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Abstract. Rapid advancement in the development of hyperspectral image analysis techniques
has led to specialized hyperspectral missions. It results in the bulk transmission of hyperspectral
images from sensors to analysis centers and finally to data centers. Storage of these large size
images is a critical issue that is handled by compression techniques. This survey focuses on
different hyperspectral image compression algorithms that have been classified into two broad
categories based on eight internal and six external parameters. In addition, we identified research
challenges and suggested future scope for each technique. The detailed classification used in this
paper can categorize other compression algorithms and may help in selecting research objec-
tives. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.59.9
.090902]
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1 Introduction

Hyperspectral (HS) imaging is an essential concept in remote sensing due to its ability to store
information in detail. It has been a topic of keen interest among researchers, in recent years,
as it finds its application in target detection, classification, anomaly detection, and spectral
unmixing.1 Hyperspectral image (HSI) sensors collect data in contiguous bands of wavelength
ranging from 400 to 2500 nm, beyond the visible range of human vision. Each band has the
same number of pixels and a fixed spectral resolution dependent on the capability of sensors.
Each pixel has some spatial resolution that defines an area of the surface covered in a pixel.
It collects reflectance value of an area for different wavelengths in different bands, forming a
data cube that is beneficial in many applications. For instance, it is used in military operations
to find and follow the progress of troops.2 The agricultural sector uses it for quality monitor-
ing, disease control, classification of crops, and improving production.3 In the manufacturing
industry, it helps in finding the fault detection4 and in the space industry, it is used in the move-
ment of celestial bodies.5 In the case of remote sensing, it is applied to examine the Earth’s
surface, classifying minerals, tracking and tracing of natural calamities in the form of floods,
drought, etc.

1.1 Motivation

Along with benefits, HSIs have some limitations that give rise to the concept of compression.
The need for HSI compression in remote sensing can be stated as:

• The size of the HSI acquired by the sensors is in hundreds and thousands of megabytes.
For example, airborne visible/infrared imaging spectrometer (AVIRIS) sensor captures 224
spectral bands with 614 × 500 pixels in each band, where each pixel takes 16 bits. Size of
an image from such a sensor is 224 × 614 × 500 × 16 ¼ 131.17 MB,6 hence, storage of
this large size data is an issue.
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• Limited transmission channel bandwidth: HSIs have to be transmitted from one place to
other, and large size of data requires high bandwidth, which is a costly resource in remote
sensing applications.

• Limited data–transmission time: At sensors, HSIs are captured very frequently that needs
processing at a high rate, which is very complex at capturing device. These images, if not
transmitted in limited time, can result in information and calibration loss at data centers.

HSI7 compression is a technique through which the size of HSI can be reduced without loss in
image quality beyond the desired level. It is one of the essential steps of HSI processing technique,
which is included in every space mission, as it reduces the cost of bandwidth and storage equip-
ment. In lossless mode, compression reduces the size by storing the same information with a small
number of bits, by two methods using different representations, and removing existing redundancy.
High redundancy helps compression algorithms to achieve a high compression ratio (CR).
Basically, statistical redundancy and psychovisual redundancy are two broad categories of redun-
dancies in digital images. While former one plays significant role in HSI, the latter one is of no
prime importance due to its limitation of impact in visible range only. Statistical redundancies
occur due to near similar intensity of pixels in neighborhood except at the locations where illu-
mination changes. It can be classified into interpixel redundancy and coding redundancy. There
exist three types of interpixel redundancy in an HSI: (i) spatial redundancy: It arises due to intra-
band dependency that exists in spatial domain, (ii) spectral redundancy: It occurs due to depend-
ency among pixels of different bands at the same spatial location, and (iii) temporal redundancy: It
arises when HSI of the same location is taken at different times, dependency in temporal domain
(for corresponding spectral and spatial pixels) results in temporal redundancy. These redundancies
are decorrelated in compression algorithms, and thus data size is reduced. Original data can be
reconstructed using decompression, which is usually the reverse process of compression.

A systematic overview of HSI compression is provided in this paper. Algorithms proposed in
the existing literature are divided into different categories based on essential factors and com-
pared along with their future research directions. The overall objective of this survey can be
summarized as:

• A clear concept of HSI compression techniques.
• Comparison of algorithms within the scope of this article based on application, implemen-

tation, strategy, and location.
• Categorization of techniques based on the architecture of algorithms.
• Some research challenges and future scope in terms of HSI compression techniques.

The remainder of this paper is organized as follows. Section 2 describes the categorization of
HSI compression algorithms based on the architecture of algorithm and various parameters. In
addition, a detailed analysis of the architecture of algorithms, their advantages, and disadvan-
tages are given. Discussion and open challenges are provided in Sec. 3, and the review ends with
concluding remarks in Sec. 4.

2 Categorization of Hyperspectral Image Compression Algorithms

HSI compression is a broad domain that can be classified into various categories. In this review, a
method of categorization is adopted. We classified the algorithms into three different ways, i.e.,
classification based on various parameters, set of metrics used to evaluate a particular algorithm,
and methodology of algorithms. Its details have been provided in subsequent sections.

2.1 Categorization Based on Methodology

HSI compression techniques are categorized by the methodology it adopts. There are various
methods to compress an image, each way having its advantages as well as limitations. We
categorized algorithms into eight broad categories namely transform-based, prediction-based,
vector quantization (VQ)-based, compressive sensing-based, tensor decomposition-based,
sparse representation-based, multitemporal-based, and learning-based algorithms. Figure 1
shows different compression techniques classified on the basis of its methodology and various

Dua, Kumar, and Singh: Comprehensive review of hyperspectral image compression algorithms

Optical Engineering 090902-2 September 2020 • Vol. 59(9)



algorithms in each category. Each method is discussed in detail along with their advantages,
limitations, state-of-the-art algorithms, and research challenges in following sections.

2.1.1 Transform algorithms

Overview. Transform-based technique is the most popular two-dimensional (2-D) image
compression technique that has been extended to three-dimensional (3-D) or HSI compression.
It is known as transform-based technique as it transforms the pixels values into the frequency
domain by applying transformation function to all the three dimensions of image. There are some
great transformation techniques such as discrete cosine transform (DCT), discrete Fourier trans-
form, discrete wavelet transform (DWT), and Karhunen–Loeve transform (KLT) that are used in
image compression. It can remove both spectral and spatial correlation depending on the domain
on which it is applied. The technique can be applied in combination with nearly all other meth-
ods such as prediction-based, VQ, tucker-based, compressive sensing, and in learning-based
algorithms. Some state-of-the-art algorithms in this field are 3D-DWT,8 2D-KLT,9 3D-set par-
titioning embedded block (SPECK),10 and 3D-low memory block tree coding (LMBTC).11

Technique. Compression using the transform-based method follows some steps that may vary
for different algorithms but can be generalized as in Fig. 2. Forward transform applies a trans-
formation function (cosine, wavelet, or Fourier) to one of the spatial- or spectral-domain or both,
then performs decorrelation, and generates coefficients. Following which, quantization is com-
pleted; this removes factors that are close to zero. In the last step, encoding techniques are applied
to the quantized coefficients to generate bit-streams. It could be transmitted or stored with a
reduced number of bits per pixel to save space (in storage) and bandwidth (in transmission).

Fig. 1 Classification of compression techniques.

Fig. 2 Steps of transform-based algorithm.
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Some transform-based his compression algorithms in the scope of this article are discussed
below. Karami et al.12 proposed a transform-based technique in which 3D-DCT is applied
hisHSI. It converts the raw pixels into frequency-domain coefficients using a cosine and inverse
cosine transformation function on all the three dimensions of the image. High and low energy
coefficients are separated out of which low energy coefficients are dropped using quantization.
Sparse Tucker decomposition (TD) is then applied to modified coefficients to generate a com-
pressed image. The reverse process is followed in decompression that generates original image
with some loss due to irreversible quantization process. Karami et al.8 proposed another trans-
formation technique named 3D-DWT-TD on the HSI, which uses DWT to transform spatial-
domain pixels into frequency domain using wavelet function on all the three dimensions of
HSI. Four submatrices are generated containing edge-based information, horizontal information,
and vertical and approximation information in each submatrix. TD is then applied on all these
four matrices separately followed by generation of mode matrices. Entropy coder is then used to
code the core tensor and original image is reconstructed using reverse process.

Transformation-based technique has also been applied with machine learning techniques
such as support vector machine (SVM)13 that has the following steps. Cubical HSI is first divided
into small frames to reduce the complexity, and 3D-DCT is applied at the compression end on
subimages. It is followed by a 3-D zig-zag quantizer that removes the unnecessary coefficients.
SVM regression is used on the leftover coefficients to generate support vectors and weights,
which are then encoded by entropy coder. Töreyn et al. proposed a hybrid algorithm named
as joint photographic experts group-lossless (JPEG-LS)14 in which one-dimensional (1-D) inte-
ger wavelet transform is applied on spectral bands. It gives a residual image that is encoded by
Golomb-rice encoding. Decompression is used on the bit-streams that reconstruct the original
image without any loss. The performance of the proposed method is comparatively better than
JPEG. Kozhemiakin et al.15 proposed a compression method based on 3-D AGU coder that cal-
culates cross-correlation factor for images in different channels. Frequency coefficients are
obtained from 3-D DCTwhere quantization step is set proportional to noise standard deviation.
AGU coder is applied at the last level of compression. Giordano and Guccione16 proposed a
combination of clustering and transformation for compression of HSI implemented on graphical
processing unit (GPU). It is a region of interest (ROI)-based compression method that clusters
the input image into five application-specific classes with an assumption that reflectance value of
pixels is preloaded into memory. Labeling of a block is done according to a rule as “ROI” and
others as “not-ROI.” Then, principal component analysis (PCA) is applied to reduce the spectral
redundancy, and PCs with variance 99.9% are retained. The labeled image is also processed by
2-D DWT for spatial redundancy. Another use of machine learning technique in combination
with DCT was proposed in PCA-DCT,17 where PCA is applied to find the feature vector, simi-
larities, and dissimilarity in the form of residual image. Subsequently, DCT is applied to com-
press image. To further improve the compression performance, Mei et al.18 proposed a hybrid
algorithm named folded-PCA in combination with JPEG2000. In this technique, the covariance
matrix is calculated by folding the spectral vector into a matrix, and eigenvectors are used to
obtain principal components that can represent features of the entire image. JPEG2000 is then
applied to the reduced image to compress it further. The algorithm was again extended in
weighted principal component analysis (WPCA)19 where an adaptive cosine estimator algorithm
was applied for target detection. Then, PCA is applied to HSI after converting it into 2-D matrix
but with some modification in the weight matrix. Mean pixel matrix and covariance matrix are
calculated by giving more weight to pixels around the detected target.

