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Abstract. Gaze tracking systems are widely used in human–computer interfaces, interfaces for the disabled,
game interfaces, and for controlling home appliances. Most studies on gaze detection have focused on enhanc-
ing its accuracy, whereas few have considered the discrimination of intentional gaze fixation (looking at a target
to activate or select it) from unintentional fixation while using gaze detection systems. Previous research meth-
ods based on the use of a keyboard or mouse button, eye blinking, and the dwell time of gaze position have
various limitations. Therefore, we propose a method for discriminating between intentional and unintentional
gaze fixation using a multimodal fuzzy logic algorithm applied to a gaze tracking system with a near-infrared
camera sensor. Experimental results show that the proposed method outperforms the conventional method
for determining gaze fixation. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE
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1 Introduction
The field of human–computer interaction (HCI) has grown
significantly over recent decades. Bolt1 described how eye-
gaze information could be used as the input for facilitating
HCI, and patterns of eye movements and fixations have been
found to be usable indicants of the distribution of visual
attention and important indicants of thinking processes.2 The
use of gaze input to trigger computer operations is becoming
increasingly popular. The idea of using computer-assistive
technology for interaction with personal computers (PCs)
via devices such as switches, head pointers, neural interfaces,
and eye-tracking systems was proposed by Mauri et al.3 As
these devices require activation by body parts, they often
cannot be used by severely disabled people who cannot con-
trol their hands, feet, or head. Some devices used by disabled
people can be controlled using bioelectrical signals or a
switch.4 Physiological information, such as that from electro-
encephalograms (EEGs), electromyograms (EMGs), and
electroculograms (EOGs), provides an alternative communi-
cation method for patients with severe motor disabilities.5

Using EEG signals, i.e., based on brain waves, people can
control screen keyboards, mice, or wheelchairs.5,6 EMG bio-
electrical signals based on muscle response can be used to
interact with other systems,5,7 and EOG signals can be
used for simple interaction purposes because they determine
the approximate gaze direction based on eye movement.5,8,9

Devices used for measuring bioelectrical signals are expen-
sive and can irritate the subject because sensors must be
placed on the body. Hence, camera-based gaze detection
methods are preferred as the alternative.

The two-dimensional (2-D) monitors of desktop com-
puters have been used in eye-gaze tracking methods.10–12

However, these methods have some limitations, e.g., they
cannot control the devices in the three-dimensional (3-D)
space, and their accuracy worsens when there are variations
in the Z-distances between the user and the monitor. There-
fore, nonwearable gaze tracking systems for controlling
home appliances in the 3-D space have been proposed.13

Most studies on gaze detection have focused on enhancing
the accuracy of gaze detection, whereas few have considered
the discrimination between intentional gaze fixation (looking
at a target to activate or select it) and unintentional fixation
while using gaze detection systems. A user’s gaze fixation
can be classified as visually motivated (unintentional) fixa-
tion (looking at something to see it) and interaction moti-
vated (intentional) fixation (looking at something to
activate or select it). In this study, we focus on interaction
motivated (intentional) fixation.

To discriminate between different types of gaze fixation,
researchers have used methods based on keyboard or mouse
button clicking, eye blinking, and the dwell time of gaze
position. However, these techniques are limited in terms
of user convenience, selection speed, and so on.

Previous studies on gaze fixation can be categorized into
those that use single or multiple modalities to select the
object of interest. The former category14–21,22–27 includes
eye blinks, dwell time, antisaccades, “on” and “off” screen
buttons, context switching, keystrokes, eyebrow raises, and
speech. Blinking to select letters from the alphabet is an
obvious solution for eye typing when the gaze direction is
used to select letters.14 However, eye blinks normally occur
at a rate of ∼10∕min,15 and it would be necessary to close the
eye for a longer period to discriminate between eye blinking
for letter selection and normal blinking, which decreases user*Address all correspondence to: Kang Ryoung Park, E-mail: parkgr@dgu.edu
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convenience. Object selection based on dwell time appears
more natural than selection by blinking.16 For this, the gaze
tracking system has to be conscious of where the user is
looking and of how long he/she looks at an object in order
to select it.

