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Abstract. Ultrashort pulse (USP) laser machining is characterized both by high spatial preci-
sions as well as rapid changes during the processing. Laser pulses with durations of only a few
hundred femtoseconds are deflected over the workpiece surfaces at speeds of up to 10 m/s. Due
to the tradeoff between the precision and the productivity, USP laser machining processes can
last up to multiple days. Online defect detection and their elimination is therefore essential in
order to increase the stability of the established processing as well as accelerate the process
development. However, monitoring of USP laser micromachining represents a great challenge
because of both the high requirements for the spatial accuracy and the cost-intensive sensor
integration. In the scope of this work, this challenge is tackled by laterally collecting the optical
process emissions with photodiodes for different wavelength ranges. The monitoring system,
which had previously been developed and had undergone initial testing, is further evaluated
in this work. These most recent analyses aim to investigate the detection of the surface roughness
prior to as well as its evolution during the USP laser machining. In addition, successful
localization of defects induced on the workpiece surface by the USP processing is shown.
Furthermore, the possibility of online process control was demonstrated by transferring the
analysis algorithms to a field programmable gate array (FPGA) and implementing a real-time
defect detection and feedback to the user. A decision for each data point is generated within the
10-μs cycle of the data acquisition. Furthermore, the system can be programmed flexibly and
thus expanded to include real-time data analyses for further applications as well as process con-
trol. In conclusion, the analyses of laterally recorded secondary emissions have shown great
potential for differentiating between surface roughness above 1 μm as well as tracking changes
for every pass over the surface and localizing defects during the USP-laser machining. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution
or reproduction of this work in whole or in part requires full attribution of the original publication, includ-
ing its DOI. [DOI: 10.1117/1.OE.61.9.094101]
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1 Introduction

By means of the ultrashort pulse (USP) laser processing, surfaces of a wide variety of materials
can be manipulated with micrometer precision and a negligible thermal load. Metals can there-
fore be structured almost melt-free, allowing USP laser processing to address numerous appli-
cations in many industrial sectors. The diversity of applications as well as processable materials
and alloys continuously require new process development. However, this development is highly
time-consuming due to the complexity of the USP laser processing itself. In addition, even the
industrial grade machining often takes a long time. A prominent example is the several of days
lasting manufacturing of steel tools for car dashboard molding. The resulting need for detection
and elimination of any instabilities as early as possible increases the importance of monitoring of
surface properties in parallel to the machining. However, the constant requirement for more
efficiency leads to a further acceleration of the processing. This in turn complicates the online
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monitoring as it requires an increase in sampling rates with simultaneously maintaining a high
spatial resolution.

Nevertheless, different systems for online quality monitoring of laser-based processing have
been under development for many decades. For traditional laser applications, various approaches
have already been presented in scientific publications. Some of them have even been imple-
mented in the industrial environment.1–3 Among the different features and phenomena, the sec-
ondary process emissions—acoustic, infrared (IR), and visible (VIS) emissions—as well as the
back reflection of the processing laser have all been investigated.4 However, the potential of
process monitoring in laser welding are far from exhausted. The newest publications describe
advanced sensor technologies and innovative data analysis concepts. An example of the former is
the detection of airborne and structure-borne sound at up to 1 MHz.5 Newest analysis concepts
are predominantly characterized by the usage of machine learning algorithms, e.g., on camera
images.6 Beside welding, there are plenty of publications in the fields of monitoring the laser
beam cutting,7,8 as well as additive manufacturing.9–11

Compared with the conventional laser-based processes, the literature on process monitoring
of USP laser micromachining is still scarce. When available, it describes highly restricted cases.
An obvious example is the detection of the breakthrough moment during drilling. For this pur-
pose, both coaxial and lateral detection of different optical emissions with different drilling tech-
niques have proven to be suitable. 12,13 Further approaches describe a direct online depth
measurement, e.g., interferometry,14 shock wave detection via piezoelectric detectors,15 and
investigation of plasma generated by the process.16 Multisensor approaches have been reported
as well, such as the simultaneous monitoring of acoustic and optical emissions.17

In comparison to laser drilling, online quality monitoring of USP laser structuring represents
a greater challenge since the aspect ratios are much lower and no breakthrough occurs.
Nevertheless, descriptions of different concepts for online monitoring of the USP surface struc-
turing are present in the scientific literature as well.

For example, a simple approach for collecting acoustic emissions has been reported to suc-
cessfully detect changes in the focus position and laser power. This was achieved by analyzing
the amplitude of the acoustic signal at the laser pulse repetition rate.18 Furthermore, similar
analyses of acoustic process emissions had already been carried out near the end of the last
century for theoretical studies of USP laser ablation19,20 and evaluated for determining the abla-
tion rate.21 However, the repetition rates used in this work were two to three orders of magnitude
lower than those commonly used today.

To similarly monitor processes with higher repetition rates, microphones with frequency ranges
of up to at least several hundred kilohertz are necessary, e.g., the optical microphones: they have
indeed already been employed to study USP laser ablation.22,23 However, collecting high-frequency
acoustic emissions in air has a major disadvantage: the signal amplitude is strongly attenuated with
the increasing frequency. Accordingly, it is necessary to mount the detector at only a few milli-
meters distance from the processing zone, in order to record the high-frequency components of the
acoustic signal. This makes a production-oriented machine integration impossible.

There is also a possibility of recording the high-frequency acoustic signals directly on the
workpiece surface.24 Though this method poses a great challenge for the data analysis, the authors
report a successful detection of the focus position by employing pattern recognition algorithms.
However, an unsolvable problem here is the required mounting of the detector directly on the
workpiece, making this approach unsuitable for the production environment as well.

