Open Access
10 February 2021 Characterizing reduced scattering coefficient of normal human skin across different anatomic locations and Fitzpatrick skin types using spatial frequency domain imaging
Thinh Phan, Rebecca Rowland, Adrien Ponticorvo, Binh C. Le, Robert H. Wilson, Seyed A. Sharif, Gordon T. Kennedy, Nicole P. Bernal, Anthony J. Durkin
Author Affiliations +
Abstract

Significance: Spatial frequency domain imaging (SFDI), a noncontact wide-field imaging technique using patterned illumination with multiple wavelengths, has been used to quantitatively measure structural and functional parameters of in vivo tissue. Using SFDI in a porcine model, we previously found that scattering changes in skin could potentially be used to noninvasively assess burn severity and monitor wound healing. Translating these findings to human subjects necessitates a better understanding of the variation in “baseline” human skin scattering properties across skin types and anatomical locations.

Aim: Using SFDI, we aim to characterize the variation in the reduced scattering coefficient (μs) for skin across a range of pigmentation and anatomic sites (including common burn locations) for normal human subjects. These measurements are expected to characterize baseline human skin properties to inform our use of SFDI for clinical burn severity and wound healing assessments.

Approach: SFDI was used to measure μs in the visible- and near-infrared regime (471 to 851 nm) in 15 subjects at 10 anatomical locations. Subjects varied in age, gender, and Fitzpatrick skin type.

Results: For all anatomical locations, the coefficient of variation in measured μs decreased with increasing wavelength. High intersubject variation in μs at visible wavelengths coincided with large values of the melanin extinction coefficient at those wavelengths. At 851 nm, where intersubject variation in μs was smallest for all anatomical locations and absorption from melanin is minimal, significant intrasubject differences in μs were observed at the different anatomical locations.

Conclusions: Our study is the first report of wide-field mapping of human skin scattering properties across multiple skin types and anatomical locations using SFDI. Measured μs values varied notably between skin types at wavelengths where absorption from melanin was prominent. Additionally, μs varied considerably across different anatomical locations at 851 nm, where the confounding effects from melanin absorption are minimized.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Thinh Phan, Rebecca Rowland, Adrien Ponticorvo, Binh C. Le, Robert H. Wilson, Seyed A. Sharif, Gordon T. Kennedy, Nicole P. Bernal, and Anthony J. Durkin "Characterizing reduced scattering coefficient of normal human skin across different anatomic locations and Fitzpatrick skin types using spatial frequency domain imaging," Journal of Biomedical Optics 26(2), 026001 (10 February 2021). https://doi.org/10.1117/1.JBO.26.2.026001
Received: 2 September 2020; Accepted: 23 December 2020; Published: 10 February 2021
Lens.org Logo
CITATIONS
Cited by 19 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Skin

Scattering

Absorption

Optical properties

In vivo imaging

Tissue optics

Wound healing

Back to Top