Hansen et al.17 used the dwell time of the user gaze posi-
tion for letter selection in an eye typing application, and
Hornhof and Cavender18 proposed a system in which various
menus within a drawing program can be selected using the
dwell time of the user gaze position. Huckauf and Urbina19

developed a target selection approach that uses antisaccades
rather than blink selection or dwell time. Antisaccades are
explicit eye movements that have been extensively examined
in cognitive psychology.20 Ware and Mikaelian21 used on
and off buttons for object selection. In their method, an
object of interest is selected by fixation and subsequent sac-
cade toward the on/off buttons.

In previous studies,14–27 the object of interest is pointed at
and selected by a single modality, but such
methods suffer from the problem whereby objects become
selected every time the user looks at them. This limitation
was first referred to as the “Midas Touch Problem.”28 “Midas
Touch Problem” is from Greek mythology, which tells that
even the objects which King Midas does not want to select
are transformed into Gold. A similar case occurs in gaze
tracking system. That is, the case that a user is looking at
the object of interest with intention (selecting or activating it)
should be discriminated from that the user is looking at with-
out any intention. This is “Midas Touch Problem” in gaze
detection system.

To overcome this problem, the object of interest should be
discriminated from those objects that are unintentionally fix-
ated. However, when object selection is performed by blink-
ing, it is difficult to discriminate between intentional and
unintentional blinks. Selection by dwell time encounters
similar issues, i.e., if the dwell time is too long, it can tire
the user’s eyes and result in slower task performance,17,18

whereas if the dwell time is too short, we encounter the
Midas Touch Problem. Graphical on/off screen buttons can
be problematic, because they interfere with the relevant
object and distract the user from the area or object of interest.
Zhai et al.22 and Kumar et al.23 combined gaze control with
manual input, i.e., keystrokes, for pointing at and selecting

objects of interest. Grauman et al.24 proposed a method based
on blinking or raising an eyebrow to point at and select
objects and convey commands. Kaur et al.25 proposed the
idea of complementing gaze control with speech. Surakka
et al.26 suggested the idea of frowning to select the object of
interest. Tuisku et al.27 proposed a text entry method that
relies on gazing and smiling, where gaze is used to point at
an object and smiling is used as the selection tool. However,
these techniques do not satisfy the requirements of patients
with severe motor disabilities, e.g., amyotrophic lateral scle-
rosis patients who cannot move any part of their body except
the eyes. To overcome the limitations of single modality-
based methods, this study examines a multimodal approach
based on pupil accommodation and a short dwell time.

In previous research, Verney et al.29,30 indicated that
cognitive tasks can affect changes in pupil size. Based on
this, we adopt the spontaneous change of pupil size (pupil
accommodation) as one modality for analyzing the fixation
and nonfixation of user gaze for near-infrared (NIR) camera-
based gaze tracking systems. The proposed approach is
unique in four ways:

– First, we propose the use of pupil accommodation as an
indicator for the fixation and nonfixation of gaze posi-
tion in actual gaze tracking systems.

– Second, the concept of peakedness is introduced to
measure pupil accommodation with respect to time.

– Third, we use the features of the change in pupil size
(for measuring pupil accommodation) and change in
gaze position over a short dwell time to investigate
gaze fixation and nonfixation phenomena.

– Fourth, a fuzzy system is adopted using these two fea-
tures as inputs, and the gaze fixation or nonfixation
decision is made through defuzzification.

Table 1 gives a comparative summary of the proposed and
existing methods. The main distinction between the pro-
posed and existing methods is that object of interest is
selected by one modality (single modality-based methods)
or plural modalities (multiple modalities-based methods).
As single modality-based methods, there exist the methods
based on eye blink,14,24 dwell time,17,18 antisaccades,19,20 on
and off screen buttons,21 keystrokes,22,23 eyebrow raises,24

Table 1 Comparison between previous and proposed methods for object selection.

