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Abstract. Until now, sea fog monitoring relied mainly on point monitoring equipment, such as
a forward scatter visibility sensor mounted on the shore or on an island, which produce non-ideal
data during a variable and unevenly distributed sea fog. In 2019, a visibility lidar instrument for
sea fog monitoring was installed in the Beilun area of the Ningbo Zhoushan Port, China. Two sea
fog events were monitored in February 2020, and the data from the lidar were compared with
those from a forward scatter visibility sensor. The results show that the visibility lidar instrument
is advantageous for sea fog monitoring, and the correlation of the lidar instrument data with the
forward scatter sensor data demonstrates the utility and potential of the lidar for sea fog detec-
tion. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.OE.60.6.064103]
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1 Introduction

Fog is characterized by the suspension of very small droplets and ice crystals of water in air that
results in a visibility of <1 km (5/8 of a statute mile).1,2 Fog and its effect on visibility (Vis) have
significant impacts on our daily lives.3 In navigation, sea fog is a disastrous weather event that
substantially affects the safety of ships. Losses related to fog and low visibility have become
comparable to those caused by other weather events, such as tornadoes or hurricanes.2 Generally,
the thickness of sea fog ranges from 200 to 400 m; however, it can sometimes be over ∼500 m.4

The various fog types include advection fog, mixed fog, radiation fog, and terrain fog. The hori-
zontal range and vertical height of the fog change widely and rapidly. Accurate forecasts could
help to mitigate the financial losses and reduce injuries caused by fog.5 However, accurate fog
forecasting/nowcasting is difficult because of the inherent difficulties in detecting fog.2 Over the
years, the meteorological service in the wharf of the Ningbo Zhoushan Port in China has
depended on a few scatter-type visibility sensors to acquire sea fog and associated data.
During a systematic sea fog occurrence (i.e., a wide range of fog within a weather system, such
as advection fog), adequately referenced monitoring data from a forward scatter visibility
sensor6,7 can represent the surrounding area. However, because of the complexity of sea channel
fog, the forward scatter sensor exhibits limitations in monitoring, making it impossible for the
sensor to provide early warning observation under highly variable sea fog conditions.
Conversely, as lidar is characterized by good monochromaticity, strong directionality, and high
coherence, it has been widely employed in environmental and meteorological monitoring as well
as other fields. Lidar-based observations are typically used to obtain Doppler wind speed. Lidar
can also provide horizontal wind profiles to analyze turbulence and gust at low elevation angles.
Recently, lidar has been used for aviation research and operations, including marine fog
studies.8,9

The Ningbo Zhoushan Port in China comprises 19 areas, including Beilun, Yangshan,
Liuheng, Qushan, and Chuanshan. In 2020, the cargo throughput in this port was estimated
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at 1.172 billion tons, ranking it the first in the world for the 12th consecutive year. Consequently,
the meteorological fine (i.e., comprehensive and targeted) service demands, including the routing
of ships, wharf stop, and port area operation, are very high, especially when sea fog10–12 is
present. Therefore, to improve the meteorological services, the Ningbo Meteorological
Department built a modern marine monitoring system in the port. In 2018, a visibility lidar
instrument was used for a sea fog monitoring test in the Beilun area of the Ningbo Port by the
Ningbo Meteorological Bureau and Darsun Laser Technology Co., Ltd. based on the conven-
tional lidar technology for cloud height and shape determination. After almost a year of testing,
comparison, and improvement, the lidar monitoring was finalized. In the present study, the mon-
itoring data and performance of the visibility lidar instrument are compared to those acquired by
forward scatter visibility sensors during two sea fog events that occurred between February 11
and February 16, 2020.

2 Lidar Principle

As the laser emitted by the lidar system is transmitted to the atmosphere, different atmospheric
components absorb and scatter the laser,13,14 thereby altering the energy, spectral characteristics,
and polarization state of the backscattered light. Based on the optical properties of the back-
scattered light, the corresponding visibility information can be retrieved.15,16 Therefore, the vis-
ibility lidar instrument is considered a backscattered light receiver capable of receiving laser echo
signals from tens of thousands of meters away. Through computer analysis, the atmospheric
extinction coefficient and associated parameters, as well as visibility data, are obtained.