In comparison to the acoustic emissions, the optical secondary emissions can be recorded
much more easily. With a photodiode integrated with the beam path, e.g., parameters such as the
focus position, the laser power, and the amount of ablated volume can be detected. Even a pos-
sibility to detect the resulting surface roughness has been suggested.25 However, an automatic
quality monitoring based on these results has not been implemented yet. Moreover, this work
focuses on producing only simple wells on the workpiece surface and has not been applied to the
more complex 2D structures.

Another use for a VIS-emissions-based detection is the tracking of the line width during the
machining.26 However, the results of this investigation were limited to the detection of simple
features in simple geometries and their sole dependence on laser power.
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For the special case of multimaterial ablation, different approaches to detect the transition
to the next material have been presented. One example is camera-based and employs neural
networks for the data analysis.27 The goal of this investigation was to detect the given shape
during the removal of the top material through a stencil. For a more general case, the transition
to the next material is detectable using the laser-induced plasma spectroscopy.28,29 This
method is however too slow to achieve a sufficient special resolution if paired with scanner
coordinates.

A further example of the AI- and camera-based quality control in laser ablation aimed to
create a database of parameters and corresponding quality results for an automated support sys-
tem for process developers.30 The monitoring system was used as a reference to accelerate the
investigation of the resulting quality. Due to the choice of the detector, the spatial resolution is
highly limited.

Finally, there are various approaches that use the direct distance measurement to measure the
quality characteristics of surfaces during the machining. One example of a measurement system
integrated into the beam path is based on the ultra-high-resolution spectral domain optical coher-
ence tomography (UHR–SD–OCT).31 This system enables the measurement of topographies of
small surface areas (up to 300 × 300 μm2) with an axial resolution of almost 120 nm and a lateral
resolution of <2.5 μm. However, the system is unsuitable for the real-time roughness detection
because its maximum measurement frequency reaches only 1.4 kHz.

Another principle based on distance measurement for the analysis of laser structured surfaces
uses the frequency domain optical coherence tomography (FD–OCT) and has an axial accuracy
below one micrometer at a measurement frequency of 2 kHz.32 Therefore, the lateral resolution
of an online measurement is too low when machining is performed at typical scanning speeds.
This method is however suitable for two special cases: an offline roughness measurement either
before or after structuring and an online depth measurement of structures with a sufficiently large
flat surface, e.g., cavities.33

Further successful applications of a coaxially integrated OCT system include the online dis-
tance control, ensuring the constant focus position.34

Although various approaches for process monitoring in USP laser micromachining have been
investigated, none of them have been able to reliably and without limitations detect or predict
the quality of the resulting structure yet. A tradeoff is present between the direct 3D topography
measurement with low sampling rates and the faster detection of phenomena from the machining
zone, requiring a more complex data analysis.

In this paper, a previously developed concept35 for process monitoring of USP laser micro-
structuring is further evaluated. The monitoring is based on a lateral acquisition of optical
process emissions in three wavelength ranges. The innovations described in this work include
finding characteristics of these sensor data that indicate the surface condition as well as
detecting the emergence of defects during the processing. The performed analyses are divided
into three objectives. The first one, measuring the initial condition of the workpiece surface, is
presented in Sec. 3.2. In Sec. 3.3, potentials for monitoring changes in the surface condition
during machining are described, and the online detection and localization of defects are given
in Sec. 4.

2 Description of the Monitoring System

2.1 Process Monitoring Hardware

For each of the three types of optical signals, a photodiode for the corresponding wavelength
range is employed. A Si pin photodiode from Hamamatsu (S1223 01) with a sensitivity
range between 350 and 1100 nm is used to detect optical emissions in the visible wavelength
range. It is protected from the laser radiation by a short pass filter with a cut-off wavelength of
750 nm. Two photodiodes of the same type, G12181 010K from Hamamatsu, with a spectral
sensitivity range between 950 and 1850 nm are used for detecting both the laser reflection
and the infrared emission. The employed protective filters are a 1064-nm bandpass and a long
pass filter with a cut-off wavelength of 1100 nm, for the laser reflection and the IR emission,
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respectively. Additional lenses with focal lengths of 30 mm direct the light toward the corre-
sponding detectors.

The electronic preamplification of the photodiode signals is performed with a logarithmic
amplifier. The integration of the sensor system was carried out on a LASER P 1000 U machine
from AgieCharmilles. The machine features a femtosecond laser from Edgewave (FX200 1 GF)
with a pulse duration of 800 fs and a maximum average power of 75 W. An f-Theta lens is used
as the focusing optic. The lens has a focal length of 125 mm, which leads to a spot size of 29 μm.
For the beam deflection, a Scanlab galvanometer scanner intelliSCAN III 14 is used. The sensors
are integrated around the f-Theta lens, as shown in Fig. 1.

To ensure repeatability of the monitoring, a holder for the sensors was designed to be
mounted on the fixed housing of the optic. Therefore, the detectors are always at an exact same
height above the surface of the workpiece and aligned with the center of the workpiece.
Moreover, special attention was paid to the reproducibility of the position of the sensors during
assembly and disassembly. The sensors are each mounted in an extended cylindrical enclosure
with four screws each. Therefore, the inclination around their longitudinal axis is suppressed so
that the same angle relative to the surface is always maintained, ensuring the alignment with the
center of the processing field even after the sensor system had been dismantled.

