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ABSTRACT

Artifact correction is a great challenge in cardiac imaging. During the correction of coronary tissue with motion-
induced artifacts, the spatial distribution of CT value not only shifts according to the motion vector field (MVF),
but also shifts according to the volume change rate of the local voxels. However, the traditional interpolation
method does not conserve the CT value during motion compensation. A new sample interpolation algorithm
is developed based on the constraint of conservation of CT value before and after image deformation. This
algorithm is modified on the existing interpolation algorithms and can be embedded into neural networks with
deterministic back propagation. Comparative experimental results illustrate that the method can not only
correct motion-induced artifacts, but also ensure the conservation of CT value in the region of interest(ROI)
area, so as to obtain corrected images with clinically recognized CT value. Both effectiveness and efficiency
are proved in forward motion correction process and backward training steps in deep learning. Simultaneously,
the visualized motion vector field transparentizes the correction process, making this method more interpretable
than the existing image-based end-to-end deep learning method.
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1. INTRODUCTION

Recent study shows that cardiovascular disease is still the largest worldwide. Coronary Computed tomography
angiography(CCTA) is a crucial technology to diagnose coronary heart disease as a simple, fast, noninvasive and
safe imaging method. However, the beating characteristics, especially patients with high heart rates, introduce
motion artifacts to the reconstruction, which significantly decreases the quality and confidence of the image and
potentially limits the evaluation of coronary arteries or even makes misinterpretion. Existing technologies try to
suppress artifacts from both hardware and software. Limited by the physical and mechanical properties of CT
equipment, even the small incremental gain of the frame rotation time needs to make great efforts in engineering
design.

Some methods try to improve image quality during reconstruction1.2Rohkohl et al3initially proposed a Metric-
based correction method and later improved and extended. Some registration-based also have shown good
performance in compensating for strong motion artifacts.A classical non-rigid registration algorithm4 uses the
motion vector field estimated by bidirectional labeled point matching (BLPM) algorithm to perform 3D warping
on a series of partial reconstructions. This algorithm uses thin plate spline interpolation algorithm (TPS) for
interpolation. TPS, as a very robust spatial data interpolation method, was introduced by Duchon et al.5 into
geometric design, which is commonly used for non-rigid registration. Since the structure of TPS is differentiable,
Spatial Transformer Networks (STN)6 applies it in the network to achieve spatial alignment of feature maps.

Deep learning based cardiac motion correction method, as a particular case of image deblurring, usually
follows two common ways: using deep network to estimate the motion vector field, and then combined with the
traditional warp algorithm to deform. Another way is to learn from image to image, that is, the trained neural
network can output the corrected image directly. Methods proposed by S. Jun7 and N. Fu8 have successfully
proved that CNN has the ability to generate and learn coronary motion patterns.910 has successfully applied
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STN for end-to-end training. The obtained images can be well registered in shape, but due to the limitations
of traditional interpolation in value conservation, the accuracy of the CT value needs to be investigated. Based
on the principle of CT imaging, the overall integral value of the reconstruction image is not related to the
states of motion of object in the fixed Field of View. However, various system biases may be introduced in the
reconstruction process, resulting in differences between motion and static reconstruction results.

Separating raw data to generate multiple partial angle reconstructions and applying different MVFs with
affine transformation is one way to eliminate the interpolation issue, but it requires more detailed and exact
motion patterns for each subset. In order to solve the interpolation issue and meanwhile avoid increasing the
complexity of correction process, the conservation integration constraint interpolation method is designed. This
paper takes into account the proportional coefficient between the integral value and the area of deformation grid.
This new deformation interpolation method is based on the existing interpolation method and can be embedded
into the classical spatial transform network for back propagation.

Figure 1: Patch-based coronary correction pipeline of the proposed interpolation method. The front network
receives an input which can be central axial, sagittal, or coronal slices of a motion-corrupted volumetric ROI
and generate deformed parameters θ1, θ2, · · · , θk. CTVC-STN network feed with θ1, θ2, · · · , θk to interpolate to
get Θ1,Θ2, · · · ,Θn (k ≤ n) and sampling to output an corrected image.

2. MATERIALS AND METHODS

The outline of the proposed coronary correction pipeline is shown in Fig.1. Firstly, the front Network is designed
to output three sets of deformation parameters θs.Then the deformation parameters of each pixel in the whole
image are obtained by interpolation of θs, and are used to warp the coronary ROI. Simultaneously, calculate the
deformation coefficient of the area of the deformed grid. Then the deformation coefficient is multiplied by each
corresponding pixel to obtain the final image which is the closest to the ground truth, not only in shape but also
in CT value. The whole process can be back-propagated in the convolutional Network.

