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Abstract. Atmospheric turbulence is a fundamental problem in imaging through long slant ranges, horizontal-
range paths, or uplooking astronomical cases through the atmosphere. An essential characterization of
atmospheric turbulence is the point spread function (PSF). Turbulence images can be simulated to study
basic questions, such as image quality and image restoration, by synthesizing PSFs of desired properties.
In this paper, we report on a method to synthesize PSFs of atmospheric turbulence. The method uses recent
developments in sparse and redundant representations. From a training set of measured atmospheric PSFs,
we construct a dictionary of “basis functions” that characterize the atmospheric turbulence PSFs. A PSF can
be synthesized from this dictionary by a properly weighted combination of dictionary elements. We disclose
an algorithm to synthesize PSFs from the dictionary. The algorithm can synthesize PSFs in three orders of
magnitude less computing time than conventional wave optics propagation methods. The resulting PSFs
are also shown to be statistically representative of the turbulence conditions that were used to construct the
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1 Introduction and Background

In any long-range imaging case, turbulence degrades the
imagery by inducing both warping and blurring. The effects
of turbulence are caused by continual atmospheric changes
in pressure, temperature, and turbulent movement, leading to
random fluctuations in the index of refraction.! Imaging
through turbulence is usually separated into isoplanatic and
anisoplanatic imaging. The first case is prevalent in astro-
nomical imaging, where one turbulence point spread func-
tion (PSF) degrades the entire image, leading to distorted
imagery. The anisoplanatic imaging case has spatially vary-
ing PSFs leading to variations in blurring and warping across
the image plane. Anisoplanatic imagery can be collected by
imaging horizontally across the ground or from the air look-
ing down. The airborne case generally has more turbulence
near the object versus the camera and thus collects deep
turbulence,” as shown in Fig. 1.

Modeling and simulating the effects of turbulence on
imagery is typically done with wave propagation approaches,
such as in Hardie et al.’> Another approach is to use Zernike
polynomials as basis functions* to model turbulence in the
entrance pupil. Modeling approaches allow for a better
understanding of how turbulence affects imagery and are an
integral part of inverse modeling methods for mitigation.
Additionally, they allow for truth frames to be available to
quantifiably capture how well a mitigation algorithm per-
forms when restoring the imagery.

*Address all correspondence to: Bobby R. Hunt, E-mail: bhunt @ integrity-apps
.com; Amber L. ller, E-mail: ailer@integrity-apps.com
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Turbulence mitigation approaches include, but are not
limited to, lucky look,’ speckle imaging,®” and deblurring.®
All three methods involve different processing steps to
restore imagery; however, the use of PSF estimates in multi-
frame blind deconvolution (MFBD) approaches, such as in
Ref. 8, is of particular interest for this paper. MFBD algo-
rithms assume that the image frames have a common source,
namely the object from which radiation propagated to the
optical system, and they use this assumption to infer the
turbulent PSFs impacting each image.” Each inferred PSF
is then used to correct the corresponding distorted image
frame. In this way, MFBD algorithms model the instantane-
ous atmospheric turbulence in the entrance pupil of the opti-
cal system. Thus, synthesis of a variety of PSFs not only
helps model turbulence effects, but this process could also
be used to provide blind deconvolution inputs into MFBD
algorithms.

The rest of the paper is organized as follows: Sec. 1.1 pro-
vides background on the current wave optics approaches to
simulate turbulence, and an outline of sparse and redundant
signal representations in given in Sec. 1.2. Our dictionary
representation of turbulence PSFs can be found in Sec. 2.
Section 3 contains the statistical validation of the synthesized
PSFs. Finally, our conclusions are discussed in Sec. 4.

1.1 Modeling of Atmospheric Turbulence

The current gold-standard method for modeling atmospheric
turbulence effects is wavefront propagation. In general,
the atmosphere is modeled by a series of phase screens
with phase power spectral densities selected according to
the atmospheric conditions being modeled, and then the
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For most astronomical
applications, the majority of
turbulence is found near the

pupil plane, which causes
image plane blurring.

For airborne sensors, turbulence is found
near the pupil plane, but it also occurs
along the line of sight and is particularly =~

prominent near the target. These L OF:
disturbances are called deep turbulence.

NOTE: Deep turbulence
causes spatially variant
blurring as well as warping
across the image plane.

Fig. 1 A comparison of turbulence cells, shown as arrows in this cartoon, and their proximity to both
the focal plane and the object of interest, differs significantly for astronomical applications versus the

“deep turbulence” case.

wavefront radiated from the object is propagated through
these screens.'®!! The physical impacts of the phase screens
on the wavefront are calculated using geometrical optics, and
the resulting phase distortions accumulated, along with any
unperturbed phase that is propagating from the object.'”
These accumulated phase perturbations are combined to cre-
ate a wavefront specific to that location in space, then the
wavefront is similarly propagated onward through space to
the next phase screen. Ultimately, all of these phase impacts
are summed and appropriately scaled and then used to pro-
duce a simulated image impacted by turbulence.'”