Category Single modality Multiple modalities

Method Object of interest is selected by eye blink,14,24 dwell time,17,18

antisaccades,19,20 on and off screen buttons,21 keystrokes,22,23

eyebrow raises,24 speech,25 face frowning,26 and smiling27

Pupil accommodation with short dwell time by fuzzy
system (proposed method)

Advantages -Simpler implementation than multimodal methods Higher accuracy of object selection (the success rate of
target selection) compared with single modality methods-Less input data to be processed than in multimodal methods

Disadvantages -Accuracy of object selection (the success rate of target
selection) is lower than multimodal methods

Necessity of designing a fuzzy rule table and
membership function

-Small errors in the sensing data can adversely affect
the overall results

-Some methods are difficult to use for patients with severe
motor disabilities, especially those who can only move
their eyes22–27
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speech,25 face frowning,26 and smiling.27 For example, in
case of the method based on eye blink, the object of interest
on a screen can be selected after a user’s gazing at it and his
(or her) eye blinking being perceived by the method. In case
of the method based on dwell time, the object of interest can
be selected after a user’s gazing at it and the maintenance of
the status of gazing (for predetermined time period) being
perceived. Our method belongs to multiple modalities-
based methods because two modalities such as pupil accom-
modation and short dwell time are checked for user’s select-
ing the object of interest. For example, in our method, the
object of interest can be selected after user’s gazing at it,
and both pupil accommodation and the maintenance of
the status of gazing (for short time period) being perceived.

The remainder of this paper is organized as follows. The
proposed system and methodology are introduced in Sec. 2.
In Sec. 3, the experimental setup is described and the results
are presented. Section 4 draws together our conclusions and
discusses some ideas for future work.

2 Object Selection by Pupil Accommodation with
Short Dwell Time

2.1 Overview of Proposed Method

In the proposed method, a commercial web camera (Logitech
C60031) with universal serial bus interface and NIR

illuminator (wavelength of 850 nm) of 8 × 8 NIR light-emit-
ting diodes (LEDs) are used for the eye-tracking device.
Illumination by NIR LEDs can reduce glare to a user’s
eye and distinguish the boundary between the pupil and
iris in an eye image.32 In detail, with the NIR light of shorter
wavelength [700 (or 750) to 800 nm], the iris becomes darker
(compared to the case using the NIR light of 850 nm), which
causes the reduction of distinctiveness of boundary between
the pupil and iris in the image. Therefore, it is more difficult
to detect the correct pupil area in the image. With the NIR
light of longer wavelength (higher than 900 nm), the iris
becomes brighter (compared to the case using the NIR
light of 850 nm), which causes the increase of distinctiveness
of boundary between the pupil and iris in the image.
Therefore, it is easier to locate the correct pupil area in
the image. However, the sensitivity of camera sensor gener-
ally decreases according to the increase of the wavelength of
illuminator. Therefore, the captured image by the NIR light
higher than 900 nm becomes so dark that correct detection of
pupil area is difficult. Therefore, we use the NIR illuminator
of 850 nm in our gaze tracking system.

The image resolution for the eye-tracking camera is set to
1600 × 1200 pixels to obtain more accurate gaze estimation.
Our system captures images at a rate of 15 frames per second
(fps). An NIR-passing filter is used to ensure that the images
captured by the eye-tracking camera are not affected by

Fig. 1 Overall procedure for the proposed method.
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exterior visible light conditions. The eye-tracking camera is
equipped with a zoom lens to obtain large eye images.
Although various commercial gaze tracking systems are
available,33–36 they do not provide any functionality for
measuring the change of pupil size. As this is needed in our
system to determine gaze fixation, we constructed a bespoke
gaze tracking system.

A flowchart for the proposed system is shown in Fig. 1.
Our gaze-tracking camera first acquires images of the user’s
eye while the user is looking at objects of interest. From the
captured eye image, the glint center and pupil region are
located (see details in Sec. 2.2). Here, glint refers to the
bright spot on the corneal surface caused by the NIR illumi-
nator. A user-dependent calibration is then performed while
the user gazes at the four positions of the object of interest.
These positions are close to the corners of the monitor. After
the user calibration step, the pupil size is measured based on
the major and minor axes calculated by pupil ellipse fitting
(see details in Sec. 2.3). To measure the pupil accommoda-
tion, peakedness is calculated based on the average pupil size
with respect to time as feature 1 (F1) (see details in Sec. 2.3).
The change of gaze position in the horizontal and vertical
directions is then calculated over a short dwell time as feature
2 (F2) (see details in Sec. 2.4). From F1 and F2, we calculate
the output value of the fuzzy system. Subsequently, the fix-
ation and nonfixation of user gaze are determined based on
the fuzzy output, and, in the case of fixation, the object of
interest is selected (see details in Sec. 2.5).