Wang et al.10 proposed a joint decoder method where the 3-D wavelet transform to find high-
and low-frequency regions. Turbo channel coding is applied for encoding high-frequency region
(represents antierror) and 3D-set partitioning in hierarchical trees (SPIHT) for low-frequency
region (image energy). The decoder uses low-frequency information to predict high-frequency
coefficients. It also creates side information that is jointly decoded. Guerra et al.20 proposed a
lossy compression algorithm named HyperLCA using transformation function to achieve better
CR at the cost of reasonable computational complexity. It has three steps namely spectral trans-
formation function to remove spectral redundancy followed by preprocessing stage and lossless
encoding as its last step of compression. Most different pixels are selected in preprocessing stage,
which can be coded independent of any spatial alignment. Golomb rice coding is used to
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preserve this information until the image has been finally decompressed. Integer HyperLCA21

was later proposed as an extension to the original algorithm that improves the performance fur-
ther by dividing parameter’s floating point values into an integer part and a decimal part.
Luminance22 transform proposed a transformation function considering an assumption that
intensity of light falling on various bands of the same HSI is almost equal. The authors used
luminance transform to reduce the difference of brightness and contrast between spectral bands
at the same spatial location. DCT was then applied on the resultant image to minimize the
spatial correlation in HSI. The results obtained were better than applying only DCT to raw
image. An extension23 of wavelet-based transformation was proposed by Khan et al. The
method used 1-D convolution to decompose the image temporally and fractional wavelet filter
(FrWF) transform to remove spectral and spatial correlations, and the coefficients are then
quantized. The factors are grouped as significant and nonsignificant using dyadic wavelet
transform. Then, it employs 2-D SPIHT to encode these coefficients using a tree-based ori-
entation that can represent insignificant coefficients using a single value. A lossless compres-
sion algorithm, regression wavelet analysis-clustered (RWA-C),24 was proposed by Ahanonu
et al. that used cluster analysis to divide the image into N clusters. Wavelet transformation is
applied on these clusters to decorrelate spectral information and obtain wavelet coefficients.
Linear regression is used on spectral coefficients within a cluster, and significant factors are
found through least square regression. Memory requirement of techniques is an important issue
that is taken care by 3D-LMBTC11 to encode a higher bit plane to lower bit plane using wavelet
coefficients. A block is matched to every other block to find the significance that is encoded in
further steps.

An integer-based hybrid transformation method25 ILKT-IDWT has the following steps. The
input HSI is first converted into multiple 1-D vectors that are clustered and tiled using eigen
matrix decomposition. Invertible integer KLT map is then applied to the spectral matrix, fol-
lowed by an integer DWT to spatially decorrelate the image data. Three different wavelet-based
coding are proposed to be implemented on the decorrelated image, they are spatial-oriented tree
wavelet (STW), wavelet difference reduction (WDR), and adaptively scanned wavelet difference
reduction. In the first method, coefficients are ordered from high magnitude to lower magnitude
in pyramid structured tree, making it a complicated process. Second method discovers three
categories of arrays using an iterative approach that divides threshold value by 2 each time.
Third method applies an adaptive way of scanning among different arrays. Computational com-
plexity of HyperLCA method was reduced in the method given by Díaz et al.26 The proposed
approach utilizes the parallelism in HyperLCA algorithm and performs execution on the Nvidia
Jetson TK1 and TX2 GPU. Three models of parallel implementation are proposed to accelerate
compression. First model executes transformation on GPU while performing all the steps of
HyperLCA sequentially. In the second model, coding and transform are executed by different
central processing unit (CPU) processes. Third model implemented the transform using three
threads of GPU and each code block on different CPU process. Support vector regression (SVR)-
based compression was implemented in SVR-DWT,27 where 3-D DWT is applied on the input
HSI followed by SVR on normalized coefficients to identify the support vectors and weights for
spectral information. Weights are quantified using floating point quantizer and encoded by
entropy coding technique. Spatial data are separately encoded by lossless differential pulse code
modulation (DPCM) to preserve the low-frequency image details. Decompression stage is exact
reverse of compression stages. Another transformation function named graph Fourier transform
(GFT)28 is used to decorrelate the HSI in spectral domain. Laplacian matrix is used to obtain the
transformation vectors uniquely for each signal. Impact of GFT on correlation is calculated to
assess the quantization value for Gaussian Laplacian vectors that are selected depending on the
amount of loss permitted by the application. Fuzzy logic29 has also been used in compression by
Monica and Widipaminto. The proposed method modifies the fuzzy transform that finds a cor-
respondence between a set of n-dimensional vectors and continuous functions with the help of
membership functions. Existing Perfilieva’s fuzzy transform uses sinusoidal membership func-
tion that is modified to pseudoexponential function. The input image is first broken down into
frames of size (8 × 8) and pixels are normalized into [0, 1]. Each frame is then transformed into
n-dimensional matrix using fuzzy transform. The advantages, limitations, and future directions
of each algorithm are listed in Table 1.
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Table 1 Transform-based HSI compression techniques.

Algorithms Advantages Limitations Future research directions

Hybrid 3D-DCT
and TD12

Achieves compression
objectives as 85% of
coefficients are discarded.

Parameters are manually
selected.

Develop some method to
select the new reduced
dimensions automatically.

DWT-TD8 Better pixel-based results
for CA.

The computational load of
TD is very high.

Reduce the load by reducing
computations of the core
tensor.

3D-DCT-SVM13 Comparatively better
performance.

Implementation complexity
not considered.

Different types of nonlinear
kernels can be applied to
SVM. Optimization
algorithms can further
optimize SVM.

JPEG-LS14 Dual-mode of encoding, like
for flat-region.

Overall CR depends heavily
on the data.

Improve decorrelation
performance, then apply
2-D compression to optimize.RLE is performed and

Golomb rice coding
elsewhere.

Kozhemia-kin
et al.15

Percentage of zeros obtained
after quantization of DCT
coefficients can predict
improvement of CR due to
combination of channels into
a group.

Applied on multispectral
image dataset considering
very few parameters.

This technique can be
applied in machine learning
to check whether to combine
channels or not for other
algorithms.

Giordano and
Guccione16

Clustering is done onboard.
Superior performance in
ROI-based compression.

Creation of a database of
reflectance is not considered.

Segmentation can be
included as preprocessing
step.

Amount of energy consumed
on-board is an essential
factor, which is not
discussed.

Automated process for
selection of many bits in
ROI part.

HyperLCA20 The target CR can be fixed
in advance. High error
resilience.

Lossy compression
algorithm, and minute details
are lost.

Exploiting parallelism in the
proposed algorithm.

PCA-DCT17 Target extraction not
required.

Selection of the number of
features is not considered.

Use of different
transformations technique for
spatial decorrelation.Comparably high CR.

Integer HyperLCA21 Sensor and data
independent.

Minute details are lost. Integer-point operation
technique could be used in
other algorithms.Hardware friendly method

Wang et al.10 The scalable and flexible
method as low-frequency
components are transmitted
first in a narrow channel.

Two approaches used for
coding different channels.

Hardware implementation of
the proposed algorithm.

Folded PCA18 Best compression and
classification achieved
when the number of principal
components (PCs) = 40 and
h ¼ 10.

Not suitable for many
applications.

Parallel implementation of
the algorithm.

Luminance
transform22

Better energy compaction. Results are not compared
with any other algorithms.

Use the same technique of
single transform in other
compression methods.

WPCA19 Better target detection
performance especially
at low BR.

Poor performance at high
BR.

Target-based compression
can be used in other
applications.Target should be identified

in the beginning.
Generalizing this technique
using region-based instead
of target based.

Weight matrix generation by
two different methods is a
complex process.
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Table 1 (Continued).

Algorithms Advantages Limitations Future research directions

FrWF23 Energy efficient encoder due
to utilization of lower energy
in coding than transmission.

Information stored in less
significant coefficients can
never be retrieved, which can
be scattered over spatial
domain.

The utilization of 3-D SPIHT
can further reduce the size of
compressed image.

Efficient coding of zero tree
obtained after applying
SPIHT.

Uses less complicated
fractional filter that reduces
the need of large memory in
compression.

Only three image lines have
to be stored during wavelet
transformation.

RWA-C24 Performed for a wide range of
number of clusters.

Integer Cohen, Daubechies,
and Feauveau (CDF) 5/3
DWT is used, which fails to
give an optimal solution.

CDF 9/7 wavelet can be used
to improve performance.

Clustering improves
compression performance.

3D LMBTC11 Can be implemented in HS
sensors.

Ineffective increase in
computation efficiency
compared to wavelet block
tree coding

Use with other transform
coding techniques.

Needs only 12 kilobytes (kb)
fixed memory.

Coding time is reduced.

IKLT-IDWT25 Provides ideal energy
compaction in IKLT
transform.

Evaluated only on cubical
portion of imageNot fit for
on-board and real-time
compression.

Identification of scope of
parallel implementation to
reduce the compression time
of STW coding that gives the
optimum results.

STW provides best results
when implemented with
hybrid transform.

Different wavelet functions
are evaluated for IDWT.

Diaz et al.26 Consumes low power
providing real-time
compression.

High implementation
complexity.

Hardware-based
accelerators can be used to
operate the proposed models
on satellite.

Spatial alignment between
blocks of pixels are not
needed, each can be
independently compressed.

Not fit for onboard
compression

Parallelism model can be
used to accelerate some
lossless compression
algorithm.

Developed specially for smart
farming application but can
be extrapolated to other
remote sensing fields.

SVR-DWT27 Works fine for small training
samples.

Time taken for high resolution
is more due to the use of
SVR.

Implementation of wavelet
packet transform for better
compression performance.

Compressed data gives
better classification
performance than original
data to support vector-based
coding.

Compression of spatial
information separately is an
overhead.