The summation of phase perturbations at the pupil plane
of the optical system lends itself to representation by Zernike
polynomials, which are defined in terms of radial and angu-
lar coordinates. Each of the Zernike terms describes an opti-
cal surface deviation related to classical aberration theory for
optics. For example, the first six Zernike terms are shown in
Fig. 2 along with their classical aberration names. Thus, by
decomposing turbulent phase perturbations into Zernike pol-
ynomials, intuition can be gained into the dominating optical
impacts of the atmosphere. However, due to the highly ran-
dom nature of turbulence, turbulence is not a classical aber-
ration, so the use of Zernike terms to characterize turbulent
PSFs is not necessarily the optimal way to represent their
impact on the object in the image plane, as has been seen in
research for other ways of simulating turbulence.'*'* For
example, in deep turbulence cases with anisoplanatic effects
across the field of view, it becomes necessary to include
many more Zernike polynomial terms than those shown in
Fig. 2, to characterize the turbulence, which reduces the
computational compactness of the solution.

To optimize algorithmic approaches for modeling turbu-
lence, we need to consider the desired objectives and the
information available to the mitigation process. We know, for
MFBD, image frames are gathered at the focal plane; there-
fore, we must have a detailed understanding of the focal
plane itself. In addition, MFBD operates from a representa-
tion of the turbulent PSF structure as seen in the focal plane,
since that is the only source of data available to the blind
deconvolution process.

PSF synthesis in the focal plane is a distinction from the
use of PSF synthesis in the pupil plane, as is done with
wavefront propagation. For example, for Zernike-based
phase screens derived from wavefront propagation, the phase
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modeling must be propagated to the optical pupil plane and
then propagated to the image plane to form a PSE.!? Ideally,
we want to have efficient computation of PSFs that are
capable of characterizing the full range of turbulent condi-
tions directly in the image plane. Meeting this requirement
will provide computational speed improvements in the
forward modeling steps of mitigation methods, such as
MFBD. These needs have led us to seek compact, easily
computed methods of representing PSFs for long-range
imaging simulations.

1.2 Sparse and Redundant Representations in
Signal Processing

As effective as Fourier methods have been in signal process-
ing, the past 20 years have seen rapid growth of alternative
basis functions for signal processing, e.g., the wavelet
transform.'”> Wavelet signal representations differ from
Fourier representations by moving beyond the shift-invariant
descriptions inherent in the Fourier model. Because wavelet
models do not have a history from the eigen analysis of
physical models, such as the wave-equation, wavelet repre-
sentations of signals are sensitive to local structure in a
signal. This local structure can be represented in terms of
a hierarchy of signal structure describing how a signal has

Piston, Z ) Tip, 2, Tilt, 27!

Defocus, Zg Vertical Astigmatism, Z: Oblique Astigmatism, Z

ose

Fig. 2 The first six Zernike polynomial terms characterize well-known
classical optical aberrations.
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significant components at different physical scales within the
signal data being represented. The result is wavelet signal
representation that is able to detect and capture how a signal
structure changes with different hierarchies of signal meas-
urement scales.

The latest departure from the space-invariant history of
Fourier representations is the innovation usually referred
to as compressive or compressed sensing.'® Wavelet signal
representations discarded the shift-invariant property of sig-
nal models, and compressed sensing models abandon use of
the Shannon theorem (i.e., to not lose information for a uni-
formly sampled signal, we must sample at least two times
faster than its bandwidth'®) to constrain the number of sam-
ples necessary to faithfully represent a signal. The resulting
paradigm of compressed sensing is to construct and use basis
functions that are presumed to be more efficient in represent-
ing a signal, regardless of the Shannon criterion. Initial
developments of compressed sensing demonstrated that a set
of random vectors have favorable characteristics as basis
functions for signal representation in the compressed para-
digm.'” A logical step, after this discovery, was to ask if
a collection of basis functions could be constructed directly
from the data available in a problem, so as to achieve an even
more accurate representation of the data. This led to the
development of methods for sparse and redundant represen-
tation of signals.'®

The important properties of sparse and redundant repre-
sentations are summarized in the K-SVD algorithm'® used to
construct a dictionary that represents the data. Sparse nomen-
clature convention refers to a single basis-like vector within
a dictionary as an “atom.” “Dictionary” is the sparse litera-
ture nomenclature for a collection of vectors, as a matrix, that
can be used to represent any arbitrary signal vector. Thus, a
sparse and redundant representation of any specific signal
vector consists of the product of a coefficient vector with
the dictionary matrix as

f = Dc, 6]

where D is the dictionary matrix, ¢ is the coefficient vector,
and f is the signal vector constructed by the inner product of
D and c.