2.2 Preprocessing Steps for Detection of Pupil and
Glint Centers

Our system locates the pupil region and glint center. A flow-
chart for this procedure is shown in Fig. 2. This flowchart
corresponds to the “Detecting the pupil region and glint
center” step of Fig. 1. With the captured eye image, the glint
candidates are extracted using image binarization, labeling,
and size-based filtering methods in the predefined search
region. If the glint exists in the search region, the region
of interest (ROI) is defined based on the glint candidate,
and the approximate region of the pupil is detected in the
ROI using a sub-block-based matching method. This method
defines nine sub-blocks, and the position of maximum differ-
ence between the mean of the gray level of the central sub-
block (block 4 in Fig. 3) and those of the surrounding sub-
blocks (0 to 3 and 5 to 8 in Fig. 3) is determined as the
approximate pupil region. To enhance the processing
speed of the sub-block-based method, an integral imaging
method is adopted when calculating the average intensity
of each sub-block.37,38

The reason why the pupil region is detected within the
searching area defined by the located glint is that the position
of glint is usually close to that of the pupil. As shown in
Fig. 17, the NIR illuminator is close to our gaze tracking cam-
era, and the camera is also close to the monitor, which the user
is looking at. Therefore, the position of glint produced by the
NIR illuminator is close to that of pupil in the captured image.

Fig. 2 Flowchart for detection of glint center and pupil region.
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If there is no glint in the search region, the sub-block-
based matching method is performed in the search region to
detect the approximate pupil region. The size of the sub-
blocks varies from 20 × 20 to 60 × 60 pixels to cope with
pupils of different sizes. Figure 4 shows the detection of the
glint and the approximate pupil region. The whole eye region
is divided into two parts, and the sub-block-based matching
method is performed in each part.

Within the approximate pupil region, the accurate pupil
center and the major and minor axes of the pupil region are
detected by ellipse fitting (as shown in Fig. 5), and the glint
whose center is closest to the pupil center is selected.13

The process for detecting the accurate pupil center is
shown in Fig. 5. This flowchart corresponds to the “Finding
the pupil center, major, and minor axes by ellipse fitting” step
of Fig. 2. Within the approximate pupil region shown in

Fig. 6(a), histogram stretching is performed to increase the
distinction between the pupil and iris areas, as shown in
Fig. 6(b). Image binarization is then performed, as shown in
Fig. 6(c), using the threshold value determined by
Gonzalez’s method.39 The boundary of the pupil region is
found using a Canny edge detector,40 as shown in Fig. 6(d).
As it can be seen in Fig. 6(e), ellipse fitting is used to find the
pupil area. The major and minor axes of ellipse fitting can
then be obtained as shown in Fig. 6(f), and the final result of
the pupil center and boundary detection is given in Fig. 6(g).

Fig. 4 Example of detecting glint and approximate pupil region. Box on left eye shows case where glint is
not located, whereas that on right eye represents case where glint is located successfully.

Fig. 3 Mask of sub-block-based matching for pupil detection.

Fig. 5 Flowchart for detection of pupil center.
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2.3 Calculating Peakedness in Average Pupil Size
with Respect to Time as Feature 1

Figure 7 shows changes in the size of the pupil while the user
is looking at an object of interest. In the image, the pupil size
can be calculated by fitting an ellipse around the pupil boun-
dary and determining the major and minor axes of the ellipse,

as shown in Fig. 8. Equation (1) is used to calculate the size
of the pupil.41

EQ-TARGET;temp:intralink-;e001;326;730Size of Ellipse ðPupilÞ ¼ π × a × b: (1)

Based on Eq. (1), we can obtain a graph of the change in
pupil size with respect to time. A moving average filter
based on three coefficients (1/3, 1/3, and 1/3) can then be
applied to the graph to reduce noise.42 Using the filtered
graph, the gradient of the average pupil size can be obtained.