GFT28 Competitive performance for
both low and high bitrate
setting.

Spatial correlation is not
considered during
compression.

Implementation of 2-D
transform separately for
spatial decorrelation.

Performance can be varied
by selecting different number
of transformed coefficients.

Gaussian Laplacian vectors
are not selected using any
specified method.

Use of context-aware
algorithm for vector selection
to improve performance.

Fuzzy transform29 Improved performance due
to preprocessing and
membership function.

Parameter selection is based
on a hit and trial method that
may vary for different images.

Reduce the compression
time of the algorithm.

Compare the performance
with membership functions
other than
pseudoexponential function.

Solution becomes easy as it
simplifies to simple algebra
using fuzzy modeling rules.
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Research challenges and future directions. This technique can be applied to both
data-center and onboard compression due to fast calculations. It has several advantages such
as error-tolerance mechanism, high compression performance, flexible in using rate-control
mechanism, and global optimum solution. Disadvantages30 of transform-based compression
include high computation time as it performs a large number of computations such as multi-
plication, transpose, and the inverse of matrix. Optimal performance can be obtained at low
bit-rates (BR) only. It31 destroys the inherent structure of HSI and gives rise to high-order
dependency since it considers the image as a matrix.

The computation time of transform-based technique can be reduced by exploiting parallelism
in the algorithms and applying it on high-performance computing (HPC) architecture, which can
improve its performance. In multitemporal HSI, time domain is also available along with spectral
and spatial domains that give rise to temporal correlation. Four-dimensional (4-D) transform-
based techniques need to be developed to address such issues. Existing algorithms can be imple-
mented using the latest transformation function with the objective of performance improvement.

2.1.2 Prediction algorithms

Overview. It is an alternative to transform-based algorithms with technical and implemen-
tation benefits. In this technique, the value of a pixel is predicted after applying some mathemati-
cal functions to the previous pixels. It is developed especially for 3-D images, exploits
correlation in both spatial and spectral directions, and removes them. Prediction32 in HSIs is
mainly applied on spectral-domain with the help of a filter after spatial decorrelation gets com-
pleted. Mostly used filter functions to calculate weight matrices are recursive least square (RLS)
and least mean squares (LMS) filter. Prediction-based algorithm is also used in conjunction with
other algorithms to improve performance. Some state-of-the-art algorithms are 3D-DPCM,33

superpixel-based segmentation-CRLS,34 RLS-adaptice length prediction,35 and LMS-APL.36

Technique. Prediction-based technique is easy to implement on HSIs and can be easily
explained by Fig. 3. The first step removes correlation in the spatial domain for all bands, fol-
lowed by a prediction of pixels of p’th band by performing some mathematical operations on
pixels of p-1 bands. A weight matrix is used for this purpose, generated by a filter function
depending on the algorithm. Residuals are calculated by subtracting the original image from
the predicted image, which is encoded by entropy or Golomb coder.37

Methodology used by some prediction-based algorithms is described below. Table 2 lists the
algorithms with their advantages, limitations, and some future directions.

The standard developed by working group of multi/hyperspectral data compression, con-
sultative committee for space data systems (CCSDS), for HSI compression techniques to be
used in space missions, named as, CCSDS-123.0-B is based on the predictive compression tech-
nique. Issue 1 of the method was introduced in 2012 that focused on the lossless compression of
images captured by multiple satellites. Significant limitation of the standard was considerable
compression time taken during the process that led to the development of various modified tech-
niques, some of them are discussed here. An enhancement in CCSDS standard algorithm was
proposed by Conoscenti et al.38 by introducing three application-specific extensions such as
constant signal-to-noise ratio (SNR), rate control, and hybrid coding. Low energy areas with
tremendous noise have been removed from the prediction process by keeping an upper bound

Fig. 3 Steps of prediction-based algorithm.
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Table 2 Prediction-based HSI compression techniques.

Algorithms Advantages Limitations Future research directions

Bogdan et al.40 A better approach to
comparison.

FPGA calculates integers,
conversion from floating
point to integer point is
difficult.

The procedure could be
followed for other
algorithms.

SB-DSC41 Decreased encoder
complexity for some
of the blocks.

Complex implementation. Implement calculation of
MaxAE on hardware, as it
consumes most of the time.

Conoscenti et al.38 Application friendly
algorithm.

In some cases, the hybrid
encoder provides worse
results.

Implementation of the
algorithm on hardware.

Shared/distributed memory
implementation.

Allows constant SNR
compression. User can
control the rate.

Zhaoa et al.39 Local smoothing and noise
effect has been reduced.

Fractal encoding is used
which reduces performance
at low bitrates.

Include DWT to reduce
loss.

3D MBLP42 Scalable to new sensors
data after configuration.

Nonoptimal solution high
complexity.

A new preprocessing step
(reordering of the band
according to correlation)
to be included.

Binary tree-based
decomposition43

Use of tree data structure
help to code less occurring
pixels with less number of
bits.

Tested only on context-
based entropy coding.

Implementation of
proposed BTBD technique
on a better predictor.

Shen et al.44 Very close performance,
even if the entire image is
considered ROI.

Predefined ROI in test
images.

Complexity evaluation of
the algorithm.

Development of some
automatic process to
select ROI.

Shorter bit-streams
due to separate coding of
boundary and other pixels.

RLS-OPB-P35 Improved computing
performance.

Compression performance
not improved significantly.

Further increment in the
speed-up by considering
host-to-device I/O
communication in GPU.

Multi-GPU concept
achieves high speed-up
and improves the
complexity.

Fjeldtvedt et al.45 Specifies hidden data
dependency.

Requires external memory
for implementation.

Implementation of the same
algorithm on more general
platforms such as Virtex
and sensor maximum.

Maximum throughput (both
in Msamples/s and Mb/s),
least power consumption.

Barrios et al.46 Platform independent. Poor results when
implemented on “Mentor
CatapultC.”

Implementation of CCSDS
123.0-B-1 lossy and near-
lossless versions.

LSTM-RNN47 First attempt to model
temporal correlation
dependencies in filtering
weights.

Only 30% of pixels are used
in training each LSTM
which may affect
performance.

Evaluation of the impact of
the reduced error on the
performance of predictive
compression.

Achieves minimum RMSE
for two datasets.

Implementation on GPU
and parallel architecture.

Super RLS34 Parallel implementation
with 12 parallel workers and
changing vector length.

ROI selection is a manual
and complicated task.

Implementation on GPU
and its critical evaluation.
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on the relative error. Rate control algorithm proposed in the article is a low complexity method
that gives the user a control over accepted loss. Finally, a hybrid encoder has been proposed to
improve the coding performance. Zhaoa et al.39 proposed an approach to predict the pixels of
HSI. Input image is partitioned into a group of bands (GOB) using segmentation techniques, and
intraband prediction is applied to the first band in each GOB to remove the spatial correlation.
Rest of the bands are passed with fractal encoding that performs interband prediction using the
local search algorithm. Fractal parameters and residual error thus generated are transformed and
quantized further using DCT to further remove redundancy in spatial axes. The coefficients are
further processed with entropy coder to generate bitstreams. Bogdan et al.40 evaluated the per-
formance of CCSDS 121 predictor by implementation on various hardware accelerators field
programmable gate array (FPGA). Its results can be used to design a requirement-based
FPGA for different satellites. Skip block-based distributed source coding (SB-DSC)41 technique

Table 2 (Continued).

Algorithms Advantages Limitations Future research directions

C-DPCM-RNN33 Three different network
structures have been
evaluated.

Running time and
complexity are not
considered.

Spectral clustering specific
to HS image can be
exploited.

Ineffective for the calibrated
image because of similar
corresponding spectral
lines.

Train deeper networks to
improve accuracy and rate.

Li et al.48 Complexity reduced by
parallel processing.

Complex implementation. FPGA implementation
following the same
procedure.Three different techniques

of parallel implementation
proposed. Optimization of parameters.

Afjal et al.49 Decreases the
computational complexity
involved in selection of
optimal bands for different
predictive compression.

Heuristic work only for the
images from similar
sensors.

Scaling the heuristic values
for sensors with different
characteristics.

Trial and error method is
used to obtain the number
of segments.

Evaluation of heuristics in
other prediction-based
approaches.

Proposed three band
reordering techniques.

Maximum weighted tree
had been constructed using
some heuristics that
improved the compression
performance.

Rodriguez et al.50 Data parallelism is obtained
on FPGA.

Inherits the drawbacks of
lossless CCSDS 123
algorithm such as
propagation of error for
large size packet.

Can be evaluated for
prediction algorithms with
better performance than
CCSDS.

Onboard compression
architecture utilizing less
energy than state-of-the-art
method.

Flexible for different
number of accelerators.

Cang and Wang51 Application of compressive
sensing technique
improves the compression
performance.

No standard technique for
selection of number of
groups.

Can be combined with
state-of-the-art prediction-
based compression.

Selection of second band
as reference reduces the
complexity of the algorithm.

Iterative prediction is time
consuming process.

Bascones et al.52 Achieves 50% of theoretical
efficiency.

Consumes more power
than previous
implementation but lower
than GPU.

Reduction of critical path of
pipeline.

Evaluation by increasing
the block size of image.

Claimed to be the fastest
solution compared to other
FPGA architecture.
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has been used that uses multiple encoders to code different blocks of an image after calculation
of absolute error of the image. DWT is applied on the raw input 3-D image to separate the low-
and high-frequency pixels, which can then be separately coded based on 3-D SPIHT and trans-
mitted through different channels using Turbo channel coding. Pixels blocks with mean absolute
error less than three and maximum absolute error less than four are skipped from coding.