The “redundant” appellation of the representation is
related to the fact that the matrix D in Eq. (1) is not a col-
lection of vectors that are orthonormal. Indeed, D not even
needs to be square. For this reason, the representation of
Eq. (1) is not unique for any specific vector f. There can
be multiple representations of a single vector, thus, “redun-
dant” representations. Further, the entries of the coefficient
vector ¢, multiplied into the dictionary matrix D, are called
“sparse,” indicating that most of the entries of the coefficient
vector ¢ are zero, or so small as to be negligible in practice.
Because the coefficient vectors are sparse, the representation
of a vector f in this form is efficient, i.e., substantial com-
pression of data is achieved when a vector is known in its
dictionary form. This is also the origin of the term compres-
sive sensing.

The generality of sparse and redundant representations,
due to relaxing the orthonormal characteristic of the diction-
ary atoms, means that a dictionary is not specified a priori.
A question then immediately arises: how do we construct
a dictionary, and can a dictionary be created that is optimal
for a given type of data? This is the nature of the K-SVD
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algorithm. A set of data is accumulated and analyzed in a
manner that combines aspects of data compression by the
k-means algorithm for vector quantization (VQ),2" and
refinement of quantized vector selections by means of the
singular value decomposition.?! The result is an algorithm
that starts with a set of training signals and achieves the
best representation for each member of the training set with
vectors that are as sparse as possible.

The goal of the research we report herein is directed to the
problem of deep turbulence. What aspect of deep turbulence
is the motivation for the application of sparse and redundant
representations? The motivation for that representation is the
nature of atmospheric turbulence. Atmospheric deep turbu-
lence is distributed over an extensive volume of space, the
region where radiation reflected or emitted from an object
propagates to the entrance pupil of an optical system. To
accurately model those effects using wavefront propagation
requires many assumptions, e.g., assumptions concerning the
number of distinct regions present to create wavefront dis-
turbances and the characteristics of those regions in causing
wavefront deviations. Since this is impossible, it is conven-
tional to simplify by adopting an arbitrarily fixed set of
distinct regions, and then seek to characterize the effects
of those regions when accumulated in the optical entrance
pupil, i.e., Zernike polynomials. Note that no direct observa-
tion of the effects of deep turbulence occurs, only an
assumption that the accumulated Zernike representation is
appropriate.

In contrast, we consider the effects of deep turbulence
observed in the focal plane of an optical system. A point
source observed through deep turbulence creates a PSF.
If many such PSFs are recorded, then there is a volume of
data that represents the conditions of the deep turbulence in
a manner that is directly related to the formation of images
observed through the turbulence. Further, a sparse represen-
tation of those PSFs will be efficient from the viewpoint of
characterizing the available information, because the process
of defining sparse representations inherently identifies the
most efficient bases for describing the PSFs. Utilizing that
data, and the direct linkage to observable effects, is the moti-
vation for the research that we report herein.

2 Dictionary Representation of Turbulent Point
Spread Functions

2.1 “ISO” Dataset Collections

In September of 2015, the EO Target Detection and
Surveillance Branch of the Air Force Research Laboratory
(AFRL/RYMT) conducted a series of experiments at the
Wright Patterson Air Force Base (WPAFB) in Dayton, Ohio.
These experiments included, among other goals, collecting
measurements of the isoplanatic angle of point sources
imaged over a 5-km path. For this reason, we refer herein to
this data as the “ISO” dataset. Two point sources were posi-
tioned on the ground and were imaged from the lowest floor
of a tower, making the path nearly horizontal, and subject to
substantial turbulence upwelling directly from the ground
underneath the path of radiation propagating from the point
sources. A perspective image of the tower from the target site
is shown in Fig. 3(a). Collections occurred at different times
of day, which resulted in significant changes in the turbu-
lence conditions as solar heating changed the upwelling
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(@)

Fig. 3 (a) An image of the WPAFB tower from the ISO target site. (b) Configuration of the target array
located ~5 km from the tower. (c) A sample image frame with left and right edges cropped to highlight

the target array.

turbulence, and uncontrollable diurnal weather caused alter-
ations in atmospheric variables such as wind, temperature,
and humidity.