2.2 Signal Acquisition Hardware

The signal acquisition and analysis are based on the UltraZed SOM board from Avnet. This is a
hybrid system that consists of two subsystems: a field programmable gate array (FPGA) and a
soft processor, combining advantages from both worlds in one chip. Among other things, the
deterministic real-time capability of the FPGA is essential for this work and the processor ena-
bles a flexible implementation of the network communication, e.g., to a personal computer. The
FPGA is sufficiently large to implement the needed data acquisition as well as many additional
real-time analyses. The UltraZed SOM board also includes memory devices and interfaces nec-
essary for the data acquisition and forwarding to a personal computer or a database. The 2 GB
large main memory allows buffering of the sensor data for nearly 10 min. The UltraZed card is
extended by a custom-made carrier board to implement the hardware connectors for commu-
nication with the laser source, scanner, machine control, and sensors.

For the analog to digital (A/D) conversion, boards based on an LTC2351 14 chip that can
sample 12 analog channels at up to 250 kHz simultaneously with a resolution of 14 bits are used.
To minimize the noise immunity, all digital signals are transmitted differentially between the
carrier card and the A/D converter board. The information about the processing position is read
directly at the communication line between the scanner and its controller at the sampling rate of
100 kHz.

Fig. 1 Schematic representation of the detectors mounted around the focusing optic.
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3 Sensor Data Analysis

3.1 Data Pool Creation – Machining Trials

The purpose of the conducted experiment was to enable a comprehensive search for correlations
between the recorded secondary optical emissions and the properties of the workpiece surface.
This is a general investigation of the possibilities of the monitoring system, with the aim to show
that the information about the surface state is contained in the collected data. In consequence,
the defect-localization method developed and described in Sec. 4 is then applicable to any use
case solely by tuning the analysis parameters.

Unfortunately, the intensities of the optical emissions are not decoupled from the changes in
processing parameters. Furthermore, just like the processing result, the collected optical emis-
sions are influenced by fluctuations of the laser characteristics. However, more detailed analyses
of these dependencies will not be performed within the scope of this investigation since they had
already been carried out and thoroughly described previously.35 During both the experiment
design and the data analysis, it is, therefore, essential to differentiate between the changes in
the recorded signals caused by the processing parameters from the ones that originate from the
surface. An analysis of an ill-designed data set potentially leads to a false conclusion, e.g., a
detection of changing surface roughness induced solely by increasing the laser power. The rise
in laser power would lead to an increase in the secondary emissions intensity. However, this does
not mean that they result from the higher surface roughness, although the correlation would be
present in many cases.

For this reason, during the machining trials described in this work, both the starting con-
ditions and the processing parameters were varied. Overall, 99 different parameter combinations
were used yielding areas with many different surface roughness on tool steel surfaces. The same
experiment was repeated on a total of 28 specimens. They were obtained pretreated in 14 var-
iations of machining processes, all of them being repeated twice in the sample set. The pretreat-
ment processes include milling (23, 18, and 12 μm), polishing (0.2, 0.1, 0.05, and 0.025 μm),
electrical discharge machining (6.3, 3.2, 1.6, 1.0, 0.8, and 0.4 μm), and grinding (0.6 μm). The
USP-laser machining took place at constant feed rate of 3.5 m/s and constant pulse overlap of
76%. The number of pulses per burst (PPB) was varied between 1 and 10 and the single pulse
peak fluence between 0.25 and 4 J∕cm2. The repetition frequency was kept constant at 500 kHz.
The number of structured layers was set for each structured area individually, in order to reach
the same depth for every structure.

The data acquired during these trials was used to fulfill two of the objectives defined in the
previous section. Every of the 99 first layers over each of the differently pretreated samples was
analyzed in order to investigate the potential of measuring the initial surface condition. The much
larger spectrum of the resulting surface roughness, due to combining the parameter and initial
surface variations, was used to investigate the detection of changes during the machining.

3.2 Detection of the Initial Surface Roughness

To directly compare the data of the detected optical emissions with the roughness values, differ-
ent characteristics were extracted from each of the time series acquired during the machining of
every first structured layer. They were calculated for each sensor individually from the recorded
emission intensities during the processing of the entire layer and only within the laser-on-times.
To compensate for the logarithmic amplifier, prior to computing the characteristics, the raw data
was linearized using exponential functions with experimentally determined factors. Therefore,
the parts of the time series collected during the jumps as well as the acceleration and deceleration
phases of the scanner were not taken into account.

The following approach is motivated by the assumption that the intensity of the emissions
recorded by detectors at a fixed position is directly influenced by the fact that the light
scatters more diffusely from rougher surfaces. For this reason, the variation of the raw data
within the whole first textured layer was closely examined. To additionally achieve the inde-
pendence from the processing parameters, the relative standard deviation was calculated using
the equation
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where N is the number of datapoints in the time series and I the unprocessed signal intensity
coming from the 14-bit A/D converters. I is, therefore, a unitless number between 0 and 2.14

Figure 2 shows the in this way extracted relative standard deviation of the secondary process
emissions over the initial surface roughness for all the specimens. In all four graphs, the multi-
plication of previously individually calculated characteristics of all three sensors for PPB = 1 and
PPB = 10 is shown.

As expected, the relative standard deviation is dependent on the surface condition. Despite its
clearly visible correlation with the initial surface roughness, this feature also apparently depends
on both varied processing parameters. Furthermore, even with parameters known in advance, the
roughness is not clearly identifiable. While the surfaces can be differentiated from each other at a
constant one pulse per burst with a known single pulse peak fluence below F0 ¼ 1 J∕cm2, this is
no longer the case at 10 pulses per burst, especially at higher fluences.