The measurement principle of backscattering visibility lidar is that the signal PðrÞ of the laser
that is backscattered by the atmosphere, with a central position r and thickness Δr, can be
expressed as follows:13,17

EQ-TARGET;temp:intralink-;e001;116;435PðrÞ ¼ TLE0cARðrÞ
A
r2

ΔrβðrÞτ2ðrÞ þ B; (1)

where E0ðJÞ, TL, and AR denote the single laser pulse energy, total transmittance of the emission
system, and effective area of the receiving telescope (m2), respectively; c denotes the speed of
light (m/s), and τðrÞ ¼ expð− ∫ r

0 αðr 0Þdr 0Þ is the one-way atmospheric transmittance factor. The
parameters α is the extinction coefficient, whereas β is the atmospheric backscattering coeffi-
cient. Parameter B includes the background noise associated with all electronics and optics. The
extinction and backscattering coefficients comprise two components, namely contributions from
molecules and aerosols, expressed as follows:13,17

EQ-TARGET;temp:intralink-;e002;116;311

�
α ¼ αaer þ αmol

β ¼ βaer þ βmol
; (2)

where the subscripts aer and mol represent the contributions from aerosols and molecules,
respectively. In the lower boundary layer of the visibility lidar system, the contribution from
aerosols is higher than that from molecules; therefore, Eq. (2) can be simplified as follows:

EQ-TARGET;temp:intralink-;e003;116;230

�
α ≈ αaer
β ≈ βaer

: (3)

The extinction coefficient α is extracted using the horizontal visibility inversion algorithm,18

which overcomes the sensitivity of the initial value without requiring the lidar ratio (i.e., extinc-
tion to backscattering coefficients ratio). The VMOR is defined as follows:19

EQ-TARGET;temp:intralink-;e004;116;148VMOR ¼ −
1

α
ln K 0 ¼ 3.912

α
; (4)

where K 0 is the visual contrast threshold of the human eye.
If the laser wavelength used differs from 550 nm, then the atmospheric extinction coefficient

αðrÞ, detected by the lidar instrument, requires wavelength modification. The empirical correc-
tion formula is as follows:20,21
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EQ-TARGET;temp:intralink-;e005;116;735VMOR ¼ 3.912

α

�
λ

0.55

�
−q
: (5)

The coefficient q is determined using the following empirical formula:20,21

EQ-TARGET;temp:intralink-;e006;116;687q ¼
8<
:

0.585V
1
3 V < 6 km

1.3 6 km ≤ V < 50 km

1.6 V ≥ 50 km

: (6)

3 Observation and Project Site

The offshore channel of the Beilun area of the Ningbo Zhoushan Port is the main route for
international containers and large cargo ships. Owing to the presence of many islands in the
channel, sea fog significantly obstructs the navigation of vessels. Forward scatter visibility sen-
sors and a visibility lidar instrument are installed near the channel; the locations of those used in
the present study are shown in Fig. 1.

Under the same weather conditions, a larger wavelength corresponds to a smaller extinction
coefficient and subsequent lower signal attenuation, resulting in a longer detection distance.
However, in terms of signal-to-noise ratio, Ref. 18 reports that a shorter wavelength is more
favorable for a shorter detection range. Therefore, a visibility lidar with a wavelength of
532 nm was selected for the analysis and was installed in the Beilun area of the Ningbo to
monitor sea fog in the offshore waterway. The horizontal scanning visibility lidar instrument
(Model: DSL-V021-3D) manufactured by Darsun Laser Technology Co., Ltd. China can effec-
tively acquire visibility distribution information along a path by detecting the backscattering of
the laser interaction with different atmospheric components. Thus, the point monitoring limi-
tation associated with a forward scatter visibility sensor can be compensated. The main param-
eters of the visibility lidar instrument in the Beilun area are presented in Table 1.

Fig. 1 Map of the Ningbo Zhoushan Port area showing the locations of the visibility lidar and for-
ward scatter visibility sensors.
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The scanning azimuth of the visibility lidar instrument shown in Fig. 1 varies from 60 deg to
232 deg; the scanning angle resolution is 2 deg, and the measurement time is 10 s. Therefore, the
lidar instrument’s average scan cycle time is ∼15 min. The scanned echo signal, characterized
by a semicircular shape centered around the location of the lidar instrument, is processed using
an inversion algorithm22,23 to produce a visibility map.