The ISO point sources were produced by two laser diodes,
emitting at 785-nm wavelength, and projected through a col-
limator toward the tower. One of the laser sources was
capable of being displaced with respect to the other, thus pro-
viding point sources at different angular positions with
respect to the imaging receiver in the tower. This is why the
isoplanatic target in Fig. 3(b) appears to have two holes par-
allel to the ground. The receiver in the tower was a simple
refractor telescope with a primary entrance pupil diameter of
132 mm and a focal length of 925 mm. Aperture stops were
used to produce entrance pupils of 38.1, 57.15, 63.5, 69.85,
and 76.2 mm, respectively. The images formed by the tele-
scope were collected by a high framerate (>1 kHz) PCO-
Tech pco.edge 5.5 sCMOS scientific quality camera, with
a focal plane of 2560 X 2160 pixels. An example image
frame is shown in Fig. 3(c). The focal plane was windowed
down to 51 rows by 1920 columns to collect at peak fram-
erates. The pixels of the camera were square, 6.5 microns on
a side. The pulse rate of the laser diodes and the frame rate of
the camera were set to capture several hundred laser pulses
within each data collection of 3000 frames. This created
large data sets with many observations of the point sources,
which imaged in the focal plane as PSFs of the turbulent
characteristics.

A total of 14 ISO collections occurred on September 21 to
22,2015: one collection on September 21, 2015, and 13 col-
lections on September 22, 2015, each with 3000 frames of
imagery. The collection on September 21 took place at 13:53
local time. The collections on September 22 were spaced
from midmorning (09:45) to midafternoon (17:03). A scin-
tillometer was present in the same test space, as shown in
Fig. 3(b), and was used to measure data for the computation
of C % and the values of the fried parameter, r, for all the data
collections. The computations of C2 and r,, values were done
with spherical propagation to the receiver telescope. The 14
collections of point source images possessed a range of r,
values from 0.02 to 0.04 m. After inspection of the point
source imagery for representativeness, quality and noise,
and review of various statistics related to the collection
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times and conditions, the decision was made to select the
collection dataset 12 from the collections occurring on
September 22. This dataset became the source of PSF images
to use for the construction of a sparse and redundant repre-
sentation dictionary for turbulent PSFs. The reason for the
selection of this set was the combination of the large aperture
stop used on this collection (the 76.2-mm aperture), above
average signal-to-noise ratio, and above average value of
ro (0.031 m).

2.2 Construction of a Sparse Dictionary from
Point Spread Function Data

All of the image frames collected during ISO tests were 51
rows by 1920 columns. The region in each of the frames of
dataset 12 that contained laser point sources was identified
and the PSFs of the point sources were extracted as
32 x 32 pixel subimages. A total of 200 of these 32 x 32
images of PSFs were randomly selected from the ISO dataset
12. Of the 200 PSF images, 100 were chosen to train a
dictionary for PSF representation. The remaining 100 PSF
images were reserved for testing PSFs constructed from the
dictionary, as we describe in detail below.

The PSF images possessed visual noise, related to detec-
tor read-out and the number of electron counts actually gen-
erated in each detector pixel. A noise cleaning step was
applied, based on measurements of the background noise
level in areas near the edges of the 32 x 32 pixel PSF
images. A threshold procedure was then used to set noise
below a chosen power level to zero and normalize the PSFs
to have unity total volume.

The 100 PSF images chosen for training a dictionary were
processed by a MATLAB version of the K-SVD algorithm.
The actual algorithm MATLAB code was obtained from a
software package that accompanies the sparse representation
textbook written by Elad.” The K-SVD algorithm is best
understood by reference to the k-means algorithm, a well-
known technique for training a codebook for data compres-
sion by VQ. A VQ codebook contains a set of vectors and
is used to compress data by finding the single entry in the
codebook that is closest, in the sense of nearest neighbor
by Euclidean metric, to a sample of data that is to be
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Training
Data Y
o Sparse code
In|t|_a||;at|on all Y with D:
Dictionary— D OMP
(DCT) algorithm

|

For each coefficient vector X
compute partitioned error:

E, = y—z dxl
* ”( ek

|

| Compute SVD of E;

|

Replace column d; with
weighted SVD vector

Assemble columns
into new dictionary

Fig. 4 The K-SVD algorithm for dictionary construction uses singular
value decomposition (SVD) to refine the dictionary elements based on
representative training data.

compressed. The K-SVD algorithm is a generalization of the
basic k-means algorithm because it constructs data as a linear
combination of a small number of elements, rather than one
element.

Figure 4 is a block diagram of the K-SVD algorithm. We
summarize the basic steps of the algorithm in the following,
and refer the reader to the original paper'® for the complete
details.

* Choose an initial dictionary, D In our case, the discrete
cosine transform (DCT) algorithm was used to initial-
ize a dictionary matrix, with all columns normalized to
unity, for the training of the PSF dictionary. The size of
the initial DCT dictionary must match the correspond-
ing dimensions for the PSF dictionary that will be con-
structed during training. For example, if 256 dictionary
elements are to result from training, then the DCT dic-
tionary data must have 256 elements, corresponding to
16 different frequency resolutions in each of the two
dimensions (horizontal and vertical) of the PSFs
being represented in the dictionary.

