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ABSTRACT

X-ray tomography reconstruction requires a set of projections that provides sufficient information for the exam-
ined region. Commonly, to ensure mathematically complete reconstruction, first, a continuous curve (trajectory)
that fulfils the Tuy conditions is chosen. Second, this curve is sampled based on the Nyquist-Shannon sampling
theorem. This two-step approach is efficient for most standard X-ray tomography scanning scenarios. For agile
X-ray tomography systems, e.g. robot-supported computed tomography systems, choosing a set of projections
based on a continuous curve is often not useful. Instead, sets of projections from arbitrary views might be
necessary.

This work combines the Tuy-Smith condition with conclusions from the Nyquist-Shannon sampling theo-
rem. In particular, the maximal pixel size and a requirement for the arrangement of projections are formulated
depending on the smallest relevant object feature and integrated into the Tuy-Smith condition. We derive a com-
prehensive condition for data completeness that can assess the completeness of any set of arbitrary projections,
e.g. for complex scanning scenarios with robot-supported X-ray tomography systems.

Keywords: Data completeness condition, arbitrary scan geometry, robot-supported CT, Tuy conditions, Nyquist-
Shannon sampling theorem

1. INTRODUCTION

X-ray computed tomography (CT) allows digitisation of three-dimensional inner and outer structures for many
applications in medicine1 and in industry.2 In a standard industrial CT, the examined object is placed on a
turntable between an X-ray source and a detector. By rotating the object, projection views from a circular
trajectory around the object are generated.

In addition to these classical systems, twin robotic CT systems have been developed where the source and the
detector are mounted on individual robots. This setup allows agile movement of source and detector in order to
create projections from arbitrary views around the object. This agility of robot-supported CT systems enables
new, more complex trajectories which can be utilised in numerous ways, e.g. to scan large-scale objects,3 to
reduce metal artefacts4,5 and to reduce the scan time.6

However, this agility of robot-supported CT systems complicates the CT scan process. In order to enable
a true, mathematically complete reconstruction, it has to be ensured that the available projections generate
sufficient information. In the standard CT process, first, the CT user chooses a continuous curve (commonly a
circle or a helix) around a region of interest. Second, by choosing the number of projections, this continuous
curve is sampled into individual, equidistantly placed views for the generation of individual projections.

A two-step approach is performed to ensure that the resulting set of projections provides sufficient information
for mathematically complete reconstruction. First, the Tuy-Smith condition7 assesses whether the continuous
trajectory can provide enough information. Second, the sampling is validated based on the Nyquist-Shannon
sampling theorem. This two-step process is efficient and sufficient for most scenarios for standard CT systems.
However, especially when using agile CT systems, this process has weaknesses. The two-step approach requires
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a continuous curve as a base trajectory. However, in many scenarios, the requirement of a continuous curve is
impractical. Fig. 1 shows an example from4 of two sets of views for a region of interest scan of a defect in a
motorcycle. A continuous curve would not be a useful basis for both sets of views.

Figure 1. Visualisation of two sets of views on a motorcycle. The green dots represent individual source positions.

This work extends the Tuy-Smith condition with the Nyquist-Shannon sampling theorem to create a single
condition that indicates data completeness for a mathematically complete reconstruction. For the first time, this
condition allows the assessment of data completeness for arbitrary sets of views.

2. STATE OF THE ART OF CT DATA COMPLETENESS

The X-ray attenuation process can be depicted as the Radon transform which maps every hyperplane of the
spatial domain to a point in the Radon space. Let f be the density function of the examined object, u be the
normal vector of a hyperplane and s be the distance of this plane to the origin. The Radon transform can be
written as

Rf(u, s) =

∫
x·u=s

f(x)dx. (1)

In 1917,8 Radon proved that if f(u, s) is continuous, there exists a unique inverse. Therefore if the Radon
space is continuous and known, complete CT reconstruction can be ensured. However, it is not trivial whether
a specific trajectory or a specific set of arbitrary X-ray projections can be applied to measure the Radon space
sufficiently.

2.1 Trajectory Requirements

In 1983,9 Tuy published data completeness conditions for continuous curves that ensure mathematically correct
reconstruction. Following Tuy, a curve is a continuous function Φ : Λ → R3 where Λ is an interval in R. Let
S ⊂ R3 be the unit sphere and Ω ⊂ R3 be a compact region that contains the complete object with density
function f .