We set up a camera to a capture eye images at 15 fps.
Therefore, the time required for each frame is 1∕15 s
(66.6 ms). It has been experimentally observed that the maxi-
mum time required by the pupil to constrict and dilate is less
than 600 ms. Based on this, we use a window of 10 frames to
observe pupil dilation and constriction. Using this window,
the peakedness (Pk) is calculated as

EQ-TARGET;temp:intralink-;e002;326;567PeakednessðPkÞ ¼
�XD−1

i¼P

g 0
i

�
−
� XWþP−1

i¼D

g 0
i

�
; (2)

where g 0
i is the gradient between two adjacent points on the

graph of the change in pupil size with respect to time. D is
the time of the peak on the graph, and W is the size of
the window, i.e., 10 frames. P is the estimated start (time)

Fig. 6 Procedure for accurately detecting pupil centers. (a) Original
image. (b) Histogram stretched image. (c) Binarized image. (d) Result
by canny edge detection. (e) Ellipse fitting with canny edge image.
(f) Image with major and minor axes of ellipse fitting. (g) Final result
of detected pupil center and boundary.

Fig. 7 Example of variations in pupil size while looking at object of
interest.

Fig. 8 Example of fitted ellipse with major and minor axes.
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position of gaze fixation. In our research, D is determined by
checking the gradient of the graph of changes in pupil size.
The position of P is detected based on changes in gaze posi-
tion in the horizontal and vertical directions. Based on
previous results showing that cognitive tasks can affect the

change in pupil size,29,30 we expect Pk to increase with the
large change in pupil size in the case of gaze fixation. By
subtracting Pk from its maximum value (determined from
experimental data in advance), the smaller value of Pk indi-
cates gaze fixation.

In order to reduce the measured error, we use the average
value of pupil accommodation [Pk of Eq. (2)] of both eyes.
In the case of gaze fixation, pupil size is first increased and
then decreased. In order to measure this phenomenon in the
captured successive images, the graph of the change in pupil
size with respect to time is measured in the image as shown
in Fig. 11(a). As observed in Fig. 11(a), the pupil size (blue
line) changes (first increases, then decreases) after the start-
ing (time) positions (red line) of gaze fixation.

Because the pupil size is measured by the size of the
ellipse of the pupil in the image as shown in Eq. (1), the
unit of the pupil size is pixels. From the graph like
Fig. 11(a), the gradient (gi) between two adjacent points
on the graph are measured. That is, the gradient (gi) is the
difference of pupil size in two adjacent points, and the
unit of the difference of pupil size is pixels. Because the
two adjacent points are obtained from two successive images
and our system captures images at a rate of 15 fps, the time
interval between two adjacent points is 66.7 ms (1000/15).
Consequently, the gradient (gi) is the difference (pixels) of
pupil size in two successive images per time (66.7 ms)
between two successive images. Therefore, the unit of gra-
dient (gi) is pixels∕ð66.7 msÞ. By multiplying 66.7 to the
original measured gradient (gi), we obtain the revised gra-
dient (g 0

i ) (whose unit is pixels∕ms). This revised gradient
(g 0

i ) is summated for time period as shown in Eq. (2).
Therefore, peakedness (Pk) means the sum of pupil size
change within a time window [W of Eq. (2)], and its unit
is also pixels∕ms. Peakedness (Pk) represents the magnitude
of pupil state changes. The peakedness (feature 1) and
changes in gaze position (feature 2, which is explained in
Sec. 2.4) are normalized to be in the range of 0 to 1 before
being used as the two inputs to fuzzy system. Therefore, the
multiplication by 66.7 and the difference of unit between fea-
ture 1 (pixels∕ms) and feature 2 (pixel) do not affect the per-
formance of our system.

2.4 Calculating Horizontal and Vertical Changes in
Gaze Position within Short Dwell Time as
Feature 2

To obtain feature 2, the gaze position is calculated based on
the detected pupil center and glint center (explained in
Sec. 2.2).13 To calculate the gaze position, each user looks
at four positions close to the monitor corners during the ini-
tial calibration stage, and we obtain four pairs of pupil cen-
ters and glint centers, as shown in Fig. 9.