* Sparse coding step For each training set vector, y, the
representation error of that vector in the dictionary is
defined over a set of coefficients, x, on the dictionary

e; = |ly: — Dx;|3. @)

This error is minimized using a “greedy” pursuit
algorithm, known as orthogonal matching pursuit
(OMP),** subject to the requirement that each coeffi-
cient vector have no more than a chosen number of
nonzero entries. In training the PSF dictionary, we
experimented with different values for the number of
nonzero dictionary elements and found that 256 entries
captured a suitable degree of PSF structure that led to
accurate PSF synthesis when applied to PSF represen-
tations. Each dictionary element was a matrix of size
32 % 32, which is 1024 values in a vector form, and
matches the size of PSFs in the training set. Since
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256 dictionary elements were trained, the final diction-
ary was of a matrix of size 1024 x 256.

* Dictionary update step The columns, d, of the diction-
ary, D, are selected, k = 1,2, ...,256. The overall rep-
resentation error for each column, k, over the entire set
of training data, Y, is defined as

H (Y= dxl)—axl|. 3)

7k

where superscript T denotes transpose from column to
row. Here, we see that the total representation has been
broken into two components, one with all the diction-
ary columns except the k’th, and the k’th itself. The
first two terms, of Y and the sum of all errors except
for the k’th column, are defined as the error E; as
shown in Fig. 3, which is due to all the columns of D
except the £’th column. Further, the summation is a set
of rank-one matrices. The update step computes the
SVD of E,. The first column of the SVD decomposi-
tion is weighted by the SVD coefficients and retained
as the update to the column k.

* Repeat sparse coding and dictionary update The proc-
ess returns to step 2, the sparse coding step, and con-
tinues for a preselected number of cycles or until the
changes fall below a selected minimum.

This algorithm is intensive in computation time, as much
as an hour on a typically available laptop workstation;
however, it only needs to be done once to construct the
desired dictionary. After construction of the dictionary, it
is not needed in representing PSFs for as many times as
desired.

Figure 5 is the result of using 100 ISO PSFs and the
K-SVD algorithm to compile a dictionary of sparse and
redundant basis functions. The dictionary elements are all
32 x 32 pixels in dimension, which corresponds to the
extracted size of 32 x 32 PSFs from the ISO data. Note
that the dictionary elements have properties that resemble
PSFs, i.e., they are localized in space and have variations
of structure within the localized space of an element.
However, these are not PSFs but consistent structure in
the training set PSFs. Bright white values are positive,
dark black values are negative, and middle gray tones are
near zero. Through selection of a linear combination of
these elements, any of the PSFs in the training set can be
represented. Further, linear combinations of elements such
as these can be used to synthesize a PSF that is not in the
training set nor any other set of PSF data. Using this diction-
ary for PSF synthesis is the benefit we achieve from the dic-
tionary analysis and training procedure.

2.3 Synthesis of Point Spread Functions from
a Dictionary

In this paper, the dictionary compiled from the training set
PSFs will be referred to as a “custom” PSF dictionary, indi-
cating that it is not a dictionary that would be suited for more
general purposes. The DCT dictionary, used to initialize the
K-SVD algorithm, is a general dictionary, and the generality
of that dictionary is demonstrated by the presence of DCT
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Fig. 5 The 256-element custom dictionary shown in this display was
trained from the WPAFB ISO PSF data and highlights properties that
are similar to PSFs.

representations in the standards of the JPEG image compres-
sion algorithm. The custom PSF dictionary, as shown in
Fig. 5, has lost that generality. The loss of generality in
the custom PSF dictionary is offset with a different benefit,
however. Because the dictionary of Fig. 5 was created by
analysis of PSFs collected in observations of turbulent
atmosphere conditions, it is an obvious hypothesis that
this dictionary can be used to synthesize PSFs that possess
the characteristics of the turbulence that was used in the
K-SVD algorithm.

The nature of a dictionary to represent data is seen in
Eq. (1) in Sec. 1.2; namely, a coefficient vector multiplies
a dictionary to construct a function. Therefore, it is a reason-
able hypothesis that multiplication of the custom PSF dic-
tionary by a coefficient vector will generate a function that
possesses PSF properties. But the selection of the elements
of the coefficient vector must be constrained. For example,
multiplying a DCT dictionary be a set of random coefficients
will almost never generate a meaningful or recognizable
image, even though the DCT representation of images is well
established by the JPEG algorithm. Thus, we must have a
rationale by which to construct coefficients that will create
a function with the characteristics of a PSF.