The notations V1, V2, and V3, indicated by blue dots in Fig. 1, represent three forward
scatter visibility sensors [Model: GJY-1G(J)] manufactured by Airborne Missile Academy
Environment Monitoring Co., Ltd. China). Table 2 lists the main parameters of the forward
scatter visibility in the Beilun area. The Symbol L, marked by the red circle, represents a vis-
ibility lidar instrument mounted at an 8-m altitude site, with a wavelength of 532 nm. The sector
represents the monitoring area associated with the lidar instrument. The comparison of the mon-
itoring data of the visibility lidar and the three forward scatter visibility sensors revealed that
valid data were missing for the V1 meter because of its location in the blind spot of the lidar
monitoring instrument. The V3 meter is near the monitoring range of the lidar instrument
(∼4.5 km distance at an angle of 50 deg from the lidar instrument installation point), whereas
the V2 meter is 10.9 km from the visibility lidar station. Therefore, if the laser beam scans at
0.5 deg elevation and 2 deg resolution, the height is 95 m at 10.9 km, with a sector area involving
a monitoring range of 35 × 15 m2. The geographic locations of the forward scatter visibility
sensors at the surface may vary, causing differences in the data acquired, especially during
uneven weather conditions. Therefore, the data from the V3 meter were selected for comparison
with the data from the visibility lidar instrument. The site of the V3 meter is at an altitude of
50 m, and the scan height of the laser is 47 m near the V3 meter. The visibility detected using the
visibility lidar at V3 is used to compare with those detected using forward scatter visibility sen-
sors at V1 and V3.

4 Results and Discussion

Multiple low-visibility events occurred between February 11 and February 13, 2020, as shown in
Fig. 2. In operation, the forward scatter visibility sensor takes the scattering coefficient as the
approximate substitute for the extinction coefficient and ignores the absorption coefficient.
Consequently, when the visibility is high, the error is relatively large.6 In contrast, the visibility
lidar considers both the scattering coefficient and the absorption coefficient; thus, its result is
more accurate than that of the forward scatter visibility sensor. In this paper, we focus on low-
visibility conditions such as sea fog. Therefore, to eliminate the influence of large error of for-
ward scattering visibility in high-visibility weather, forward scattering visibility and lidar vis-
ibility above 20 km are unified as 20 km in Figs. 2 and 4. At 0:00 on February 11, the visibility
range is ∼8 km [Fig. 3(a)], which decreases to below 1 km (958 m) at 08:32, during the onset of
fog. The visibility range then increases or decreases with the change of sea fog, and subsequently
increases rapidly after 12:00 on February 12 due to sea fog dissipation. Initially, visibility starts

Table 2 Forward scatter visibility measurement specifications.

Model Measurement range Accuracy Time constant Update interval

GJY-1G(J) 10 m to 30 km +/− 10%, range 10 to 10 km 60 s 15 s
+/− 20%, range 10 to 30 km

Table 1 Summary of data parameters used in assessing the performance of the visibility lidar
instrument.

Model Laser source
Single

pulse energy
Spatial

resolution Time resolution Frequency Pulse width

DSL-V021-3D/DSL-
V022-3D

532 nm 100 μJ 15 m 5 s to 10 min 1 to 10 kHz <10 ns
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declining at 08:00 on February 11, as shown in Fig. 2, and the corresponding visibility lidar
instrument image at this point is shown in Fig. 3(b). Visibility declines to ∼1.4 km by around
09:00, as shown in Fig. 3(c), before improving to ∼6 km at around 12:00, as shown in Fig. 3(d).
Thereafter, visibility begins to decline again, reaching ∼1.2 km at 14:00, as shown in Fig. 3(e),
and then increases to 6.2 km at around 18:00, as shown in Fig. 3(f). The images in
Figs. 3(h)–3(m) reflect the sea fog changes on the sea surface between 0:00 and 05:00 on
February 12. Evidently, visibility is high in the central paths of the lidar and forward scatter
visibility sensors, although some sea fog persists on the sea. During this period, the variation
trend of the visibility data obtained by V3 is nearly equal to that obtained by lidar, demonstrating
the reliability of the lidar monitoring data. Simultaneously, the lidar map can clearly reflect the
movement of small-scale fog, from a few hundred meters to a few kilometers, between 00:00 and
06:00 on February 12, while V1 and V3 cannot represent the fog situation on the sea surface,
indicating that lidar has certain advantages in monitoring sea surface visibility. After 06:00, the
fog begins shifting toward the central paths, causing the visibility range to decline to ∼4 km,
before it starts rising at around 14:00, reaching ∼20 km. However, after 18:00, the visibility
range starts to decline again. This indicates that the density of sea fog varies considerably with

Fig. 2 Comparison of the lidar visibility-V3 and forward scattering visibility-V1 and V3 for the
period February 11–13, 2020.