With these four pairs of detected pupil centers and glint
centers, the position of the pupil center is compensated based
on the glint center to reduce the variation in gaze position
caused by head movements. With these four pairs of detected
pupil centers and glint centers, a geometric transform matrix
can be calculated. This matrix defines the relationship
between the pupil movable region and the monitor region,
as shown in Fig. 10. In general, the relationship of transfor-
mation between two quadrangles can be defined by multiple
unknown parameters.43 If the transformation just includes
in-plane rotation and translations (on x- and y-axes), the

Fig. 9 Examples of four images including the detected centers of
pupil and glint when a user is looking at the four calibration positions
on monitor. (a) Example 1, (b) example 2, and (c) example 3. In
(a)–(c), the upper-left, upper-right, lower-left, and lower-right figures
show the cases that each user is looking at the upper-left, upper-
right, lower-left, and lower-right calibration positions on monitor,
respectively.
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relationship can be defined using three unknown parameters
(Euclidean transform). If the transformation includes in-
plane rotation, translations (on x- and y-axes), and scaling,
the relationship can be defined using four unknown param-
eters (similarity transform). In the case that the transforma-
tion includes in-plane rotation, translations (on x- and
y-axes), scaling, and parallel skewing, the relationship can
be defined using six unknown parameters (affine transform).
As the last case, if the transformation includes in-plane rota-
tion, translations (on x- and y-axes), scaling, parallel skew-
ing, and distortion, the relationship can be defined using
eight unknown parameters (projective or geometric trans-
form). In our research, we consider the last case for defining
the relationship of transformation between two quadrangles
of the pupil movable region and the monitor region, by
which various transform can be covered by our method.
Therefore, we use eight unknown parameters in Eq. (3).

This geometric transform matrix is calculated by
Eq. (3), and the user’s gaze position ðGPx;GPyÞ is given by
Eq. (4).13

EQ-TARGET;temp:intralink-;e003;63;3022
66664

MRx0 MRx1 MRx2 MRx3

MRy0 MRy1 MRy2 MRy3

0 0 0 0

0 0 0 0

3
77775 ¼

2
66664

a b c d

e f g h

0 0 0 0

0 0 0 0

3
77775

2
66664

PCx0 PCx1 PCx2 PCx3

PCy0 PCy1 PCy2 PCy3

PCx0PCy0 PCx1PCy1 PCx2PCy2 PCx3PCy3

1 1 1 1

3
77775;

(3)

EQ-TARGET;temp:intralink-;e004;63;128

�
GPx

GPy

�
¼

�
a b c d
e f g h

�2664
PC 0

x

PC 0
y

PC 0
xPC 0

y

1

3
775: (4)

Because the left and right eyes usually gaze at the same posi-
tion, we obtain the gaze positions of the left and right eyes,
and use the average of the two positions as the final gaze
position. Based on the user’s gaze position, feature 2 is cal-
culated by taking the sum of the differences in horizontal or
vertical change in gaze position between the current and pre-
vious frames. The absolute value of the sum is taken from the
estimated start (time) position of gaze fixation [P in Eq. (2)]
over a short dwell time [the time window size W in Eq. (2)].
The absolute values of the sum in the X and Y directions are
called AVSX and AVSY, respectively,

EQ-TARGET;temp:intralink-;e005;326;401AVSX ¼
XWþP−1

i¼P

jΔxij; (5)

EQ-TARGET;temp:intralink-;e006;326;341AVSY ¼
XWþP−1

i¼P

jΔyij: (6)

The final value of feature 2 [change in gaze (Δd)] is deter-
mined by selecting the larger of AVSX and AVSY

EQ-TARGET;temp:intralink-;e007;326;274Change in gazeðΔdÞ ¼
�
AVSX if ðAVSX ≥ AVSYÞ
AVSY else if ðAVSXÞ

�
:

(7)

We expect the change in gaze (Δd) of Eq. (7) to be smaller in
the case of user fixation, because the differences (Δx or Δy)
in the horizontal or vertical changes in gaze position between
the current and previous frames will be smaller. As shown in
Eqs. (5)–(7), among the two summations (AVSX and AVSY)
of absolute value of Δx and Δy, the larger one is selected as
the change of gaze (Δd) (feature 2). Therefore, no threshold
is used for this procedure, and the unit of the change of gaze
(Δd) is also pixel. Then, the change of gaze (Δd) is normal-
ized as 0 to 1, and it is used as one input (feature 2) to fuzzy
system. Therefore, no threshold is required.