As an initial test, we used the custom PSF dictionary of
Fig. 5 to represent all the PSFs in the training set. This was
achieved using the OMP algorithm.?> The OMP algorithm
was set to make PSF representations using 64 dictionary

elements (or “atoms,” to use the nomenclature of sparse rep-
resentations). We found that the 256-atom dictionary was
so efficient at capturing PSF structure that a 64-coefficient
representation was acceptably accurate in representation of
an arbitrary PSF. Thus, OMP representation of the training
set generated 100 sets of 64 coefficient values from each of
the 256 dictionary atoms.

However, because of the efficiency of the representation
with 64 atoms, not all of the coefficient atoms were used with
equal frequency. The setting of 64 atoms in the OMP repre-
sentation results in OMP choosing those 64 dictionary ele-
ments that are best suited for PSF representation by the OMP
algorithm for each training set PSF, not distributing the usage
of 64 atoms in a predetermined way over the entire 256
atoms of the full dictionary. We can consider the frequency
in which atoms are actually used as characteristic of how
training set PSFs are utilized in a specific set of PSF data.
From this, it is possible to compile statistics of the dictionary
coefficients for each dictionary atom. The statistics consist of
the mean and standard deviation of the coefficients used in
the representation of the training set PSFs.

Next, we use the statistics to construct PSFs, as shown in
Fig. 6. We draw a PSF at random from the training set and
refer to it as the “BasePSF.” For the BasePSF, we know the
64 coefficients used to represent that PSF by OMP. We also
know statistics of the 64 coefficients, compiled from all PSFs
in the training set, which were used in that PSF. To synthe-
size a PSF, we know that we must perturb the coefficients of
the BasePSF, but it is not acceptable to perturb the BasePSF
coefficients in an arbitrary way, for the same reason that a
random weighting of atoms in a DCT dictionary will not
give a meaningful image. Thus, we perturb the coefficients
by adding a random variable to the BasePSF coefficients,
which is consistent with the mean and standard deviation
for coefficients associated with the dictionary atoms. We
complete the synthesis by multiplying the perturbed coeffi-
cient vector into the custom PSF dictionary, i.e., as in
Eq. (1) above. Figure 6 provides a summary of the complete
process.

3 Testing of Synthesized PSFs for Statistical
Properties Consistent with ISO Source PSFs

The procedure described above produces PSFs derived from
actual PSF data. This is different than methods of PSF syn-
thesis that have been used in the past. Previous synthesis
methods of PSFs for turbulent atmospheric conditions use
a C? profile and wave propagation software to propagate
a random wavefront perturbation of Zernike polynomial
coefficients.*'>!* This is computationally intense. The syn-
thesis procedure presented in Fig. 6 has the virtue of being
extremely rapid, once the basic computations of the K-SVD
algorithm have created a custom PSF dictionary. Once
the first three steps in Fig. 6 are completed; the results
can be reused in all future PSF syntheses with no further

Generate Extract Compile Generate Svnthesize
Dictiona Coefficient /=¥ Coefficient New N)(,aw PSFs
ry Weights Statistics Weights

Fig. 6 To synthesize PSFs from the custom PSF dictionary, statistical characteristics of the training

coefficients must be maintained.
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computation cost. Therefore, we focus on the computation
cost of the last two steps. The basic computation requirement
for synthesis is efficient: draw random numbers and compute
the matrix vector product of Eq. (1). In comparisons of
a Zernike-based PSF wave propagation synthesis code to
the custom PSF dictionary synthesis described above, the
dictionary synthesis was at least three orders of magnitude
faster in computation than the propagation method.

This comparison of execution times for Zernike and dic-
tionary-based PSF synthesis has to be understood within the
usual caution for direct comparisons of computed results.
The same algorithm can be implemented in different high-
level language software, with different computational archi-
tecture paradigms, in different operating systems on different
computers, leading to significant differences in the execution
time. In the case of Zernike polynomial models of turbu-
lence, the major computational cost to simulate a turbulent
wavefront at the entrance pupil is to migrate a wavefront that
is initially uniform in phase through multiple phase screens
that randomly distort the phase, each phase screen being
a distance from its neighbors. The wavefront is migrated by
wave-optics propagation, e.g., Fresnel, and requires many
evaluations of the Fresnel kernels over discrete steps of
distance. Thus, the total number of propagation steps, and
the number of samples across the wavefront, determines
the computational effort and can be larger or smaller accord-
ing to parameter choices.

The above experience, of three orders of magnitude of
difference in our synthesis compared with wavefront propa-
gation, was accumulated on the same computer, running
MATLAB for both Zernike and dictionary synthesis. The
number of samples of the synthesized PSFs was the same
in both cases, and the number of phase screens and the total
number of propagation steps were based on previous expe-
rience in simulating turbulence for development of MFBD
algorithms. The Zernike-based code has been in use for sev-
eral years in MFBD processing algorithms and is considered
reliable. But neither the Zernike nor dictionary code was
extensively profiled and optimized. For these reasons, we
have confined our comparative disclosure of performance
to the order-of-magnitude estimates seen immediately above
and elsewhere in this paper.