3-D multiband linear predictor (MBLP)42 algorithm is proposed to identify redundancy in
third dimension from the information of already predicted bands using the two algorithms
namely 2-D linearized median predictor and MBLP. Residuals are then coded using PAQ8 algo-
rithm in conjunction with arithmetic coding. A compression method based on the binary tree data
structure is proposed by Shahriyar et al.43 that decomposed HSI into similar sized blocks stored
in binary tree. Entire block is coded by arithmetic coding to reduce the size of compressed data.
Shen et al.44 proposed a method that removed redundancy in the spatial domain by chaos small-
world algorithm. Spectral decorrelation is done with the help of RLS filter in which boundary
pixels and normal pixels are processed with a different technique. Multivariate Gaussian dis-
tributions encoding is used to generate bit-stream. RLS filter is also used in RLS-optimal pre-
diction band (OPB)-P35 to predict the pixel values with varying number of bands. The selection
of optimal number of bands, to be used for all the bands, is calculated from the spectral signature
of first band. The method has been implemented on GPU to reduce the compression time and
optimize the intermediary operations. Fjeldtvedt et al.45 proposed a hardware implementation of
CCSDS-123 standard, which performs local sum, local difference, and directional difference
beforehand. The dot product of weight matrix and already calculated central difference is explic-
itly performed on hardware. Residual mapping, encoding, and packing are done in the last stage
of compression to reduce the overall complexity of hardware. Barrios et al.46 proposed a different
implementation of lossless CCSDS algorithm on various high-level synthesis tools. The results
of each have been compared with existing algorithms and suggestions are provided. Super RLS34

method includes some steps such as intraband encoding, superpixel segmentation, vectorization,
RLS prediction, and entropy encoding. In the first step, spatial correlation is removed from the
input image by subtracting the arithmetic mean of neighborhood pixels from each pixel in each
band. Then, a segmentation algorithm is proposed to partition the image into small regions based
on some similarity, and leading pixels in each area are called superpixels. These superpixels
represent the entire block to which they belong, and vectorization technique is used to generate
supervoxel for each area. RLS prediction is used to create residuals for each voxel that is entropy
coded at the compression end.

Prediction based on data dependency is proposed in long short-term memory-recurrent neural
network (LSTM-RNN)47 algorithm. Since weight of the filters used in prediction is dependent on
the previous weights, this method trains a network to learn the time series data obtained in the
form of weights. Then, prediction is applied on the input image and context-based conditional
average prediction is used to reduce first-order entropy. Following which, adaptive filtering is
employed that uses gradient descent algorithm to minimize the residuals. C-DPCM-RNN33 is
another technique that uses neural network to predict the pixels of spectral bands after sufficient
training. In the algorithm, different predictors are used to predicting each spectral line. First band
is directly encoded and transmitted, from second band to N’th band. C-DPCM is used to gen-
erate the residuals. (N þ 1)’th band onward, a trained deep neural network is used, where N is
the prediction order selected after obtaining the training accuracy. Li et al.48 proposed a faster
implementation of prediction-based compression C-DPCM on GPU. The algorithm proceeds by
clustering of spectral lines into M classes using k-means algorithm. Calculation of prediction
coefficients for each class using traditional DPCM on GPU, followed by encoding of the residual
image. RWA-C24 already discussed in transformation-based technique can be classified in this
category. Afjal et al.49 evaluated the effect of band reordering on context-based adaptive lossless
image coder and lossless CCSDS prediction-based compression algorithm. Band reordering is
the technique that rearranges the band sequence in the image to be compressed to code good
predictor bands first that will affect the prediction of later bands. Three different approaches used
to find optimal band reordering are proposed that are based on various heuristics. Band reorder-
ing based on consecutive continuity breakdown heuristics (BRCCBH) obtains the highest cor-
related bands first and rest bands are arranged in decreasing order of correlation. Band reordering
based on weighted-correlation heuristic assigns some weight values to current bands in the
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reordered list and uses weighted correlation factor initialized either by first band or maximum
correlated pair. Based on segmented of bands (BRSB) divides the bands in set of multiple seg-
ments using average correlation value, which is followed by BRCCBH for band reordering.
Rodriguez et al.50 proposed another technique for hardware acceleration of lossless CCSDS
123 algorithm. It uses dynamic and partial reconfiguration-based architecture that manages
HyLoC, a low complexity compressor core for fast and real-time compression. The number of
cores can be modified according to the requirements of application that make it a ready to use
hardware platform. Prediction-based reconstruction is proposed by Cang and Wang51 in the
article utilizing compressed sensing and interspectral reconstruction. Similar bands are grouped
by correlation factor, and a standard band is selected in each group (second band is generally
chosen due to band correlation). Gaussian matrix is used to sparsely represent the standard refer-
ence band. General bands are predicted from the reference band itself iteratively by reducing the
error until considerable lossy image is obtained. A low complexity predictive lossy compression
algorithm is implemented on space qualified hardware accelerator Virtex-5 by Bascones et al.52

The algorithm is highly pipelined with minimum use of FPGA and multiple steps working
together.

Research challenges and future directions. Prediction-based compression has several
benefits over transform-compression such as low-complexity, better performance for average,
and large BR.30 It supports optimum global results, as an entire image is used at once by the
algorithm for prediction. Near-lossless compression can be achieved by prediction compression
with the help of a quantizer.53 This technique has many drawbacks such as low performance,
poor fault tolerance, and error propagation, and images are processed only after conversion of
3-D matrix into 2-D matrix that too on the small neighborhood. Performance of existing algo-
rithms can be improved by the development of hybrid algorithms, i.e., combining two or more
techniques, including new filters and considering an optimal number of prediction bands. Error
mapping with residuals and selection of learning parameters with compressed sensing technique
can significantly increase the performance. Modifications in prediction-based HSI compression
can lead to an optimal solution for all applications.

2.1.3 Vector quantization

Overview. VQ is a data compression technique that takes 3-D HSI data cube as input and
returns a compressed image. Two significant steps of VQ are training (codebook generation) and
coding (code vector matching).54,55 Quantization is mostly used along with transform-based or
learning-based techniques as it uses a training algorithm to generate an optimal codebook.
Algorithms based on VQ have high complexity, so the principal objective of the method is
to develop an efficient algorithm that has fast execution.56 State-of-the-art algorithms in the
field are vector quantization principal component analysis (VQPCA)57 and online learning
dictionary.58

Technique. Compression using VQ can be divided into three phases:59 the first phase that
generates codebook is called the design phase. The second phase is the encoding phase in which
HSI is taken as input and converted to blocks and then to n-D vectors. Followed by a search
algorithm that is used to find an optimal vector in codebook with minimum distortion and its
index is sent to the receiver. Encoding phase can be better understood by Fig. 4. After this third
and last phase starts called the decoding phase, the index at the receiver is searched in codebook
already present at the decoder end, and code-vectors are regenerated to reconstruct entire image.

A state-of-the-art VQ method was proposed by Li et al.60 in which input pixels are clustered
using correlation vector (CV). Least square residual is then used to predict the spectral bands of
each cluster. The residuals are encoded using the concept of VQ with minimal side information.
The algorithm has been implemented and evaluated for most of the applications. Báscones
et al.57 proposed a algorithm (VQPCA) based on the concepts of wavelet transform, VQ, dimen-
sionality reduction techniques such as PCA, and standard spatial compression technique
JPEG2000. The raw pixels are decorrelated using VQ, which are then passed by PCA to obtain
the important components in a few bands. JPEG2000 is applied to the bands with maximum
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information and the resultant is transmitted or stored after entropy coding. It results in a lossy
image compression technique, which can be extended to near-lossless one after slight
modification.

Table 3 presents their advantages, limitations, and future directions.

Research challenges and future directions. Some advantages of the technique are
near-lossless compression algorithm and better compression performance. It also has some chal-
lenges associated with it like the requirement of substantial resources for codebook generation,
more processing time61 to convert a large number of pixels into vectors. Due to seasonal change
and atmospheric effects, a single codebook cannot meet the demand of onboard compression and
generation of various small codebooks is costly.

2.1.4 Compressive sensing

Overview. The technique is famous for on-board compression algorithms as it shifts the
computation complexity of encoder to the decoder. It is used in real-time compression as it
senses a small chunk of data, compresses it, transmits the compressed data to the receiver, and
then accepts another piece. State-of-the-art algorithms for compressed sensing are sparsification
of HSI62 and reconstruction (SHSIR), reweighted Laplace prior-based HCS (RLPHCS), OMP,
and structured sparsity (SSHBCS) that show better performance for small BR. The main objec-
tive of compressive sensing is to reduce memory usage during computation.63 It can also be used
as the hardware-based or traditional64 software-based.65

Technique. Some algorithms based on compressive sensing are listed in Table 4 for better
comparison. Compressive sensing algorithms have the concept of different encoding and decod-
ing algorithms, which can be described using three steps. HSI signals are sensed at the encoder,
and very few samples (sensing matrix) of this 3-D image are converted to a 2-D matrix of dimen-
sionN × B, whereN ¼ number of pixels and B ¼ number of bands. This matrix is converted to a
2-D matrix of much smaller dimension by applying different algorithms. This small matrix is
encoded and transmitted through a channel. Then, next part of the same image is sensed, and the

Fig. 4 Encoding phase of vector-quantization technique.

Table 3 VQ-based HSI compression techniques.

Algorithms Advantages Limitations Future research directions

Li et al.60 Evaluated for CA and
anomaly detection
techniques.

The inappropriate process
to generalize the number of
clusters.

Optimize the process of
generation of CV.

VQPCA57 Speedup of 12% to
16% in execution time.

Parameters are optimized
according to a particular
configuration.

Nonlinear dimensionality
reduction techniques can
be applied.

Optimization of parameters
for different applications.

SNR and CR improve
consistently.

Dua, Kumar, and Singh: Comprehensive review of hyperspectral image compression algorithms

Optical Engineering 090902-13 September 2020 • Vol. 59(9)



process is repeated until the entire image is sent to the decoder. The decoder reconstructs all the
samples together and thus has high complexity.

An existing technique proposed by Xu et al.66 divided the input HSI into blocks, with each
block having its reasonable bit rate. Multiple linear regression is applied to obtain side infor-
mation for each one. Optimal quantization step size is assigned, which can help in efficient
decompression separately. CSDL-JP267 is another state-of-the-art compressive sensing technique
in which matrix of measurement code is used to generate a database for coded snapshots. Real-
time compression is done by deciding on encoder from snapshot database. A deep neural net-
work is used by the sparse recovery algorithm to regenerate the original image. Gunasheela and
Prasantha+62 proposed SHSIR method with the following steps. Image is first represented in 2-D
matrix of size (P × B) dimension, where P ¼ number of pixels per band and B ¼ number of
spectral bands. Then, compressive sensing is applied in spectral axis. Linear mixing model is
used to approximate the resultant matrix. Parameters of which are optimized by Bragman iter-
ation. This method was extended by generating spectral vectors for each spatial pixel. The com-
pressed image using SHSIR62 is modeled by the linear operator, and convex optimization is used
with compressive sensing technique to improve the performance. his-CSR68 is a method that can
reconstruct the original values of pixel by sensing a small part of it. The algorithm consists of two
stages namely sensing and reconstruction. A random matrix is used to obtain the measurements,
which is combined with the parameters and multipliers to get the initial image. Blocking tech-
nique is then used to group the tensor cube, its output is k-NN classified followed by stacking.