An example of the graph for the variation in pupil size
with respect to time is shown as a blue line in Fig. 11(a). In
addition, the graphs for Δxi and Δyi [from Eqs. (5) and (6)]

Fig. 10 Relationship between the pupil movable region [the quadrangle defined by ðPCx0; PCy0Þ,
ðPCx1; PCy1Þ, ðPCx2; PCy2Þ, and ðPCx3; PCy3Þ] on the eye image and the monitor region [the quad-
rangle defined by ðMRx0; MRy0Þ, ðMRx1; MRy1Þ, ðMRx2; MRy2Þ, and ðMRx3; MRy3Þ].

Optical Engineering 063109-8 June 2016 • Vol. 55(6)

Naqvi and Park: Discriminating between intentional and unintentional gaze fixation using multimodal. . .



with respect to time are shown as blue lines in Figs. 11(b)
and 11(c), respectively. In Figs. 11(a)–11(c), the estimated
start (time) positions of gaze fixation [P from Eqs. (2), (5),
and (6)] and the end positions of gaze fixation (W þ P–1
from Eqs. (2), (5), and (6)] are shown as red and violet
lines, respectively. In addition, the detected peak on the
graph [D from Eq. (2)] is shown as a green line in
Fig. 11(a).

As observed in Fig. 11, the pupil size changes after the
start (time) positions of gaze fixation. In addition, the change
of gaze in the horizontal or vertical directions [Δxi and Δyi
from Eqs. (5) and (6)] becomes smaller after the start (time)
positions of gaze fixation. From this, we can confirm that
these two features [peakedness (Pk) and change in gaze
(Δd)] can be used as inputs to the fuzzy system for determin-
ing user gaze fixation.

Fig. 11 Variations in pupil size andΔx i andΔy i [from Eqs. (5) and (6)] with respect to time. (a) Variations
in pupil size. (b) Δxi . (c) Δy .
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2.5 Determination of Gaze Fixation Based on Fuzzy
Logic System

2.5.1 Definition of fuzzy membership functions

To determine gaze fixation, the proposed method uses a
fuzzy logic system with Pk and Δd as inputs, as shown
in Fig. 12. As explained in Secs. 2.3 and 2.4, these two fea-
tures decrease in the case of user gaze fixation. Through nor-
malization based on minimum-maximum (min-max) scaling,
Pk and Δd range from 0 to 1. Based on the output value of
the fuzzy logic system, we can determine whether user gaze
fixation has occurred.

Figure 13 shows the input membership functions for the
input values of Pk and Δd. The input values are categorized
into three groups in the membership function: low (L),
medium (M), or high (H). In general, these three value
groups are not separated. The membership functions are
defined as the overlapped area shown in Fig. 13. Consider-
ing the processing speed and complexity of the problem to be
solved, we use a linear (triangular) membership function,
which has been widely adopted in fuzzy-based applica-
tions.44–46 The shapes of three input membership functions
generally represent the overall distribution of input data as
three functions (L, M, and H). In the fuzzy system, the
shapes of these functions are not generally determined by
training with data, but heuristically defined by human expert.

The input values are converted into degrees of member-
ship using these membership functions. To determine

whether gaze fixation has occurred, the membership function
for the output value is also defined in the form of a linear
function (Fig. 14) that includes the three groups of L, M,
and H. Using these output membership functions, the opti-
mal output value is obtained from the defuzzification rule
and membership degrees, which are explained in Sec. 2.5.2.

2.5.2 Fuzzy rules based on two input values

As explained in Secs. 2.3 and 2.4, both Pk and Δd become
smaller in the case of user’s gaze fixation. In this situation,
we expect the probability of gaze fixation to be high (H).
Therefore, we use the following rule of “if Pk and Δd are L,
then output of fuzzy system becomes H” in Table 2. In addi-
tion, as these two features decrease when there is no gaze
fixation, we can expect the probability of gaze fixation to
be low (L) in this case. Based on these observations, we
define the fuzzy rules listed in Table 2.