2.1 Deformation parameters estimation

Inspired by literature,11 a changed 2D-UNet network with deep supervision12 is selected as the front network
to generate deformation parameters θ1, θ2, · · · , θk(k ≥ 1) in decoder path, and it can be substituted by other
suitable network structures. Since convolutional layers of different depths have different receptive fields, different
from Unet,13 this network simultaneously outputs the learned deformation parameters from features extracted at
different scales. For the specific coronary artery correction task in this paper, the features of three different scales
are selected to estimating deformation parameters at the same time and calculate loss respectively, and finally
the total loss is calculated by the combination of the three losses. This configuration can not only increase the
stability of the network during training, but also support pruning the network during testing, which can increase

Proc. of SPIE Vol. 12304  123041X-2



the testing speed while ensuring the correction accuracy, thereby reducing the amount of network parameters
within a controllable range.

2.2 CT Value Conservation Network based on Spatial Transformer (CTVC-STN)

In order to realize CT value conservation while ensuring the deformation, CTVC-STN network is proposed by
improving on the basis of Spatial transformer Network as STN has shown some deficiencies in the end-to-end
training of motion correction. First, STN introduces full connection layers to output an affine matrix θ with
the size of 2 × 3 which increases the difficulty of training and limits that STN can only be used for small-size
features.Secondly, STN uses conventional affine transformation and interpolation function to warp, in which the
interpolation function can be bilinear interpolation, bicubic interpolation and thin plate spline interpolation.
However, for coronary images with artifacts caused by different motion patterns, the simulated data as Fig.2
show that, ideally, the sum of CT value of the stationary and motion reconstructions are conserved. Therefore,
this paper designs a deformation interpolation network CTVC-STN to keep the CT value conserved.

Figure 2: One simulated case of the stationary reconstruction and motion reconstruction.The first image is the
result of stationary reconstruction, and the rest three motioned images are reconstructed from different gantry
starting positions and reconstruction angles. The CT value sums of the four images are approximatly equal. The
CT value difference among them comes from system resolution error.

As illustrated in Fig.1, The Grid & Determinant Generator feeds with deformation parameters θs = θ1, θ2, · · · , θk,
which are generated by front network. According to θ1, θ2, · · · , θk, input image is averagely discretized into k
pixels. For the presupposed conditions, θ1, θ2, · · · , θk are the accurate deformation parameters corresponding
to k pixels, so the coordinates of these points can be directly obtained. Furtherly, combined with sampling
and bilinear interpolation, the coordinates and pixel values of all points in the initial deformed image are also
obtained. Backward mapping is used for sampling, that is, the pixel value of each point of the deformed image is
traversed to find the corresponding coordinates on the original image, and then the surrounding pixels are used
for simple interpolation. This method avoids holes generated during forward mapping.

To realize CT value conservation of an image before and after deformation, ideally, when one pixel p of
deformed image is contributed by q pixel grids on the original image where q > 1 ,as shown in Fig.3 e), q > 2,
for these q pixels, calculating the ratio of covered area of each pixel grid of initial image. Then, the sum of
the pixel values of these q grids multiplied by the corresponding ratio should be the exact pixel value of that
pixel. An alternative solution is used here to alleviate the situation that computational complexity increase as
initial image size becomes larger. To our knowledge, in the two-dimensional space, the geometric mathematical
significance of the determinant of the matrix represents the directed area surrounded by two vectors.14 Based
on this mathematical theory, the area of each pixel in the affine transformation grid can be obtained.

A sample interpolation example is shown in Fig.3 a)-c). Geometrically, consider the pixels of the image as
squares rather than points and the pixel value as the center points of the input’s corner pixels. Fig.3 a) is the
initial image with a size of 4x4, Fig.3 b) is the result of bilinear interpolation and sampling with scaling factor of
1/2. As it illustrated in Fig.3 b), the summation of all pixel value is non-conservation. According to the affine
matrix of each pixel of this transformation and its determinant are as follows:
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θ =

(
2 0 δx
0 2 δy

)
, ∥θ∥ = 4 (1)

Therefore, the value summation of the image obtained by multiplying Fig.3 b) by ∥θ∥ is equal to the initial
image, as shown in Fig.3 c).

