); (b) OSC-TV with Siddon’s
backprojection; (c) OSC-TV with backprojection by bilinear interpolation; (d) OSC-TV with IR ROI technique
and backprojection by bilinear interpolation. As a smooth kernel was selected for the Siemens reconstruction, its
natural its OSC-TV counterpart (d) is less blurry. Image (b) suffers from the inherent problem of the Siddon’s
backprojection, where some voxels are not properly incremented by the backprojection and the artifacts are
scattered from the center of the image, and the presence of noise. When (c) and (d) are compared, it is clear
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Figure 6. BEC A196-6 100 kVp, reconstructed with OSC-TV applying different techniques: (a) backprojection by bilinear
interpolation, (b) ray-driven backprojection and region-of-interest strategy, (c) backprojection by bilinear interpolation
and region-of-interest strategy. Window [0.5:0.6] cm−1.

that the first is smoother. Contrariwise, the edges are smoother in general with the OSC-TV technique. The
iterative technique also provides images with less beam-hardening artifacts: at the left edge of the granite in
Fig 7, pixels values are steady, while a smooth decrease is observed in the Siemens reconstruction.
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Figure 7. Granite 100 kVp: (a) Siemens algorithm (B30s), (b) OSC-TV and the Siddon backprojection, (c) OSC-TV
and backprojection by bilinear interpolation, (d) OSC-TV, backprojection by bilinear interpolation and region-of-interest
strategy, (e) plot of the line profiles. Window [1.0:1.8]

4. CONCLUSION

In this work, a framework for working with proprietary data from a commercial CT scanner was presented.
Binaries provided by the manufacturer allows research to be performed in both the projection and the image
space, where beam-hardening preprocessing can also be neutralized, so custom BHC can also be applied. Ray-
driven backprojection, with a limited number of rays, is insufficient for small geometries and samples. With a
backprojection by bilinear interpolation (voxel-driven), results with less noise and free of reconstruction artifacts
were obtained for studied cases. Strategies to reconstruct regions-of-interest were also applied, where truncation
artifacts were reduced, and less blurring was observed.
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Figure 8. Chalcopyrite 140 kVp: (a) Siemens algorithm (B30s), (b) OSC-TV and the Siddon backprojection, (c) OSC-TV
and backprojection by bilinear interpolation, (d) OSC-TV, backprojection by bilinear interpolation and region-of-interest
strategy, (e) plot of the line profiles. Window [1.0:1.6]
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