In contrast to the relative, the absolute standard deviation of the back reflection, shown on the
right-hand side of Fig. 2, makes the original state detection possible for all but the three roughest
surfaces preprocessed by milling. Nevertheless, the relative standard deviation is still more rel-
evant for differentiating among the three milled surfaces. However, especially for PPB = 10, none
of the features enable the distinguishing of the milled surfaces from the rest. In addition, regard-
less of the parameters, it is also impossible to detect the subtle differences, especially at higher
laser powers. An example of this is well presented by the data of PPB = 1 and F0 ¼ 4 J∕cm2

shown in blue.
In conclusion, considering the relative standard deviation alone is insufficient for a param-

eter-independent detection of the surface condition. However, a differentiation between largely
different roughness regions is in most cases possible when the processing parameters are known
in advance.

Due to the less promising results, the other extracted features will not be discussed separately.
It is nevertheless worth mentioning that the maxima of all-optical emissions also showed a

Fig. 2 (a) Relative and (b) absolute standard deviations of the sensor data during the machining
of the first layers over surfaces with varying initial roughness and for changing fluences and for
PPB = 1 (top graphs) and PPB = 10 (bottom graphs).
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dependence on the initial surface roughness, which would be efficient to implement in an online
analysis. In contrast, and as expected, the mean intensities for all three sensors were strongly
dependent on the laser fluence only. Furthermore, none of the other characteristics of the indi-
vidual emissions has shown such a pronounced correlation with the surface roughness as the
standard deviation of the back reflection.

3.3 Monitoring of Changes during the Machining

The goal of this investigation was to examine how effectively the surface roughness that results
from the USP processing can be detected from the secondary emissions. Therefore, analogously
to the previous section, various characteristics of the detected secondary emissions were calcu-
lated from the same machining trials and compared with the surface roughness. This time, how-
ever, the data from the last machining layer and the roughness measured after the completed
machining were used.

In contrast to the measurement investigated in Sec. 3.2, the surface roughness now depends
on both the initial surface condition and the machining parameters. Thorough inspections of the
resulting surface roughness as a function of the initial condition and the processing parameters
have shown that the original condition in fact represents the main influence. Following the analy-
sis results described in the previous section, it is to be expected that the differentiation between
the markedly rough and smooth resulting surfaces based on the data of the last machining layer is
possible. This expectation was indeed confirmed by the analogous analyses of the last machining
layers.

The next step was the investigation of the possibility to detect changes in the roughness
induced by the USP processing. For this, only the surfaces with the same initial state were com-
pared among each other. In Fig. 3, an example of the direct comparison of data collected during
the first and the last layer on two specimens polished with Sa ¼ 0.025 μm over the resulting
roughness is given.

Here, each of the 99 processing parameters is represented by the total fluence, which con-
siders the pulse overlap of two consecutive bursts assuming a pulse overlap of 1 within a burst:36

EQ-TARGET;temp:intralink-;e002;116;387Ftot ¼
PPB · F0fREP · w0

vscan
; (2)

where fREP is the repetition frequency,w0 is the laser spot radius, and vscan is the scan speed. This
procedure was repeated on different specimen pairs, with the same result: All the analyzed char-
acteristics of the secondary emissions are more dependent on the machining parameters than on
the condition of the surface. It can therefore be concluded that it is not possible to investigate the

Fig. 3 Multiplied relative standard deviations of all signals within (a) the first and (b) last layer
in dependence of the resulting roughness for two specimens with initial surface roughness
Sa ¼ 0.025 μm and total fluences [J∕cm2].
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resulting roughness based solely on the relative standard deviations of signals acquired while
processing the last layer.

In the final step, the same characteristic was determined for each layer individually. The goal
of this analysis is to explore the possibilities for monitoring relative changes during the machin-
ing. Examples of two groups of initial surfaces treated with PPB = 1 and F0 ¼ 4.14 J∕cm2 are
shown in Fig. 4. To eliminate the dependency on the scan direction, this illustration only con-
siders every other machining layer. Both the increase in surface roughness for the polished
surfaces and its decrease for the milled ones are reflected in the relative standard deviation
of the optical emissions.

Table 1 gives an overview of the surface roughness before and after machining for the four
specimens from Fig. 4.

Generally, it can be concluded that the method described here is not sufficient for the detec-
tion of the subtle differences between the absolute values of the surface roughness. However, the
change in surface condition during machining can be tracked through the changes in relative
standard deviation. This result is used as a basis for implementing the analysis for the defect
detection and localization.

4 Localization of Defects

4.1 Experiment Design for Online Defect Detection

To accelerate the initial development of an automatic defect detection, a demonstrative parameter
set was chosen that provokes holes on a workpiece surface after only a few machined layers.
Therefore, the sample structure from Fig. 5 was processed with pulse overlap of 96%, feed rate
of 0.5 m/s, PPB = 1 and a fluence of 2.5 J∕cm2.

Figure 6 shows 2D false-color representations of the intensities of all optical emissions
acquired during the machining of both 5th and 15th layer. A qualitative comparison with the
microscopic images from Fig. 5 already confirms the plausibility of the defect detection from the
recorded emissions.

Moreover, the data depicted in Fig. 6 reveal how each recorded wavelength range adds an
additional aspect to the knowledge about the surface state. While the point-shaped defects are
most clearly distinguishable from their surroundings in the raw data of the recorded laser reflec-
tion, the line-shaped anomalies are more vividly visible in the images of both IR- and VIS-

Fig. 4 Relative standard deviation of optical emissions within each layer over the number of layers
for two sets of initial surfaces: (a) a polished surface and (b) a milled surface.

Table 1 Surface roughness of specimens from Fig. 4.