No matter how fast, the dictionary synthesis method is of
no utility if it produces PSFs that are not realistic or do not
possess valid PSF characteristics. Thus, we carried out a series
of tests to determine how PSFs synthesized by the dictionary
method compare in relation to the real PSFs that were used
to compile the dictionary. As stated above in Sec. 2.2,
a total of 200 PSFs were extracted from the ISO collection
dataset 12 PSF images, with 100 used for the training set
data that produced the dictionary data. The remaining 100
images were used as a source of actual PSF data to compare
with the synthesized PSFs. We shall refer to the reserved data
as the test set PSFs. The purpose of these comparisons was to
determine if the synthesized PSFs possessed characteristics
that were comparable with PSFs from the same atmospheric
conditions, but which were never used in training the custom
PSF dictionary. This was adopted as a means of verification
for our synthesis procedure with independent data that could
not have any connection to the dictionary that synthesized
the PSFs. In the following, we describe the comparison tests
we applied.
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3.1 Visual Inspection

As described in Sec. 2.3, the dictionary synthesis method
synthesizes PSFs through statistically based perturbation
of the coefficients of a BasePSF. The first test, therefore,
was to visually examine the synthesized PSFs to determine
if they had excessive visual resemblance to the original
BasePSF. The visual inspections were conclusive; the syn-
thesized PSFs did not show any physical resemblance to
the BasePSF. In other words, even though the synthesized
PSFs were constructed from the same BasePSF, the pertur-
bation process was sufficient to destroy any heritage of the
BasePSF in the synthesized PSFs.

Further visual inspections were carried out to determine if
the synthesized PSFs had any visible differences in overall
structure and morphology from the actual test set PSFs.
Figure 7 is an example of the results of such inspections. Two
of the PSFs in Fig. 7 were synthesized from the algorithm,
and two of the PSFs were drawn at random from the 100
PSFs that were not used to construct the custom PSF diction-
ary. The reader is invited, for their own amusement, to make
a guess at which PSFs are synthetic and which are real.
The answer is in the Appendix.

3.2 Ensemble Average of Point Spread Functions

Following the visual inspection, the next simplest test was to
compute the ensemble average of 100 synthesized PSFs
and the ensemble average of the 100 test set PSFs reserved
for comparison purposes. The ensemble average is simple:
all PSFs, synthesized and from test set collections, are 32 X
32 pixel images. All 100 synthesized PSFs were averaged
at each of the 32 x 32 pixel grid positions, and likewise
for the 100 test set PSFs not used for training the custom
dictionary. Figure 8 shows a side-by-side comparison of
the ensemble averages for the synthesized and test set
PSFs. The two ensemble images appear extremely similar.

Fig. 7 Two synthesized and two test set PSFs. The reader is
challenged to guess which are measured PSFs and which are
synthesized. The answer can be found in the Appendix.
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(a) (b)
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Fig. 8 (a) The similarity of the ensemble average for the test set PSFs
and (b) synthesized PSFs supports the hypothesis that the syn-
thesized PSFs, on average, mimic the turbulence conditions of the
collected data.

A numerical comparison was also carried out, subtracting the
synthesized ensemble average from the test set ensemble
average. The result of the subtraction showed mean-square
numerical differences <1 part in 103, which effectively
corresponds to a signal-to-noise-ratio of ~26 dB of the syn-
thesized PSFs compared with the test set PSFs.

3.3 Average Autocorrelation of Point Spread
Functions

The second averaging test was to calculate the average auto-
correlation of the synthesized and test set PSFs. For the syn-
thesized and test set PSFs, each 32 x 32 pixel PSF image
was embedded in a 64 X 64 frame of zeros, and then auto-
correlated by FFT calculation. The 100 autocorrelations of
the synthesized and test set PSFs were then averaged and
the averages compared. Figure 9 is a display of the average
autocorrelations. The mean-square difference between the

Spatial autocrrelation of test set PSFs

40

average autocorrelations of synthesized and test set PSFs was
~1 part in 10*, which is effectively a signal-to-noise-ratio of
~40 dB of the synthesized PSF autocorrelations compared
with the original PSF autocorrelations.

3.4 Distribution of Point Spread Function Intensities

Since synthesized PSFs have similar structure, when com-
pared visibly, with actual ISO test set PSFs, the motivation
arises to do more quantitative analysis to determine if the
visible similarities are supported by statistical tests. The first
such test was the distribution of intensity in the test set PSFs
and the synthesized PSFs. The two-sided Kolmogorov—
Smirnov (KS2) test, which is based on the empirical prob-
ability density functions of two different random variables as
estimated by histograms, was used to test the distribution of
intensities, using a significance level of 0.01. The test
declared that the synthesized PSFs had the same statistical
distribution of intensity.