The proposed method maintains CT value conservation meets the following constraints: First, if the deformed
image exceeds the size of the deformed grid, the boundary pixels will be lost in the sampling process,which are
illustrated in Fig.3 e),f). Second, at the ideal limit resolution, even very exaggerated deformations will become
very smooth. Therefore, the method can realize the conservation of CT value under ideal conditions. However,
due to the difficulty of implementation and computational complexity, very precise grids are not used during
implementation, which will cause errors. However, the following experiments show that the method can control
the error within the clinically acceptable range, as shown in Fig.5.

Figure 3: A sample interpolation example. a) initial im-
age of 4x4. b) result of bilinear interpolation, 2x2. c) result
of proposed interpolation method with CT value-sum con-
servation. d)initial image with 2x2 focused ROI. e) the
result of bilinear with deformation parameters θ. f)the re-
sult of proposed method. b),c) is still in the focused ROI,
while e),f) not, so CT value conservation can be obtained
in b),c), but invalid in e),f).

Figure 4: The trend of different numbers of deforma-
tion parameters on the loss convergence as the training
epoch increase. The loss is Mean Square Error.

3. RESULTS

3.1 Image acquisition

The combination network above is performed using supervised end-to-end training strategy. To train this model,
the ground truth used in the training process are anonymous motion-artifacts-free cases with United Imaging
Healthcare(UIH) uCT ATLAS devices. Referring to the forward model for simulating cardiac motion method
proposed in related literature1516 and our knowledge of cardiac beating patterns, artificial motion vector fields
is generated to simulate all kinds artifacts. The artificial blurred data are input data for training. 9600 samples
of 2D coronary patches with the size of 64x64 based on the above artifact simulation methods were generated.
The samples were divided into 80% training data and 20% validation data. Test data set involves real motion
blurred cases to examine the effectiveness of network and simulation method.

3.2 Neural Network Training

The training was performed on an NVIDIA TITAN RTX for 1000 epochs using an Adam optimizer with 0.1
decay, The batch size is 16 and the loss function is Mean Square Error(MSE).
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Figure 5: The x-y plane of one image patch is visualized before and after different methods. Among these,
CTVC-STN shows best correction both in shape and CT value. The CT value sum of Input is 3914156, CTVC-
STN: 3914182, STN-biliear: 3909930, STN-TPS: 3908637, and Target: 3914188. CTVC-STN: can obtain an
aproximate value coservation with a value error ratio of 1e-6. Figure b),c),d) show the differences between
ground truth and the Results of STN-bilinear c), STN-TPS d) , our method b).

3.3 Evaluation

Real data from several clinical patients with severe artifacts were used to test the trained network model.

The number of deformation parameters directly affects the accuracy of artifact correction. Fig.4 shows the
trend of different deformation parameters on the loss convergence as the training epoch increases. It can be
seen that since coronary motion is a relatively complex non-rigid deformation, it is impossible to correct the
deformation of the entire image with a single parameter, so the loss is maintained at a relatively high level. With
the increase of deformation parameters, the network can gradually learn complex motion deformation, and its
number is positively correlated with the correction result. When the number of θ generated by the network is the
same as the number of pixels in the input image, it is equivalent that each pixel has its own specific displacement
vector, and a more accurate shape correction can be achieved under this configuration.

When Mean Square Error (MSE) and structural similarity index measure (SSIM) were used as the loss func-
tion, the above corrected CT value will be slightly deviated. The network needs to add the directed area of the
deformation vector for further numerical correction. As shown in Fig.5, TPS and STN failed to maintain the
image CT value conservation before and after correction, while CTVC-STN can achieve approximate conserva-
tion of CT value within the range of loss not exceeding 1e-6. Real cases were also tested to demonstrate the
effectiveness of this method as shown in Fig.6, which shows that the designed network has a good performance
in correcting drastic artifacts of coronary images in three planes.

4. CONCLUSION

The key contribution of this work is the solution that provides individual deformation of each pixel of the image,
and can maintain the approximate conservation of the CT value in deformation. This method is a supplement
to the existing interpolation algorithm and can be used in the network to support back propagation. A novel
framework for motion correction of CCTA were experimented to verify the validity of this method. Compared
with the existing interpolation method such as bilinear interpolation and TPS, it can get images with more
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Figure 6: One clinical case to show that the proposed pipeline is robust in related artifacts in three planes
images of patient’s coronary .

accurate CT value and lower MSE. For the further works, we would focus on improving the network capacity
that allows a full field of view image as input and realize self-attention to the regions of coronary or anywhere
artifacts appear. The second improvement would take place to extend this method into a 3D network to achieve
direct 3D coronary volume correction.
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