Tuy implicitly used several assumptions about the measuring and reconstruction processes to ensure mathe-
matically correct reconstruction. This includes the following two (unrealistic) assumptions:

1. Detector resolution assumption: Tuy assumes that the exact position of impact of each measured
photon is known. This corresponds to a detector with infinitely small pixels.

2. Source assumption: Tuy assumes that X-rays are emitted at every position of the trajectory of the
source. This assumption corresponds to an infinite number of projections on the trajectory.
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Tuy conditions
Using assumptions 1 and 2, an object in region Ω can be reconstructed from projection data generated on a curve
Φ if the following three conditions are valid:

1. The curve Φ is outside of the region Ω.

2. The curve Φ is bounded, continuous and almost everywhere differentiable.

3. For all (x,u) in Ω× S, there exists λ ∈ Λ, such that x⊤u = Φ(λ)⊤u and Φ′(λ)⊤u ̸= 0.

In 1985,7 Smith proved that Tuy’s third condition is sufficient:

Tuy-Smith condition
Using assumptions 1 and 2, an object in region Ω can be reconstructed from projection data generated on a curve
Φ if, for all (x,u) in Ω× S, there exists λ ∈ Λ, such that x⊤u = Φ(λ)⊤u.

Descriptively, the Tuy-Smith condition states that every plane through the region of interest must intersect
the source trajectory. As every point in the Radon space corresponds to one plane in the spatial domain, the
Tuy-Smith condition ensures a full sampling of the Radon space.

2.2 Sampling Requirements

As both assumptions, the detector resolution assumption and the source assumption of Section 2.1, are impossible
in practice, the projections as well as the continuous trajectory need to be sampled. To nevertheless ensure
sufficient information, the Nyquist-Shannon sampling theorem can be applied.

A detailed derivation of the maximal pixel size and minimal number of projections is presented by Buzug.10

Let k be the minimal magnification factor and fmin be the smallest relevant feature. Based on the Nyquist-
Shannon sampling theorem, the maximal pixel size △ξ is given by

△ξ <
k

2
fmin (2)

Let r be the radius of the measuring field. Following Buzug,10 the maximal angular gap △γ between
projections is given by

△γ <
fmin

2r
. (3)

As an example for parallel-beam geometry, for an equiangular sampling of a semi-circular trajectory, the
minimum number of projections follows by

n =
π

△γ
. (4)

3. NEW DATA COMPLETENESS CONDITION FOR SETS OF ARBITRARY VIEWS

To directly assess the data completeness of a set of arbitrary projections, we combine the Tuy-Smith condition
with the presented conclusions of the Nyquist-Shannon sampling theorem. This means that, first, the pixel size
and, second, the maximal angular gap of projections are integrated in the Tuy-Smith condition.

The maximal pixel size can directly be applied to create a realistic new assumption:
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1b. Adapted detector resolution assumption: The detector has a maximal pixel size

△ξ <
k

2
fmin

based on the smallest magnification k of any of the used projections and the size fmin of the smallest feature
that should be detectable.

To integrate the maximal angular gap into the Tuy-Smith condition, we extend the estimations of Maier et
al.11 We assume parallel-beam scanning geometry to allow more intuitive and straightforward phrasing. The
conclusions remain for cone-beam CT. Let ũ ∈ S be a normal vector that represents an arbitrary plane in Radon
space and D the set of the normal vectors of all measured planes in Radon space. According to the Nyquist-
Shannon sampling theorem, the angular distance between neighbouring planes in Radon space does not have
to be zero, but only must be smaller than the specified maximum angular gap △γ of (3). This means, for any
possible plane in Radon space, there has to be a measured plane that is tilted less than △γ. The cosine angle
between two vectors equals the inner product of the corresponding unit vectors. Thus, this condition can be
written as

∀ũ ∈ S ∃d ∈ D : | cos−1(d⊤ũ)| ≤ △γ. (5)

Let u ∈ S be a vector perpendicular to vector ũ. Vector ũ being tilted less than △γ according to vector d
equals vector u being perpendicular to vector d apart from an angle △γ. Two vectors are perpendicular apart
from an angle △γ if |d⊤u| ≤ sin(△γ). Equation (5) thus is equivalent to

∀u ∈ S ∃d ∈ D : |d⊤u| ≤ sin(△γ). (6)

The normal vector of a measured plane in Radon space corresponds to the directional vector of the projection
that measured this plane in Radon space. Let L be the set of all source positions of a set of projections and
x ∈ Ω any point in the region of interest. Defining directional vectors of projections by dx,l :=

x−l
||x−l||2 , Equation

(6) can be written as

∀(x,u) ∈ Ω× S ∃l ∈ L : |d⊤
x,lu| ≤ sin(△γ). (7)