Specimen label 1 (μm) 2 (μm) 3 (μm) 4 (μm)

Initial Sa 0.025 0.025 12 12

Resulting Sa 1.00 1.06 6.25 6.72
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emissions. These horizontal lines originate from the surface topography prior to laser structuring,
which can be seen around the sample structures in Fig. 5. Therefore, other than the point-like
defects, they are already visible in the emission data of the first few layers, as shown in Fig. 6 and
are highly dependent on the choice of the scan direction.

4.2 Data Analysis for Offline Defect Detection

From the beginning of this analysis, the future objective of implementing an online detection and
feedback was considered. One of the main requirements for this is the sequential analysis able to
run in parallel with the data acquisition. Furthermore, due to the limited memory capacity of the
FPGA board, only as short as possible time series should be processed at any given moment.
Another important goal was the development of a universal error detection, which can be trans-
ferred to machining with other processing parameters and different machines. The evident error
detection based solely on emission intensities that follows from Fig. 6 is insufficient, because
it is dependent on the absolute values of the process emissions and thus is not generally
applicable.

In the first step, the defect detection was analyzed using the complete time series data of one
processing layer. All analyses were performed on the one-dimensional data of each emission
type and the results were subsequently mapped to a 2D plane for verification. Figure 7 shows

Fig. 6 2D representation of the raw data during the machining of the structure from Fig. 5.
(a) During the fifth layer and (b) during the 15th layer for each of the three sensors indicated
by the column name.

Fig. 5 Microscopic images of the sample structure (a) defect-free, after five layers; and (b) defect-
containing, after 15 layers.
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the analysis procedure on an example of VIS emissions for a defect-free and a defect-
containing layer.

For each pair of coordinates, an individual calculation was performed to determine whether
the corresponding optical emissions indicate a surface defect. To achieve this, the deviation of
every data point from the signal’s mean value was observed. The mean was calculated from the
entire layer, but the laser-off areas as well as 80 data points after the rising and before the falling
edge of the laser modulation signal were omitted. To differentiate between the deviations that
indicate a defect and the ones originating from the noise, a tolerance band was defined, within
which no decision can be made. The limits of this tolerance band are calculated for each layer
separately. For its determination, the standard deviation of the emission intensities within that
layer was taken into account. Moreover, the VIS emissions were low-pass prefiltered by forming
a moving average with five datapoints since they contain high-frequency disturbances that do not
originate from the machining.

In contrast to a detection based on absolute values that follow from Fig. 6, this method is
transferrable to a broader range of use cases. The comparison with the mean value contributes
to the independence of the processing parameters. The tolerance band limits that depend on the
standard deviation within one layer, enable the detection of defects regardless of how pro-
nounced they are.

The results of this analysis are presented in Fig. 8. For all three emission signals, the defects
are manifested by a decrease in signal levels and are highlighted in red. This behavior can be
explained by a local rise of the surface roughness. In these areas, the diffuse reflection increases,
whereas the directional reflection decreases. This can lead to less light deflection toward the
detectors, resulting in negative deviations from the mean value of the optical process emissions.

In the next step, the analysis was further improved to achieve a data reduction as well as rapid
response times during the future closed loop control. Instead of the data of one entire layer,
it now executes on time series collected within a 1-ms long rolling window. At the constant
sampling rate of 100 kHz used in this case, this window length corresponds to a set of 100
data points. The results of the analysis performed on the time series before being mapped
on a 2D plane are depicted in Fig. 9.

To achieve these results, two further adjustments had to be made compared to the analysis
within the whole layer. First, the areas close to the laser modulation signal edges are not omitted.
This is not required anymore, because the local calculation of the tolerance limits insures more
stringent criteria for the differentiation between defects and noise that originates from the signal
edges. In addition, the factors for calculating the tolerance limits had to be correspondingly
adjusted.

Although the results from Fig. 9 show successful detection of most defects, this approach is
not free from disadvantages. For example, the line-shaped defects that spread parallelly to the
scan direction are not visible if their size exceeds the window length. Moreover, even the point-
shaped defects are detectable up to a maximum size, which is also determined by the window

Fig. 7 Demonstration of the analysis procedure on an example of VIS-emission raw data during a
single scan line for (a) one defect-free and (b) one defect-containing layer; here, the thresholds are
symmetrically calculated by computing I filtered � 0.025 · meanðI filteredÞ · stdðI filteredÞwithin one layer.
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length. Beside the size of the defects, the scanning speed imposes another limitation to the detec-
tion for further applications. This is because the spatial resolution is directly dependent on the
scanning speed due to the constant data acquisition rate.

4.3 Automation of the Defect Detection

The aim of this analysis step was to define a factor that describes the extent of defects and can
be used as a criterion for terminating the machining. Similar to the previous section, a sequential
analysis on a small sample plays an essential role here as well. This is because the processing
is to be interrupted as quickly as possible after the extent of errors has exceeded a prede-
fined limit.

As the starting point, the results of the analysis within a rolling window were used. In this
case, simply counting the negative outliers would be insufficient since they are present even in
the data that correspond to the defect-free surfaces. However, it is evident that they become
increasingly organized into larger clusters as actual defects appear on the workpiece surface.
From this observation, a factor was derived that is proportional to both the number and the area
of the red regions from Fig. 9.

In order to calculate this measure of defects directly from the one-dimensional data, the num-
ber of negative outliers within a 10-datapoint long rolling window is sought. The derived mea-
sure corresponds to the total number of such windows that contain at least nine negative outliers.
This factor was calculated for each of the 15 layers during the structuring of the geometries from
Fig. 5. In Fig. 10, it is plotted over the layer’s number. The figure depicts both the factors deter-
mined from the individual sensor signals as well as the overall measure derived from their
multiplication.