Table 4 Compressive sensing-based HSI compression techniques.

Algorithms Advantages Limitations Future research directions

Xu et al.66 Low encoder complexity.
Prevents error propagation
in spatial axis.

Rate distortion not optimal. Hardware implementation
by compressing blocks at
the same time due to their
independent nature.

Gunasheela and
Prasantha62

Low memory requirements. Decompression complexity
is very high.

Parallel implementation at
encoder site.Low complexity at the

encoder side.

CSDL_JP267 Low power requirements.
High operation time.

The complex sparse
recovery algorithm.

More efficient
decompression technique
should be incorporated.Low complexity at the

encoder.
Parallel implementation of
the decompression
algorithm.

SHSIR62 Performance is calculated
for different sampling rates
and noise level.

Compression time is high. Optimize for images with a
large number of end
members.

HSI-CSR68 Minimization problem is
handled by an ADMM
technique.

Only considers
decompression or
reconstruction stage, so
cannot be used for the
images compressed using
different techniques.

Can be implemented for
image compression after
evaluating the suitable
compression technique.Utilizes the concepts of

nonlocal tensor sparsity
and low rank property over
spatial and spectral domain
of HSI.

Claimed a better
reconstruction algorithm
based on compressive
sensing technique.

Provided better results for
noise suppression,
classification accuracy, and
quantitative assessments.
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It is followed by reconstruction step where nonlocal similarity and low rank approximation is
utilized to regain the original image.

Research challenges and future directions. This technique has many benefits as low
encoder complexity, smaller memory requirements, low bandwidth for transmission, and better
performance. Contrary to this, there are many challenges in the technique such as expensive
decompression, identification of the sensing matrix as it should follow isometric, and full rank
property.69 Reconstruction hisHSI70 is a very complex process involving spectral unmixing and
convex optimization. Its use in real-time compression can be a great achievement if bulky com-
putation devices can reduce decoder complexity. Another future dimension opens up due to the
fact that most of the applications require synchronized rate of encoder and decoder that has not
yet been considered in any article.

2.1.5 Tensor decomposition algorithms

Overview. Tensor decomposition is one of the latest techniques for image compression that
gives high performance compared to traditional methods. Tensor could be considered as an n-
dimensional matrix, which can be decomposed very easily. In this technique, HSI is stored into
3-D tensor (Y) and one of the TD techniques70 is applied to decompose the 3-D tensor (Y) into
lower dimension tensors (X). Decomposed tensor is then encoded and transmitted through the
channel. Some state-of-the-art algorithms of the techniques non-negative tucker decomposition
(NTD)8-DWT, convolution neural network (CNN)31-NTD, and NTD-DCT12 have shown excel-
lent results.

Technique. The technique is mostly applied along with some techniques such as transform-
based, learning-based, or prediction-based. The steps of the algorithm are described in Fig. 5.

Genetic algorithm-based compression technique has been proposed by Karami et al.71 named
particle swarm optimization (PSO) NTD. The algorithm follows the procedure in which NTD is
applied to the original image, which is then combined with the linear mixing model. It generates
a smaller tensor with reduced dimensions and three factor matrices that is a temporary decom-
position. The optimization problem is solved by applying genetic algorithm (GA) with various
parameters and multiple mutations are performed to obtain a final optimized solution. The objec-
tive is to minimize the root mean square difference between multiple matrices of input and
decompressed image. Rajan and Murugesan proposed a hybrid algorithm DWT-TD-ALS-
RLE72 based on adaptive least square (ALS) and run length encoder (RLE). In the method,
2D-DWT is initially applied on each band across spectral domain to remove redundancy.
Coefficients of each band are combined to generate a 3-D tensor, which undergoes TD along
with ALS to obtain reduced tensor with minimum error. It is followed by RLE to generate bit-
stream that can be transmitted or stored in comparatively less bandwidth or memory. The original
image can be reconstructed during decompression. Dictionary learning technique is used in ten-
sor decomposition in multidimensional block-sparse representation and dictionary learning
(MBSRDL).73 his is initially represented as a 3-D tensor and three dictionaries are trained using
the sophisticated dictionary learning algorithm. Both spatial and spectral domains are com-
pressed separately using TD. Tensor decomposition has also been used along with deep learning
technique in CNN-NTD,31 where CNN-based transform is proposed to transform large-scale

Fig. 5 Tensor decomposition compression technique.
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spectral tensor into small-scale. Then, NTD is applied to further reduce the dimensionality of
small scale tensor obtained in first step. Resultant tensor has been transformed into frequency
domain using 3-D DCT to remove spatial and spectral correlation. Entropy encoding is used to
generate bit streams from the high energy coefficients. Aidini et al.74 proposed another tensor-
based compression in which compressed image is quantized and transmitted to Earth, where it is
decompressed and analyzed for processing. Tensor recovery algorithm proposed in this article
is an extension of quantized matrix recovery that obtains the original dimensions of the image.
It is then passed to super-resolution algorithm that uses coupled dictionary learning to regain
the original pixel values. The problem of identification of matrix pertaining to a particular signal
is solved using alternative direction multiplier method (ADMM). A CNN network is proposed
to learn spatial features from high-resolution images that obtain remarkable results. Critical
analysis and future scope of the tensor-based technique are listed in Table 5.

Research challenges and future directions. These algorithms have high compression
performance with reduced run-time but it suffers from many limitations. High computation com-
plexity, manual parameter updating procedure, data dependency, etc. are some of the challenges
in the method. The future scope in this technique is to utilize the parallelism existing in the
algorithm for parallel implementation. It can also be extended to automate the process of selec-
tion of dimensions to compress image at a particular rate. Also, more hybrid algorithms com-
bining tensor-based compression and other such techniques can be developed.

Table 5 Tensor decomposition-based HSI compression techniques.

Algorithms Advantages Limitations Future research directions

PSO-NTD71 Application-oriented
compression

Fast sub-NTD requires
many end-members, so it
cannot be applied to
radiance data.

Parallel implementation of
the algorithm.

DWT-TD(ALS)-
RLE72

Less complexity with the
use of ALS.

High memory consumption
and the processing time.

Development of RLE
compression algorithm.

Simplifications of tensor
calculations.

Different PSNR value for
different bands of HSI.

MBSRDL73 Retains the structural
features of the image to a
more considerable extent.

Not suitable for high
sampling rats.

Apply different TD methods
to improve efficiency.

Fast computation speed
under scarce resources.

CNN-NTD31 Low-complexity even
though it uses CNN
and NTD.

Implementation of the
proposed NTD is a
difficult task.

Parallel implementation of
the learning algorithm to
reduce complexity.

Combining the Distributed
source coding scheme with
CNN.

Training and constructing
more complex CNN for
compression.

Aidini et al.74 Proposed method
addresses the problem of
multilevel quantization in
classification.

Application-oriented
compression and
reconstruction.

Method can be generalized
for applications other than
classification.

Overcomes the limitations
of compression to improve
the classification accuracy.

Can reconstruct the original
real values of pixels.
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2.1.6 Sparse representation algorithms

Overview. The technique compresshisHSI using very few values from a range of pixel val-
ues using some quantization method and values near to zero are dropped. It helps to reduce the
use of storage and bandwidth by coding only a small set of values. It is mostly used in the
classificatihisof HSI as features could be separated by a distinct boundary when sparse repre-
sentation is used. The technique helps in the ROI-based compression when combined with learn-
ing-based compression. Some state-of-the-art algorithms in the technique are compressive-
projection principal component analysis,75 GIST, SpaRSA,76 spectral–spatial adaptive sparse
representation (SSASR),77 and TwIST.76

Technique. Sparse coding is used by multiple algorithms in different style,and a generalized
and in-depth description of the technique is given in Fig. 6. First step of the algorithm is vecto-
rization in which pixels with different features are mapped and converted to vectors. Next step is
sparse coding where these vectors are converted to sparse vectors, which are then encoded into
bit-streams. Algorithms based on sparse representation within the scope of this article are
described below. Table 6 provides their advantages, limitations, and future research directions.
SSASR method was proposed in 2017 for transformation of spectral signatures of pixels to
sparse coefficients, most of which are zero. Superpixels are obtained from the image to divide
a large size image into multiple blocks of small size, which are converted into vectors of equal
size. Adaptive sparse coding is then applied to generate sparse coefficients. These pixels are
quantified by discrete quantization, which are then encoded by Huffman coding to generate the
bitstream. Jifara et al.77 proposed a method based on the spectral curve, which is unique for
different materials. Spectral curve is described by sparse dictionary that gets updated using the
concept of online learning. It is a lossy compression technique that uses the proximity-based
optimization technique. Online dictionary learning58 reduces the time and cost associated with
large size of dictionary coding and transmission, and it learns iteratively by selecting one item

Fig. 6 Sparse-based technique.

Table 6 Sparse representation-based HSI compression techniques.

Algorithms Advantages Limitations Future research directions

SSASR77 Optimal execution time. Inadpative for different
images.

The process to select many
superpixels is needed in the
algorithm.

SNR depends on many
superpixels.

Fu et al.78 Loss in spectral information
is minimal, compared to
other algorithms.

Not suitable for small BR. Quantization parameter
should be changed to
obtain better results at
small BR.

Online learning58 Spectral clustering method. Only compression
performance is considered.

Evaluation of complexity of
the algorithm.Better performance than

other algorithms.
Reduce the existing
complexity.

SpaRSA76 Application-oriented
performance evaluation.

Fails for anomaly detection
at 0.1 bps rate.

Parallel implementation of
the algorithm.
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from training set. An advantage offered by this method was sparse representation of the spectral
curve of blocks of pixels. SpaRSA and GIST proximity-based optimization algorithms have
shown the optimum results for the purpose of anomaly detection.