This equation ensures that sufficient projections for a complete reconstruction are available. In total, by
integrating the conclusions of the Nyquist-Shannon sampling theorem (Assumption 1b and Equation (6)) into
the Tuy-Smith condition, the following combined condition can be derived:

Data completeness condition for sets of arbitrary projections
An object in region Ω can be reconstructed based on projections with corresponding source positions L if

1. the maximal pixel size of the projections is △ξ < k
2fmin depending on the smallest magnification factor k

and the smallest relevant feature fmin,

2. for all (x,u) ∈ Ω× S, there exists a projection with corresponding source location l ∈ L such that

|d⊤
x,lu| ≤ sin(△γ)

with △γ = fmin

2r as the maximal sufficient angular sampling rate depending on the radius r of the measuring
field.
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Figure 2. Two data complete sets of views: Visualisation of the source positions and a test specimen. The right scenario
also contains highly attenuating metal blocks. The presented set of projections mostly avoids X-rays through these blocks,
generating complete data for the reconstruction of the test specimen without metal disturbance.

4. EXAMPLES

As a short example, Fig. 2 shows two additional sets of views for a plastic test specimen that all fulfil the
presented data completeness condition. The right image contains highly attenuating metal blocks. This example
demonstrates that our condition can be applied to assess data completeness in scenarios that require complex
sets of views.

As a more detailed example, let fmin := 0.03 cm be the smallest relevant feature of an examined object
with maximal radius r := 1cm and k := 10 be the magnification (due to cone-beam CT). Using the presented
equations, we can calculate the maximal detector pixel size △ξ and the maximal angular gap △γ for data
complete reconstruction:

△ξ <
k

2
fmin = 0.15 cm (8)

△γ <
fmin

2r
= 0.015. (9)

This means, a set of projections provides complete data if, first, the pixel size is smaller than 0.15 cm and,
second, for all positions x in the region of interest and possible vectors u through the region of interest, there
exists a projection with a normal vector dx,l so that the maximal angular gap γmax = d⊤

x,lu ≤ sin(0.015) ≈ 0.015.

For the following examples, we chose a sufficiently small pixel size of 0.12 cm and tested different sets of
views. In the first example, we chose to reconstruct a spherical object with concentric spherical shells in order to
visualise cone-beam and aliasing artefacts. Fig. 3, 4 and 5 show examples of different sets of views and slices of
the corresponding reconstructions. With each a maximal angular gap of γmax = 0.308 at the bottom and the top
of the sphere, both circular trajectories of Fig. 3 and 4 do not fulfil the presented data completeness conditions.
Cone-beam artefacts appear at the bottom and the top due to a lacking sampling. Aliasing appears in Fig. 3 due
to too few projections. Fig. 5 shows a set of views with 300 arbitrary projections that does fulfil the presented
condition with a maximal angular gap of γmax = 0.013. It contains no aliasing or cone-beam artefacts as the
corresponding Radon space is sampled sufficiently.

5. CONCLUSION

We have presented a CT data completeness condition that can be used to assess the completeness of any set
of projections. This condition is not based on continuous curves, but can be applied directly to assess the
completeness of data for any arbitrary set of projections. Thereby, this work introduces a method for evaluating
sets of projections even for complex scanning scenarios, e.g. for robotic CT systems and scenarios with strongly
attenuating components and spatial restrictions.
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Figure 3. Circular trajectory with 50 projections: Visualisation of the source positions and two reconstruction slices of a
spherical object. This set of projections is not data complete due to missing information outside of the centre plane and
too few projections.
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Figure 4. Circular trajectory with 300 projections: Visualisation of the source positions and two reconstruction slices of
a spherical object. This set of projections is not data complete due to missing information outside of the centre plane.
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Figure 5. Data complete set of 300 arbitrary projections: Visualisation of the source positions and two reconstruction
slices of a spherical object. This set of projections is data complete.
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[10] Buzug, T. M., [Einführung in die Computertomographie: mathematisch-physikalische Grundlagen der Bil-
drekonstruktion ], Springer-Verlag (2003).

[11] Maier, A., Kugler, P., Lauritsch, G., and Hornegger, J., “Discrete estimation of data completeness for 3d
scan trajectories with detector offset,” in [Bildverarbeitung für die Medizin 2015 ], 47–52, Springer (2015).

Proc. of SPIE Vol. 12304  123040C-7