Fig. 9 Analyzed data of the defect-containing layer for each of the detectors [(a)–(c) IR-emission,
laser reflection, and VIS-emission]. The outliers are classified by checking whether the filtered
data cross the thresholds determined according to Fig. 7; instead of computing the thresholds
within a whole layer, here, they are calculated in a 1-ms-long rolling window.

Fig. 8 2D representation of the analyzed raw data of the defect-containing layer for each of the
detectors: [(a)–(c) IR-emission, laser reflection, and VIS-emission]. The outliers are classified by
checking whether the filtered data cross the upper and lower thresholds from Fig. 7.
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The multiplied error measures from Fig. 10 right is a unitless quantity. To improve the clarity
of the representation, its y-axis is divided by a constant factor. It increases with the increasing
number of layers, which stands in agreement with the microscope images. On the other hand, the
factor derived from the VIS emissions shows a decrease between the layers 5 and 10. Therefore,
omitting the VIS emissions would in this case improve the accuracy of the detection. However,
this would actually impair the accuracy for the last four layers of the same structure. There, the
differentiation based on the analysis results of VIS emissions is even finer than based on both
other emissions.

The error measure is proportional to the number and the area of the red areas from Fig. 9.
From both Figs. 9 and 10, it follows that the VIS-photodiode is most sensitive to this kind of
disturbances. However, due to calculating the overall error measure as a multiplication of all, the
absolute value of each of them does not play a role.

A possible improvement of the algorithm that follows this would be to introduce weighting
factors for the individual sensors. They must be previously determined depending on the sig-
nificance of the corresponding data and the superimposed noise. Furthermore, an additional
analysis perpendicular to the scan direction would allow the detection of defects that spread
along the second axis.

4.4 Implementation of the Online Analysis

Using the results of the offline analyses, the FPGA-based data acquisition system, described in
Sec. 2.2, was extended to detect the defects in parallel to the machining process. The analysis
algorithm had to be adjusted to better fit the online analysis requirements. For example, instead
of a rolling window for the calculation of the mean value and the extraction of deviations, a
sliding 1-ms long window was used. In contrast to the case of offline analysis, this has no neg-
ative effect on the speed of the online evaluation. The sliding window analysis even has an
important advantage. For each data point, the change in emission intensities at the rising edge
of the laser modulation is automatically considered separately and is therefore more accurate.
Moreover, to omit the areas where the laser was idle, its modulation signals are monitored con-
tinuously and processed by the same controller.

Another adjustment in comparison to the analysis from Sec. 4.2 is the linearization of the raw
data, which was excluded in this implementation. To compensate for the altered conditions, the
threshold values for the outlier detection were redetermined. Nevertheless, they are still calcu-
lated relative to the mean value and as a function of the standard deviation within 1 ms.

To implement the feedback directed to the user, a threshold was introduced, above which the
determined number of defects is considered unacceptable. The calculation of this threshold
occurs automatically and is based on the number of defects extracted during the processing
of the first layer. It is therefore reset at the beginning of the machining of a new structure.

Fig. 10 Automatically determined error measures over the ordinal number of the structured layer.
They represent the number of adjacent negative outliers from Fig. 9 inside a 10-datapoint rolling
window along the scan direction. (a) For each individual sensor and (b) multiplied and normalized
error measures from the left graph.
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Once the threshold is reached during the processing, a message is forwarded to the PC. In the
case of processing with an unchanged parameter set, this is assumed to be an irreversible state.
Therefore, this message is only reset at the beginning of the processing of a new structure or
when a parameter change is made.

Following its implementation in the FPGA, the error detection and feedback were validated
using the set of parameters from Sec. 4.1 and both the sample structure from Fig. 5 as well as a
rectangular area. The processing was performed on a polished surface with two different ori-
entations of the scan direction relative to the surface texture induced by the preprocessing. As a
result, the error message was generated without an exception. However, the moment of its gen-
eration was dependent on both the structured geometry and its orientation relative to the initial
state of the surface.

To investigate the intermediate results more closely, the FPGA design was temporarily modi-
fied so that it forwards the internally determined factors to the PC. An example of the error
measures extracted parallelly to the processing are given in Fig. 11. The horizontal line denotes
the automatic ally determined termination criterion, i.e., the moment at which the error message
was generated. In contrast to the offline analysis, the characteristic of the general error measure is
linear due to its calculation by adding instead of multiplying the individual factors.

Based on these results, the extension of the monitoring system to terminate the machining
immediately after the defect detection is realizable by modulating one of its digital outputs.
Long-term developments include an automatic triggering of one or more additional intermediate
processing steps in order to flatten the defects, e.g., by means of the already investigated USP-
laser polishing.37 Further specific strategies to automatically control the processing parameters in
order to remove or prevent the defect emergence are equally possible.

5 Conclusion and Outlook

The aim of the present work was the data analysis and algorithm development for the extension
of a system for monitoring of surface properties during the USP laser structuring. Long-term
objectives of this development include enabling an automated parameter adjustment in response
to the surface roughness measured during the processing. This would significantly accelerate the
parameters studies, thereby decreasing the duration of the time-consuming process development
immensely. Moreover, the detection of the emerging defects in parallel to the machining is an
essential step for achieving the first-time-right manufacturing. Both objectives are realizable only
with a highly reliable monitoring system, able to analyze the surface condition in real time.
Additionally, the monitoring system should not interfere with the machining.