Fu et al.78 clustered original pixels into general-pixels represented by simultaneous sparse
coding, which gives only nonzero coefficients. Coefficients are quantized using some threshold
value that is a bit rate deciding factor. Quantizer gives the control to user to decide the quality of
the reconstructed image by modifying the bit rate. Quantized coefficients are further compressed
by DPCM filter and converted to binary bitstream by Huffman coding. Another state-of-the-art
algorithm for sparse representation algorithm is SpaRSA76 that has the following steps. One
element from the training set is taken at a time to update the dictionary of pixels. Sparse rep-
resentation is used to store the coefficients with a loss function of optimization algorithm.
Dictionary update and dictionary learning are the two algorithms used to minimize the loss func-
tion for application-specific compression. CSDL-JP267 categorized under compressive sensing
technique is also an example of sparse representation algorithm that has very high computational
complexity.

2.1.7 Multitemporal compression algorithms

Overview. Multitemporal HSI is a set of HSIs79 collected from the same location at a differ-
ent time. A new temporal (or time) domain gets added to the original 3-D image matrix, forming
a 4-D matrix. It can be thought of as video compression, but the concept of video and multi-
temporal is entirely different. Compression of the 4-D image80 is called multitemporal compres-
sion or 4-D compression, which is very important for military operations, disaster management,
prevention from calamities, space observation, etc.

Technique. 4-D HS image with details is given in Fig. 7, where ðx; yÞ and z represent spatial
and spectral domains, respectively, and T represents time domain. All four parameters are var-
iable in a 4-D image.

Multitemporal compression81 is obtained by enhancing the 3-D prediction-based technique to
4-D prediction based for temporal decorrelation. Lossless compression is expected in 4-D
images as these are processed and used by automated programs running on the computer.
Methodology of some state-of-the-art algorithms is presented below. Table 7 provides their
advantages, limitations, and future research directions. Zhu et al.79 proposed a compression algo-
rithm applicable on temporal HSIs using the concept of change detection. A reference image is
selected among the multitemporal images that should be present at the decoder end. Matrix
operations are used to detect change in temporal domain of images with respect to the reference
image. It suggested three techniques for efficient compression of 4-D images starting from like-
lihood ratio of the detected to spectral concatenation and independent approach. Two temporal
HSIs are concatenated on the spectral axis forming a single HSI with twice the number of bands
as original in the spectral concatenation method. Independent approach ignores the reference
image at all during spatial decorrelation. In all the three techniques, PCA, SubPCA, and

Fig. 7 Multitemporal HSI.
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DWT spectral transforms are applied on the images to improve the compression performance by
reducing the number of bands and spatial data to be coded.

Shen et al.36 proposed an adaptive learning-based compression of multitemporal HSIs. It
used correntropy least mean square (CLMS) algorithm for prediction of pixels on the basis
of already predicted spectral and temporal information. The performance of the method is com-
paratively high due to the presence of temporal correlation. It ensures lossless compression by
coding the prediction error using Golomb rice coding and arithmetic coding. The method was
further improved with the help of fast-lossless-4D predictor81 in which pixels are predicted by
using a linear combination of neighboring pixels in all four dimensions. By subtracting data with
their local mean in each band and then for each pixel in a band in raster scan order. Taking its
residual and finally updating the weight parameter. Residuals are encoded by entropy coder at
the compression end and the decompression follows an exact reverse of the compression steps.

Research challenges and future directions. Implementation of 4-D compression algo-
rithms is quite easy as traditional 3-D algorithms are extended to the fourth dimension.
Complexity that includes running time and computation resources is very high for these algo-
rithms. Future scope of the technique is to develop hybrid algorithms combining prediction-and
learning-based techniques. Performance of transform-based technique can be evaluated in the
temporal domain.

2.1.8 Learning-based algorithms

Overview. It is one of the most popular techniques as it involves machine learning and deep
learning in compression. The method has always been studied along with prediction-based tech-
nique as it also predicts pixel values. However, it has widely known features that learn and update
parameters automatically. It82 is used with all other techniques after little modifications and
achieves better performance. Some acclaimed machine learning algorithms applicable in the
technique are SVM,13 artificial neural network (ANN),83 backpropagation network,84 CNN,31

independent component analysis (ICA)/PCA,85 and clustering algorithms.16

Technique.

• Comprehensive analysis of the algorithms is done by describing their methodologies.
ANN-based algorithm was proposed for compression of HSI by Masalmah et al.83 that
follows the given steps. The original image was first divided into sub-blocks, and corre-
sponding column vectors are arranged into matrices. A neural network is proposed with
input, hidden, and output layers having neurons corresponding to the size of sub-blocks.
Output matrices of the hidden layer and output layer are calculated after simulation of
weight and biases. Input layer contains the original image whereas the output layer con-
tains decompressed image. A hidden layer with a smaller number of neurons contains
compressed image. Postprocessing is done to obtain the decompressed image. Jiang
et al.86 proposed a deep belief network (DBN) for estimation of parameters of Golomb

Table 7 Multitemporal-based HSI compression techniques.

Algorithms Advantages Limitations Future research directions

Zhu et al.79 Change removal approach
preserves temporal
changes with high fidelity.

PCA and sub-PCA are
used which have high
complexity.

Different spectral
transforms techniques can
be applied.

CLMS36 Better prediction in terms of
lower bit rates.

Performance improvement,
due to many bands and
small BR, decays fast.

Hardware implementation
of the algorithm.

Fast lossless 4D
predictor81

Exploits temporal
redundancy.

Very less publicly available
data.

Extendable for real-time
compression.

A method of data collection
by SOC700 HS camera.
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rice coding algorithm used to compress HSI. DNN is used to select the best coding param-
eters for compression by treating it as a pattern classification problem. DBN is trained, and
then the real estimation of parameter starts. At last, Golomb rice coding is used to encode
the image. In 2019, another method based on neural network was proposed in block-based
interband predictor84 using multilayer propagation neural network (BIP-MLPNN). Each
band is converted into a matrix of dimension (256 × 256), with values mapped from [0, 1]
after preprocessing. Input the image modeled by hidden and output layers using tansig and
purelin as transfer function, respectively. Modify weight, bias, to minimize the error and
finally encode the bias, weights, and residuals. Decoder network is the same as encoder
followed by normalization and reverse mapping. C-DPCM-RNN33 and LSTM-RNN47 dis-
cussed in prediction method is an example of use of neural network in compression.

• The use of CNN in compression of HSI can be observed in the algorithm named
prequantization.87 The input image is compressed by a lossy predictor that uses the
CCSDS standard along with quantization of raw pixel data before prediction. The residuals
thus generated are coded by entropy coding. At the decompression end, CNN is used to
reconstruct the original image with some induced loss. Network is trained with some data
different from the original image, with the predefined constant learning rate. The perfor-
mance of the decompression can be significantly improved along with the decrease in time
due to pretrained network. CNN-NTD31 algorithm discussed in tensor decomposition
method can also be categorized under learning-based compression due to the use of deep
learning (CNN) in its first step. An application-oriented compression has been proposed by
Sujitha et al.88 that used the concepts of Lempel Ziv Markov chain algorithm (LZMA)
coder to generate the bitstreams. CNN-LZMA is the algorithm that learns to generate the
compact representation of the raw 3-D image. Reduced dimensions are subsequently coded
with LZMA, an enhancement of Lempel Ziv Welch (LZW) coder. Reconstruction is
obtained by LZMA decoder followed by residual learning to train the CNN at decoder
side, which reverses downsampling to regain the original image. 3D-DCT-SVM,13

PCA-DCT,17 folded PCA,18 WPCA,19 and Giordano and Guccione16 discussed in trans-
formation method is an example of use of machine learning in compression. Similarly,
VQPCA57 from VQ method and CSDL_JP267 from compressive sensing can also be cat-
egorized under learning-based compression.

Table 8 provides the advantages, limitations, and future research directions of these algorithms.
Figure 8 shows general steps of learning-based algorithm using CNN and some transformation
function to compress an his. In the first step, CNN is applied to compress 3-D data cube
representihisHSI. Then, transform-based algorithm does domain transformation of a smaller
3-D cube and then coefficients are encoded. In backward CNN, original image is reconstructed
by applying CNN again with minimal error.

Research challenges and future directions. The method sustains high complexity of
machine learning and deep learning algorithms. It also requires more resources but can be easily
implemented in hardware and other HPC architecture. The method can be improved by imple-
menting the fundamentals of deep learning and advanced machine learning in compression and
developing more hybrid algorithms with automated processes.

2.2 Categorization Based on Various Parameters

In this category, the algorithm is classified based on six parameters such as the loss associated
with compression, the platform where compression is performed, ROI capability, application of
compression, strategy to start compression process, and implementation environment. These
parameters are selected for categorization since the process directly or indirectly depends on it.

2.2.1 Based on the output of the compression algorithm

It determines the quality of the image obtained after compression. The output of the algorithm is
the most important factor that depends on task to be performed on the compressed image. Some
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pixels lose their original value during the process and some error is induced in them. Quality of
resultant image is inversely related to the induced error. There are three methods of compression
based on the quality of the reconstructed image.

Lossy. Lossy compression can be defined as the process of compression in which the original
image cannot be restored in the reconstructed image. Some information is discarded at the com-
pression end, which cannot be recovered during decompression. It is mainly used when the
application is error-tolerant, i.e., specific loss in data has no effect on the output. It results
in high compression performance by reducing the size of the compressed image and thus main-
tains a trade-off between space and precision. Lossy compression is dominated by hardware
implementation.89

Lossless. It consists of the techniques that can precisely reconstruct the original image with-
out any loss of information. Used in applications where even small loss in error is not acceptable
such as military operations, global positioning system (GPS) tracking, and target identification.
Lossless compression90 results in reduced compression performance, i.e., CR. In HSI compres-
sion techniques, lossless compression is preferred as these images store important information
that is used in the analysis, classification, target identification, etc.

Table 8 Learning-based HSI compression techniques.

Algorithms Advantages Limitations Future research directions

ANN83 Different training
techniques are considered
with their performance.

Effect on quality due to
unmixing of HSI.

Spectral decorrelation can
be applied before this
algorithm.

DBN86 Simulation is performed
on synthesized data.

Computational complexity
is high.

Implementation of modified
DBN as proposed in the
article.

No assumption (such as
geometrical distribution of
data) is considered.