Fig. 3 Scan images from the visibility lidar instrument at different times (UTC+8) during February
11–13, 2020. A–P correspond to the times at A–P in Fig. 2.
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time and space and that lidar can well reflect the changes of sea fog, especially when this occurs
in patches (i.e., duration in minutes).1

Several low-visibility events also occurred during February 13–16, 2020, as shown in Fig. 4.
On February 13, the visibility range is ∼4 km because of the presence of sea fog, as shown in
Fig. 5(a). The images in Figs. 5(a)–5(e) reflect the variations in the visibility range above the sea
from 0:00 to 09:30. Figure 4 shows that the coast visibility obtained by V1 is lower than that of
the sea surface represented by V3 simultaneously. However, there is no evidence of small-scale
sea fog on the sea surface in the scattered distribution of forward scatter visibility. At around
11:00, the visibility range decreases to ∼600 m due to light or moderate fog above the sea, as
displayed in Figs. 4(f) and 5(f), before rising to ∼10 km at 14:30 [Fig. 5(g)] and then decreasing
to ∼3 km at around 16:00 after sea fog re-emerges [Fig. 5(h)]. The visibility variations between
21:00 on February 13 and 03:00 on February 14 are shown in Figs. 5(i)–5(k). The visibility range
during this period is generally <1 km. At around 09:00 on February 14, the V3 visibility range
attained 20 km, despite the presence of sea fog, as exhibited in Fig. 5(l). These findings again
indicate the inhomogeneity of sea fog. At around 18:00, the site was again covered by sea fog, as
shown in Fig. 5(m), until dissipation occurred at around 21:00, as shown in Fig. 5(n). After
23:00, the visibility started declining, maintaining ranges <1 km from 0:00 to 10:00 on

Fig. 4 Comparison of the lidar visibility-V3 and forward scattering visibility-V1 and V3 for the
period February 13–16, 2020.

Fig. 5 Visibility lidar images associated with different times (UTC+8) during February 13–16,
2020. A–P correspond to the times at A–P in Fig. 4.
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February 15, as shown in Fig. 5(o). After 10:00, the visibility range improves, reaching ∼5 km,
as shown in Fig. 5(p). Figures 5(k)–5(p) show that there are several occurrences of moderate to
thick fog between 03:00 on February 14 and 10:00 on the 15th, with each fog event lasting
several hours. During the large periods of thick fog, the visibility of V1 and V3 monitoring
are consistent with that of lidar monitoring, and both can represent the visibility on the nearby
sea surface. Lidar maps presented in Figs. 5(l) and 5(n) indicate that the visibility on the sea
surface considerably differ sometimes. The sea fog showed an intermittent long strip movement,
thereby fully reflecting the advantages of visibility lidar. Therefore, the visibility lidar can obtain
the details of sea fog change and movement for any duration.

The relationship between the data from the forward scatter visibility sensor and the visibility
lidar instrument under different visibility conditions is shown in Fig. 6. The two methods exhibit
a strong positive correlation (R2 > 0.8), thereby supporting the suitability of the lidar system for
visibility monitoring in the port. When the actual visibility exceeds 10 km, the average absolute
deviation is 1890 m; when it is <5 km, the average absolute deviation is 314 m.

5 Conclusions

Unlike the forward scatter visibility sensor, the visibility lidar technology involves the detection
and analysis of light backscattering caused by the interaction between atmospheric particles and
the laser emitted from the instrument. The technology exhibited suitability for characterizing
uneven atmospheric visibility, thereby effectively providing section-by-section information
on visibility distribution in an entire detection path. In the present study, the visibility lidar tech-
nology is used to monitor sea fog and fog agglomeration in sea areas, including ports. The fol-
lowing conclusions are drawn from this work:

1. The comparison of data from multiple low-visibility events that occurred between
February 11 and 16, 2020 in the offshore channel of the Beilun Port indicates that the
forward scatter visibility sensor on the shore cannot detect adequately the visibility and
fog on the sea.

2. The inhomogeneity of sea fog distribution varies considerably with time and space in
inshore or offshore channels.

3. Lidar monitoring of fog over the sea is more reliable and superior than the nearby forward
scatter sensor for large area fog monitoring.

Fig. 6 Plot of the visibility data from the forward scatter sensor versus the laser visibility instrument
showing the correlation coefficient.
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4. The visibility lidar map can clearly reflect the movement of small-scale fog, which dem-
onstrates certain advantages of lidar compared to the forward scatter sensor.

5. Lidar can accurately reflect the changes and variations in sea fog, particularly marine fog
occurring in patches or exhibiting a long strip movement.

The results show that lidar can serve in offshore channel visibility monitoring of the port area.
In future research, several visibility lidars will be used to form a monitoring network suitable for
visibility detection over a wide area.
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