In the scope of this work, a monitoring system that satisfies the conditions was thoroughly
inspected. It is based on a simultaneous collection of various secondary process emissions and
the scanner position, enabling both a high temporal and spatial resolution. It was evaluated for

Fig. 11 Automatically determined error measures over the ordinal number of the structured layer,
(a) for each individual detector and (b) addition of the error measures from the left graph. Here, the
termination threshold is the first value that exceeds the five times error measure computed from
the data collected during the first layer.
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three different application areas: detection of the initial surface state, monitoring of the changes
during the processing, and online defect detection. Successful results were achieved for the dif-
ferentiation of pronouncedly rough and smooth surfaces during the machining with in advance
known parameters. This is possible through comparatively simple data analysis such as the
calculation of the relative standard deviation of optical emissions within one processing layer.
The method furthermore proved suitable for the tracking of changes in surface condition during
the machining. In addition, following the initial offline evaluation of optical emission data, the
defect localization was implemented as a real-time analysis executed in the FPGA used for the
data acquisition. By forwarding the analysis result to the user interface, the system is able to
successfully inform the user about the defect formation in parallel to the processing.

In contrast to the previous investigations that describe the detection of fluctuations caused by
the processing (e.g., parameter changes), the innovations presented in this work lie in the analy-
sis of correlations between the process emissions and the state of the surface. Furthermore, a data
analysis parallel to the processing was demonstrated, which generates a decision for each data
point at a rate of 100 kHz. The system can be programmed flexibly and thus expanded to include
real-time data analyses for further applications as well as for process control.

However, there is still room for improvements. For example, the system can be extended to
record additional information as well as execute more advanced analyses, e.g., the data-based
approaches. Nevertheless, the results described in this work show a great potential for both reli-
able defect detection and surface roughness monitoring in parallel to the machining as well as the
closed-loop control.

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under Grant Agreement No. 825201. It is based on a publication in a SPIE
proceedings, Paper No. 11989-36. The authors declare that there is no conflict of interest.

References

1. T. Nicolay and V. Bayer, “Den Schweißpunkt immer im Fokus,” Laser Technik J. 6 33–35
(2009).

2. T. Bautze and A. Zösch, “Laserschweißen mit höchster Qualität bei reduzierter Leistung,”
Laser Technik J. 8(6), 29–33 (2011).

3. I. Smurov, “Pyrometry applications in laser machining,” Proc. SPIE 4157, 55–66 (2001).
4. M. Müller, Prozessüberwachung beim Laserstrahlschweißen durch Auswertung der reflek-

tierten Leistung, Herbert Utz Verlag, München (2002).
5. M. Bastuck et al., “AkuProLas: acoustic inline process monitoring for laser welding appli-

cations,” in 19th World Conf. Non-Destructive Testing (2016).
6. C. Knaak et al., “Machine learning as a comparative tool to determine the relevance of signal

features in laser welling,” Proc. CIRP 74, 623–627 (2018).
7. D. Schindhelm, “In-Prozess Qualitätssicherung für das Laserstrahlschneiden von Metallen,”

Laser in der Materialbearbeitung Forschungsberichte des IFSW (2013).
8. J. de Keuster, J. R. Duflou, and J.-P. Kruth, “Monitoring of high-power CO2 laser cutting by

means of an acoustic microphone and photodiodes,” Int. J. Adv. Manuf. Technol. 35(1–2),
115–126 (2007).

9. Y.‐M. Lai and N.‐H. Cheung, “Pulsed laser‐induced damage threshold studies of thin
aluminum films on quartz: simultaneous monitoring of optical and acoustic signals,”
Rev. Sci. Instrum. 64(6), 1606–1610 (1993).

10. A. Ortiz and J. Schneiter, “Method and apparatus for optically/acoustically monitoring laser
materials processing” (1990).

11. T. Purtonen, A. Kalliosaari, and A. Salminen, “Monitoring and adaptive control of laser
processes,” Phys. Proc. 56, 1218–1231 (2014).

12. M. Honer, Prozesssicherungsmassnahmen beim Bohren metallischer Werkstoffe mittels
Laserstrahlung, Herbert Utz Verlag, München (2004).

Zuric and Brenner: Real-time defect detection through lateral monitoring of secondary process emissions. . .

Optical Engineering 094101-14 September 2022 • Vol. 61(9)

https://doi.org/10.1002/latj.200990089
https://doi.org/10.1002/latj.201190073
https://doi.org/10.1117/12.413774
https://doi.org/10.1016/j.procir.2018.08.073
https://doi.org/10.1007/s00170-006-0695-z
https://doi.org/10.1063/1.1144033
https://doi.org/10.1016/j.phpro.2014.08.038


13. D. Walter, “Online-Qualitätssicherung beim Bohren mittels ultrakurz gepulster Laser-
strahlung,” Laser in der Materialbearbeitung Forschungsberichte des IFSW (2010).

14. F. Mezzapesa et al., “High-resolution monitoring of the hole depth during ultrafast laser
ablation drilling by diode laser self-mixing interferometry,” Opt. Lett. 36(6), 822–824
(2011).

15. M. Stafe, C. Negutu, and I. M. Popescu, “Real-time determination and control of the
laser-drilled holes depth,” Shock Waves 14(1–2), 123–126 (2005).

16. J. Shin and J. Mazumder, “Plasma diagnostics using optical emission spectroscopy in laser
drilling process,” J. Laser Appl. 28(2), 22008 (2016).

17. R. Petkovšek et al., “Optodynamic monitoring of laser micro-drilling of glass by using a
laser probe,” Appl. Phys. A 93(1), 141–145 (2008).

18. P. Weber, Steigerung der Prozesswiederholbarkeit mittels Analyse akustischer Emissionen
bei der Mikrolaserablation mit UV-Pikosekundenlasern, Karlsruher Institut für Technologie
(KIT) (2014).