Estimation of correlation in
generated features.

BIP-MLPNN84 Residuals are not coded
using entropy encoder.

Poor performance than
CCSDS in low variance
data.

Use of the deep neural
network to improve the
accuracy of the predictive
model.

Prequantization87 Faster than the lossy
version of CCSDS
standard.

Train and test dataset are
strictly disjoint.

Applying the same
algorithms to different
sensors data such as
ultraspectral sensors.

CNN-LZMA88 Real-time data generated
at a speed of 10 to 20 Mbps
can be encoded in real time
by LZMA.

Large size dictionary
reduces the performance.

Execution on real-time
hardware and applications
other than industrial IoT.

Claimed to be executed in
scarcity of resources.

Focuses on the structural
information existing in the
image.

Modification of
hyperparameters of the
CNN model.

Fig. 8 Steps of CNN-based compression technique.
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Near-lossless. The term has been used interchangeably as “controlled-lossy” compression,
which means a loss in information can be controlled according to desired compression perfor-
mance. It can be understood as a fuzzy set between lossy and lossless compression that changes
its form according to the application. It can be used in medical imaging, remote sensing, etc.
Moreover, very few works have been done in this field, and the area needs more exploration.91

2.2.2 Based on the platform where compression is performed

In remote sensing, location of data acquisition and data processing is generally different, and the
availability of resources at both locations differs. Images are acquired through satellites, flights,
drones, camera mounted at an altitude, etc., where memory devices and processing units are
limited. Sensors, installed in devices, capture signal and immediately transmit it to the receiver,
which is mostly at the ground or in space (rare case). In this work, the receiver can be understood
as a data center, which has all the resources such as many CPUs, GPUs, and unlimited memory
devices. Resource availability affects the performance and execution of the algorithm, and it can
be classified into two categories as onboard compression and data-center compression.

On-board compression. Compression performed on raw signal/images at the source of
acquisition is termed as onboard compression. Satellites or air-borne devices can carry minimal
resources that too can be affected by radiation. So these algorithms are devised to perform in
resource constraint environment.

Data center compression. HSIs are compressed at receiver, where the resources are avail-
able in bulk. Algorithms executed in this environment need not suffer from scarcity of resources
and thus have better performance.

2.2.3 Based on the region of interest capability

Performance of an algorithm can be significantly improved if a small part of the same HS image
is compressed rather than the entire image as the performance is inversely related to the size of
the image. Compression algorithms can be classified into two categories on this basis.

Region of interest-based compression. ROI-based compression can be stated as the
technique in which part of the image is compressed with high BR and remaining portion with a
small BR. A portion of the image containing vital information is identified in the first step of
such algorithms. There can be several such parts that can be compressed with the same algorithm
but different BR depending on the significance of information stored in it.

Full image compression. It is a technique in which the entire image is compressed with
the same BR, and no target identification is needed in advance. Performance of these algorithms
is not as good as the performance of ROI-based algorithms.

2.2.4 Based on the application

Compression algorithms can be classified on the basis of application in two categories: trans-
mission and storage. In either case, the output varies and steps too. The algorithm should be
developed according to the purpose it has to serve to obtain better results.

For transmission. Compression performed to transmit signal at some other location
requires a stream of bits along with header and side information. The algorithm developed
to generate a stream of bits that should not be used to construct compressed image to preserve
time and resources.

For storage. The compressed data are stored for future use, which can be reconstructed to
the original image when needed. Increased steps in these algorithms qualify it to be classified
into a different category.92
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2.2.5 Based on the strategy of compression

HSI compression algorithms can be classified into two categories based on how they consider an
original source image. This classification helps to identify the nature of the compression algo-
rithm and its steps. Basically, HSI is a 3-D tensor, but some algorithms transform it into a 2-D
array and then perform operations. While some of them consider it as 3-D cuboid and directly
compress it.14

3-D data cube. Algorithms falling in this category consider HSI in 3-D cube or cuboid and
directly apply steps of compression. Spatial and spectral decorrelation need not be performed
separately in this case.

2-D compression. Some algorithms can only be applied only on 2-D array, so they first
convert 3-D-HSI to a 2-D array. There are two approaches for the conversion, in the first
approach, each 2-D band (of size p, q) is converted to 1-D vector (of size p × q) in raster scan
order and each band is appended columnwise. The second approach is to remove correlation in
spectral dimension and apply 2-D compression algorithm in each band, considering each band as
a separate image.

2.2.6 Based on the implementation environment

Compression algorithms can be implemented in two environments, i.e., sequential and parallel
implementation. These algorithms are categorized on the basis of run-time as sequential imple-
mentation has more run-time than its parallel counterpart. All sequential algorithms cannot be
implemented in a parallel environment due to the design issue.

Sequential implementation. These algorithms do not require any specialized hardware or
machine for implementation. They get executed with high run-time on a regular machine.

Implementation on HPC architecture. Algorithms having independent blocks (that can
be executed concurrently with other blocks) is implemented on HPC architecture with reduced
run-time. There are three types of architectures on which algorithms are executed with little
modifications.

Shared/distributed memory: More than one threads or processors or CPUs are used in the
execution of the algorithm to reduce the time complexity. It uses some software libraries
such as open multiprocessing (OpenMP)93 and message passing interface to get the benefit
of shared and distributed memory architecture.94

FPGA: FPGA is specialized electronic hardware that is used to run algorithm in less time with
improved performance. There are many FPGA devices available,95 which can be selected
based on their performance and need in compression.

GPU: GPU is an electronic circuit that is used to implement compression algorithms after a
small modification. It also improves the complexity and speeds up the execution by per-
forming CPU operations at very high speed.96 It has many cores and inherent character-
istics of parallelism, with a considerable overhead of communication between CPU
and GPU.

An HSI compression algorithm may come under more than one category according to its
features. Table 9 classifies algorithms according to these categories, where some abbreviations
are used. Compression performed at the location of acquisition and at the data-center is repre-
sented by onboard and DC, respectively. ROI represents the ability of the algorithm to support
ROI-based compression. Algorithms considering input image as 3-D data cube or transforming
3-D tensor to 2-D matrix for compression are represented under the strategy. Implementation
environment where algorithm is implemented is sequential implementation (seq), shared
memory/distributed memory (SM/DM), GPU, and hardware accelerators such as FPGA.
This categorization helps us to find out the scope for future research according to exploration
level.
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3 Discussion

This study is focused on the recent techniques in the first place, thereby limiting the number of
papers to 63 and omitting others to give a fresh outlook of the problem. The perspective of this
work is limited to remote sensing applicability of HSIs, excluding the algorithms used for com-
pression of images of other domains, say, medical, food processing, security, etc. The summary
of traditional techniques used before 2006 can be obtained in the book edited by Motta et al.97 It
contains the detailed analysis of various lossless and near-lossless compression techniques
including prediction-based, transform-based, and VQ-based. Sanjith and Ganesan98 presented
a review of HSI compression algorithms focusing on the methodology. It considers the tech-
niques that can be used for onboard compression of HSI without categorizing the algorithms
in detail. An analysis of the algorithms based on statistical or wavelet-based techniques is pre-
sented by Babu et al.99 The perspective of the review is strictly based on the results obtained from
the algorithms, and it also considers the standard techniques used for video compression.
Majority of the algorithms have their focus on onsite compression to reduce the transmission
overhead. Dusselaar and Paul100 summarized the available literature with experimental data on
the datasets. The focus of the survey was limited to specific processes based on inter- and intra-
band compression and different coding techniques. A study of satellite image compression tech-
niques is presented by Gunasheela and Prasantha.101 It provides a quantitative analysis of the
algorithms with respect to evaluation metrics such as complexity, peak signal-to-noise ratio
(PSNR), error, bitrate, and CR. A comprehensive study of compression techniques focusing
on the medical images is given by Hussain et al.92 It presents summary of various algorithms
along with limitations and compression rates. A review of the lossless compression techniques
based on FPGA implementation is made available by Rusyn et al.40 It mentioned the recom-
mendations for the development of onboard compression hardware along with advantages and
disadvantages of each technique.

The modern compression standard used by satellites in space mission is developed by
CCSDS-123.0-B-2102 for compression of HSI. It used a closed-loop quantization scheme pro-
viding low-complexity near-lossless compression performance. It gives user the capacity to con-
trol the compression rate by predeciding the values of relative and absolute error. Performance is
slightly decreased due to unavailability of the original data samples at the decompression end,
and prediction is made possible only with the help of representative pixel values.

In this review, we divided major algorithms into eight different categories depending on the
similarities and dissimilarities, discussed as a part of their definitions. Figure 9 shows a chart
showing the frequency of algorithms in various categorization types. It can be observed that most
of the techniques fall into transform-based compression. The reason for the same being the
extension of traditional 2-D compression. This is followed by prediction-based compression,
which is the most favorable technique for HSIs, and it provides optimum performance in terms
of CR and BR. Few algorithms in VQ technique are due to the fact that it is only applied in
combination with other methods providing exclusive benefits to existing ones. Multitemporal
compression includes only three algorithms as its development is still in the nascent phase.

Fig. 9 Chart representing number of algorithms in different category.
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Learning-based compression is used very often due to the features of machine learning and deep-
learning techniques. It also provides optimum performance in terms of application-specific
parameters such as classification accuracy (CA), cluster metrics, and anomaly detection.

The analysis of Table 9 concludes that parallel and hardware implementation of compression
algorithm can be explored as it has many benefits such as reduced computation time, reduced
computation power, improved performance, etc. Algorithms under ROI-based compression are
very few though they provide better BR and compression performance. Similarly, researchers
have not much focused on near-lossless compression algorithms as they are application depen-
dent and require clear objectives at the initial stage. This classification can help to understand any
HSI compression algorithm better and work on application-specific compression.