3.5 Distribution of Central Moments

The next statistical test was the distribution of PSF intensities
about the centroid of the PSFs. This was performed by
computing the centroid of synthesized and test set PSFs
and then using the centroid for each PSF to compute the
central moment about the centroid, thus measuring the
dispersion of each synthesized and test set PSF. The results
were then tested by the KS2 test to determine if the central
moment statistics were the same. The KS2 test declared the
two sets of central moments came from the same distribution
at the 0.01 level.

3.6 Distribution of Strehl Ratio

A final test was the computation of the Strehl ratios for the
two sets of PSFs. The Strehl ratio, as defined in terms of

Spatial autocorrelation of synthesized PSFs

0.9
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40

Fig. 9 (a) The average autocorrelations for test set PSFs and (b) synthesized PSFs are visually

indistinguishable.
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spatial frequency, was used.”® Again, the KS2 test was
applied to the empirical probability distribution of Strehl
ratio values and confirmed the two distributions were the
same at the 0.01 significance level.

4 Conclusions

In conclusion, we have shown that sparse and redundant rep-
resentations of turbulent PSFs is a highly efficient way of
characterizing PSFs in the focal plane. Using point source
data collected under deep turbulence conditions, we con-
structed a custom sparse dictionary containing 256 atoms
and verified its ability to represent turbulent PSF data
using 64 coefficients or less. Analysis of the 64 coefficients
confirmed it was reasonable to multiply the custom PSF dic-
tionary by a coefficient vector to synthesize imagery that
possesses PSF properties. This mathematically simple oper-
ation bypasses the need for Fourier analysis to synthesize
atmospheric turbulence conditions.

However, generation of the coefficient vector could not be
done in a random way. The mean and standard deviation of
the 64 coefficients used to represent each of the training set
PSFs were derived and became guidelines for generating
weighting coefficients. Thus, to synthesize a PSF, we per-
turbed the coefficients of a BasePSF by adding random
variables, which were consistent with the same mean and
standard deviation of coefficients associated with the diction-
ary atoms, to the BasePSF coefficients. Synthesis is com-
pleted by multiplying the perturbed coefficient vector into
the derived custom PSF dictionary.

We verified PSFs synthesized using our dictionary syn-
thesis process were statistically representative of the turbu-
lence conditions used to construct the dictionary through
several tests:

1. Simple visual inspection confirmed similar syn-
thesized PSF characteristics to other data collected
under similar conditions without duplication of physi-
cal features.

2. The ensemble average PSF for synthesized PSFs was
numerically equivalent to the ensemble average for the
test set PSFs to the 26-dB level.

3. The average autocorrelations of synthesized and test
set PSFs were equivalent within a signal-to-noise-
ratio of ~40 dB.

4. A KS2 test of synthesized and test set PSFs confirmed
the same statistical distribution of intensity for the two
PSF ensembles.

5. A KS2 test of the distribution of the PSF central
moment declared the synthesized and test set central
moments came from the same distribution.

6. The empirical probability distribution of Strehl ratio
values for the synthesized and test set PSFs verified
the two distributions were the same at a KS2 0.01 sig-
nificance level.

Finally, with the success shown herein and because PSF
calculation directly in the focal plane removes the need for
Zernike analysis in the pupil plane, we believe these methods
will prove to be a valuable addition to turbulence modeling
methods. Initial results using dictionary synthesis showed
three orders of magnitude computational improvement for
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synthesizing turbulent atmosphere conditions over conven-
tional optical wave propagation simulation. This comes as
no surprise, since sparse and redundant representations
characterize volume turbulence in a manner directly related
to the formation of images observed through atmospheric
turbulence.

Utilization of this approach, with its direct linkage to
observable atmospheric turbulence effects, will motivate
future research into these methods. In particular, we
acknowledge that the PSF synthesis technique discussed
in this paper focuses on generating synthetic PSFs for a spe-
cific real-world dataset. Thus, in the spirit of this paper, real-
world datasets are explicitly needed to build different dic-
tionaries. However, additional work to expand this technique
beyond the limiting conditions of a specific real-world
dataset is underway and results at hand suggest it may
be possible to scale synthesized PSFs in a way that would
provide more varied conditions of turbulence, including
variations in wavelength of illumination or observation.
These results, when completed, will be disclosed in a future
paper extending the initial results reported herein.

Appendix: Visual PSF Comparison

In Fig. 7, the upper left and lower right PSFs were syn-
thesized from the custom PSF dictionary by the algorithm
described in Sec. 2.3.
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