19. S. Conesa, S. Palanco, and J. J. Laserna, “Acoustic and optical emission during laser-
induced plasma formation,” Spectrochim. Acta B: Atomic Spectrosc. 59(9), 1395–1401
(2004).

20. H. Chae and S. Min Parka, “Microphone detection of laser ablation,” Rev. Sci. Instrum.
68(12), 4627–4628 (1997).

21. T. Efthimiopoulos et al., “Laser ablation rate of materials using the generated acoustic
waves,” J. Phys. D: Appl. Phys. 31(19), 2648–2652 (1998).

22. F. Mitsugi et al., “Observation of phenomena after pulsed laser irradiation of solid with
optical wave microphone,” Japanese J. Appl. Phys. 51(1S), 01AC10 (2012).

23. F. Mitsugi et al., “Optical wave microphone measurements of laser ablation of copper in
supercritical carbon dioxide,” Thin Solid Films 547, 81–85 (2013).

24. E. V. Bordatchev and S. K. Nikumb, “Effect of focus position on informational properties
of acoustic emission generated by laser–material interactions,” Appl. Surf. Sci. 253(3),
1122–1129 (2006).

25. C. Gehrke, Überwachung der Struktureigenschaften beim Oberflächenstrukturieren mit
ultrakurzen Laserpulsen, Herbert Utz Verlag, München (2013).

26. Y. Whan Park and S. Rhee, “Study of a line width estimation model for laser micro material
processing using a photodiode,” Opt. Laser Technol. 39(7), 1461–1471 (2007).

27. P. Strohm et al., “Controlling laser material processing with real-time algorithms on cellular
neural networks,” in SENSOR+TEST Conf. OPTO Proc. (2011).

28. R. Kunze, G. Mallmann, and R. Schmitt, “Inline plasma analysis as tool for process
monitoring in laser micro machining for multi-layer materials,” Phys. Proc. 83, 1329–1338
(2016).

29. D. Diego-Vallejo et al., “Selective ablation of Copper–Indium–Diselenide solar cells moni-
tored by laser-induced breakdown spectroscopy and classification methods,” Spectrochim.
Acta B: Atomic Spectrosc. 87, 92–99 (2013).

30. V. P. Bessmeltsev, E. D. Bulushev, and N. V. Goloshevsky, “Adaptive control system for
laser micromachining devices,” Proc. SPIE 7996, 79960C (2011).

31. M. Wiesner et al., “Optical coherence tomography for process control of laser micromachin-
ing,” Rev. Sci. Instrum. 81(3), 33705 (2010).

32. R. Schmitt and G. Mallmann, “Process monitoring in laser micro machining,” Photonik Int.
11(3), 57–59 (2013).

33. R. Schmitt et al., “Automated process initialization of laser surface structuring processes by
inline process metrology,” Phys. Proc. 41, 887–895 (2013).

34. M. Paulo Raele et al., “Focus tracking system for femtosecond laser machining using low
coherence interferometry,” Sci. Rep. 9, 4167 (2019).

35. M. Zuric, “Multi-sensor system for real-time monitoring of laser micro-structuring,”
J. Laser Micro/Nanoeng. 3(14), 245–254 (2019).

36. A. Brenner, “Sequentielle Ultrakurzpuls-Laserbearbeitung zur effizienten Oberflächen-
texturierung” (2021).

37. A. Brenner et al., “Laser polishing using ultrashort pulse laser,” Proc. SPIE 11268, 112680P
(2020).

Zuric and Brenner: Real-time defect detection through lateral monitoring of secondary process emissions. . .

Optical Engineering 094101-15 September 2022 • Vol. 61(9)

https://doi.org/10.1364/OL.36.000822
https://doi.org/10.1007/s00193-004-0240-7
https://doi.org/10.2351/1.4942631
https://doi.org/10.1007/s00339-008-4658-0
https://doi.org/10.1016/j.sab.2004.06.004
https://doi.org/10.1063/1.1148447
https://doi.org/10.1088/0022-3727/31/19/039
https://doi.org/10.7567/JJAP.51.01AC10
https://doi.org/10.1016/j.tsf.2013.04.109
https://doi.org/10.1016/j.apsusc.2006.01.047
https://doi.org/10.1016/j.optlastec.2006.09.013
https://doi.org/10.5162/opto11/o2.5
https://doi.org/10.1016/j.phpro.2016.08.140
https://doi.org/10.1016/j.sab.2013.06.012
https://doi.org/10.1016/j.sab.2013.06.012
https://doi.org/10.1117/12.887375
https://doi.org/10.1063/1.3356080
https://doi.org/10.1016/j.phpro.2013.03.163
https://doi.org/10.1038/s41598-019-40749-6
https://doi.org/10.2961/jlmn.2019.03.0008
https://doi.org/10.1117/12.2551481


Milena Zuric received her bachelor’s degree in electrical engineering from the RWTH Aachen
University in 2014 followed by a master’s degree 2 years later, specializing in the field of micro-
and nanoelectronics. During her studies and internships, she obtained practical experience in
embedded systems programming. She currently combines this knowledge with laser-based
manufacturing while working on her PhD at the Fraunhofer Institute for Laser Technology,
where she focuses on real-time monitoring and control of laser microstructuring.

Andreas Brenner is the leader of team Thin Film Surface Structuring at Fraunhofer Institute
for Laser Technology. After completing his bachelor’s studies in mechanical engineering, he
received a master’s degree from the RWTH Aachen University in 2015, followed by a PhD
in 2020. His field of research includes process development to increase the productivity of ultra-
short pulse laser structuring.

Zuric and Brenner: Real-time defect detection through lateral monitoring of secondary process emissions. . .

Optical Engineering 094101-16 September 2022 • Vol. 61(9)