It can be observed from Fig. 10 that majority of the algorithms have used PSNR as the first
metric for evaluation. Quality of image is an essential factor for compression algorithms, which is
calculated by PSNR. Size of the compressed image is calculated in the form of number of bits used
to store a pixel multiplied by total number of pixels. Second important metric used to compare the
performance of algorithms is BR that represents the number of bits processed per unit time. It can
also be observed that 13% of algorithms use CR as a metric to measure the performance of an
algorithm by obtaining a ratio of the size of decompressed image to size of compressed image in
bits. SNR is also used by most of the algorithms followed by CR that represents the amount of
information present in the reconstructed image compared to the presence of noise/error. As men-
tioned in the previous section, time taken in the process of compression and decompression is a
crucial point to be taken care in majority of the applications. Execution time is used by 10% of the
algorithms as an evaluation metric, which is followed by mean square error (MSE). HSIs lack
psychovisual properties and are used by particular applications such as classification, anomaly/
target detection. So, another metric used to analyze the quality of decompressed image relies upon
under classification parameters, such as CA, ROC curve, etc. Absolute and relative errors and
structural and spectral parameters are also used by few algorithms. Parallel compression algorithms
use speedup, throughput, power, and compression time to evaluate the performance. It can also be
concluded that few important metrics have not been considered by these algorithms, such as edge
preservation index (EPI). EPI is a measure of the number of edges preserved in the image recon-
structed after compression. Although it is widely used in medical images, it can improve the quality
of HSIs also by maintaining the minute details.

An analysis of the datasets used by the techniques considered in this review is shown in
Fig. 11. The detailed table with each algorithm and dataset can be found in the supplementary
section, Annexure 1. Public dataset in the diagram is a combination of HSIs obtained from differ-
ent sensors and available in public domain. Various sample images are calibrated and uncali-
brated Yellowstone scenes from AVIRIS sensor, Cuprite, Jasper Ridge, Moffett, Washington DC,
Lunar Lake, low altitude, and CCSDS standard HSIs. It also includes Indian Pines, Salinas,

Fig. 10 Statistics of metrics used by algorithms.
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Kennedy Space Center, Pavia Centre and University, Urban data scenes, Levada sequence, etc.
Datasets from HyperION, HICO, Modis, HYDICE sensors, and multispectral images of various
buildings, cities, and mountains. 81% of the algorithms have used these publicly available data-
set, which makes the validation easy. Results can be verified by implementing the algorithms in
the same environment on the same datasets as supplied by individual authors. Similarly, it can be
analyzed that 19% of the techniques have used self prepared HSIs for evaluation of their algo-
rithms. These datasets may or may not be available in public domain. Some other datasets used
by HSI compression techniques are aerial view of the Suwanee natural reserve (SUW) with a size
of 360 × 320 × 1200, Beltsville crop fields, Maryland, (BEL), whose size is 360 × 320 × 600,
satellite view of Reno, Nevada (REN), size 356 × 320 × 600, an image of the Cuprite Hills
(CUP) of size 188 × 350 × 350, scene of Hawaii, (HAW) with 614 bands and image from
Maine, (MAI) with 680 bands, and seven images from Yellowstone National Park (YEL) each
of size 224 × 512 × 677, where values indicate number of rows, number of columns, and number
of channels, respectively.

HSI compression algorithms considered in this review address the issue of the large size of
the image by reducing the size. While accomplishing the main objective, many challenges are
observed such as compression time, scalability, flexibility, resource usability, etc., that create
differences. These challenges provide an unfilled spot that should be filled by following future
research directions as discussed. The majority of algorithms do not consider the decompression
phase that could address the problem of reconstruction. Some challenges are summarized as:

• Minimal research is done in developing parallel HSI compression algorithms which have
reduced complexity in other domains.

• Several improvements are required in 4-D image compression, which is in its nas-
cent phase.

• Different TD techniques, other than NTD, can be applied to reduce the size of an HSI
data cube.

• With the advent of deep learning techniques, the performance of learning-based algorithms
can be improved to a significant extent.

• Performance improvement in near-lossless compression.
• Less priority given to real-time image compression and its analysis.
• Minimal availability of application-oriented compression algorithms.

We propose an adaptive framework for HSI compression to overcome certain limitations
described above. Design criteria for the remote sensing application may be enlisted as:

(a) Selection of the compression technique as per the requirements of application.
(b) FPGA-based methods for real-time compression.
(c) More emphasis on parallel HSI compression.
(d) Extension of 3-D algorithms to temporal domain for multitemporal HSIs.
(e) Use deep learning methods for performance improvement.

Fig. 11 Statistics of datasets used by algorithms.
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Application-specific compression provides better performance as compared to general tech-
niques. Figure 12 shows a suggestive general framework for such compression standard, which
can be used to improve the quality of reconstructed image along with the compression algorithm.
Particular methods for each design criteria can be developed as a part of the future work of the
study. The evaluation stage has been included as the last step to decide the quality of observed
image at the decoder.

4 Conclusion

Reduction in the image size is the basis of the development of the compression algorithm since it
gives many benefits to the HS analysis. A large dataset is required to validate the results of such
algorithms. Most of the HSIs used by the researchers are available as open-source and others at a
nominal charge. The review also helps to gain theoretical knowledge about the data source. We
have also categorized algorithms on the basis of parameters that could help to decide the scope,
objective, implementation environment, scalability, and strategy of the compression.

A detailed study of HSI compression techniques is also covered, and future directions are
discussed to overcome the observed challenges. Algorithms of different techniques are catego-
rized with their methodology, advantages, and limitations compactly. Techniques adopted for
classification can be used to evaluate and categorize any algorithm of the field. Such classifi-
cations could help in the development of advanced compression algorithms and may boost many
space programs.

Fig. 12 Suggestive general framework.
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5 Appendix

The performance of any algorithm can be analyzed by the evaluation metrics used by it. The
Table 10 presents a collection of metrics used by the techniques along with the dataset on which
the experiments have been performed. It contains a combination of datasets available in public
domain and dataset generated especially for the experiment. The abbreviations in the analysis
criteria have their respective meanings.

Table 10 Datasets and evaluation metrics used by different algorithms.

Algorithms Datasets used Analysis criteria

Hybrid 3D-DCT-TD12 AVIRIS scenes PSNR and CR

DWT-TD8 Cuprite and Moffett scenes SNR, CA, and VCA

3D-DCT-SVM13 Cuprite and Moffett scenes CR and SA

JPEG-LS14 AVIRIS calibrated and uncalibrated
scenes

CR

Kozhemiakin et al.15 Landsat images MSE and CR

Giordano and Guccione16 AVIRIS scenes CA and time

HyperLCA20 AVIRIS and Hyperion scenes MSE, SNR, and SA

PCA-DCT17 HYDICE and AVIRIS scenes PSNR, MSE, and CR

Integer HyperLCA21 AVIRIS and Hyperion scenes MSE and SNR

Wang et al.10 AVIRIS low altitude images PSNR and BR

Folded PCA18 Indian Pines PSNR, SNR, and CA

Luminance transform22 Cuprite, Moffett Field, and Jasper
ridge scenes

SNR and SA

WPCA19 Cuprite and Moffett field scenes MSE, SNR, and ROC curve

FrWF23 Images from Minho (Portugal) PSNR and BR

RWA-C24 Cuprite and Moffett scenes Entropy

3D-LMBTC11 Washington DC, Cuprite, Jasper
Ridge, urban

PSNR and time

IKLT-IDWT25 Indian Pines, Salinas, Botswana,
KSC, and urban scenes

PSNR, BR, Time

Diaz et al.26 Specim FX10 dataset CR and speedup

SVR-DWT27 AVIRIS Yellowstone uncalibrated,
Cuprite, Indian Pines, Washington
DC, Mt. St. Helens, and Erta Ale
scenes

BR, CR, SNR, PSNR, SSIM,
and MSE

GFT28 AVIRIS scenes BR and PSNR

Fuzzy transform29 Pleiades satellite’s multispectral
images

PSNR and time

Bogdan et al.40 Multispectral image CR

SB-DSC41 AVIRIS scenes PSNR, average error, and SA

Conoscenti et al.38 AVIRIS scenes SNR, BR, and SAD

Zhaoa et al.39 Cuprite, Jasper Ridge, and Lunar
Lake scenes

PSNR, BR, CA, and time
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Table 10 (Continued).

Algorithms Datasets used Analysis criteria

3D-MBLP42 AVIRIS and CCSDS datasets CR

Binary tree-based
decomposition43

Indian Pines, Salinas, Pavia Centre
and University, Cuprite, KSC, and
Botswana scenes

CR

Shen et al.44 Indian Pines, KSC, Salinas, and Pavia
University scenes

BR

RLS-OPB-P35 AVIRIS scenes CR, time, and speedup

Fjeldtvedt et al.45 Modis, HyperION, AVIRIS, and HICO
scenes

Power and speedup

Barrios et al.46 AVIRIS Scenes CR and time

LSTM-RNN47 Indian pines, Pavia University, Salinas
and KSC scenes

MSE

SuperRLS34 AVIRIS scenes BR, time, and speedup

C-DPCM-RNN33 AVIRIS scenes BR

Li et al.48 AVIRIS scenes BR and speedup

Afjal et al.49 Indian Pines and three Landsat
multispectral images

BR and entropy

Rodriguez et al.50 Indian Pines and Yellowstone scenes Throughput, power, and rate

Cang and Wang51 HJ-1A satellite dataset MSE and PSNR

Bascones et al.52 SUW, BEL, REN, CUP, HAW, MAI,
and YEL scenes

PSNR, BR, and time

Li et al.60 AVIRIS scenes SNR and BR

VQPCA57 SUW, DHO, BEL, REN, CUP, and
Cuprite scenes

SNR and CR

Xu et al.66 Cuprite, Jasper Ridge, Lunar Lake,
and low altitude scenes

SNR and time

Gunasheela and
Prasantha62

Urban dataset PSNR and SA

CSDL_JP267 Pavia University PSNR, SSIM, and BR

SHSIR62 Urban dataset SSIM

HSI-CSR68 Pavia University PSNR, SSIM, mean feature similarity,
SAM, and weighted
sum of MSE

PSO-NTD71 AVIRIS scenes MSE, SNR, and CR

DWT-TD(ALS)-RLE72 Colorado River scenes PSNR, CR, and time

MBSRDL73 Pavia Centre and University PSNR, SSIM, and time

CNN-NTD31 Multispectral images containing
buildings, cities, and mountains

PSNR, BR, and time

Aidini et al.74 EUROSAT multispectral images PSNR and accuracy

SSASR77 AVIRIS scenes BR, CA, SAD, and time

Fu et al.78 Indian Pines, Washington DC, Moffett,
and Jasper Ridge scenes

SNR and SAD
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