2.5.3 Determination of gaze fixation using
defuzzification method

Using the two normalized input values, the corresponding
six values can be obtained using the input membership func-
tions shown in Fig. 15. We define the two membership func-
tions as fPkð·Þ and fΔdð·Þ. The corresponding output values
of the two functions with input values of Pk and Δd are
denoted as fLPk, f

M
Pk, f

H
Pk, f

L
Δd, f

M
Δd, and fHΔd. For example,

suppose that the two input values for Pk and Δd are 0.30 and
Fig. 12 Fuzzy-based method for determination of gaze fixation and
nonfixation.

Fig. 13 Input fuzzy membership functions for input feature 1 [peaked-
ness (Pk )] and input feature 2 [change in gaze (Δd )].

Fig. 14 Definition of output membership functions.

Table 2 Fuzzy rules based on Pk and Δd .

Pk Δd Output of fuzzy system

L L H

L M H

L H M

M L H

M M M

M H L

H L M

H M L

H H L
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0.70, respectively, as shown in Fig. 15. The values of fLPk,
fMPk, f

H
Pk, f

L
Δd, f

M
Δd, and fHΔd are 0.35 (L), 0.65 (M), 0.00

(H), 0.00 (L), 0.60 (M), and 0.40 (H), respectively, as
shown in Fig. 15. With these values, we can obtain the fol-
lowing nine combinations: [(0.35 (L), 0.00 (L)], [0.35 (L),
0.60 (M)], [0.35 (L), 0.40 (H)], [0.65 (M), 0.00 (L)],
[0.65 (M), 0.60 (M)], [0.65 (M), 0.40 (H)], [0.00 (H),
0.00 (L)], [0.00 (H), 0.60 (M)], and [0.00 (H), 0.40 (H)].

With the nine fuzzy rules in Table 2, the proposed method
determines which of L, M, and H can be used as the input for
the defuzzification step. For this purpose, the MIN or MAX
method is commonly used. In the MIN rule method, the min-
imum value is selected from each combination pair and used
as the input for defuzzification. For the MAX rule, the maxi-
mum value is selected and used as the input for defuzzifica-
tion. For example, for a combination pair of [0.35 (L), 0.60
(M)], the MIN rule selects the minimum value (0.35) as
the input. For the MAX rule, the maximum value (0.60) is
selected. Based on the fuzzy logic rules from Table 2 (if L

and M, then H), the value of 0.35 (H) and 0.60 (H) are finally
determined by the MIN and MAX rules, respectively.

In Table 3, we list all of the values calculated by the MIN
or MAX rules with the nine combinations {[(0.35 (L), 0.00
(L)], [0.35 (L), 0.60 (M)], [0.35 (L), 0.40 (H)], [0.65 (M),
0.00 (L)], [0.65 (M), 0.60 (M)], [0.65 (M), 0.40 (H)],
[0.00 (H), 0.00 (L)], [0.00 (H), 0.60 (M)], and [0.00 (H),
0.40 (H)]}. In this research, we refer to these values as the
“inference values” (IVs). As indicated in Table 3, these IVs
are used as the inputs for defuzzification in order to obtain
the output. In our experiments, the MIN and MAX rules are
compared.

Figure 16 shows several defuzzification methods used in
our research. We consider five such methods: first of maxima
(FOM), last of maxima (LOM), middle of maxima (MOM),
mean of maxima (MeOM), and center of gravity (COG).45–48

In each method, the maximum IVs are used to calculate the
output value. Figures 16(a) and 16(b) show that the maxi-
mum IVs are IV1ðHÞ and IV2ðMÞ. Using the FOM method,

Fig. 15 Obtaining output value of input membership function for two features: (a) Pk and (b) Δd .
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the first defuzzification value is selected as the optimal score
value and represented as s2 in Fig. 16(a). The LOM method
selects the last defuzzification value as the optimal score
value, i.e., s4. In the MOM method, the optimal score value
is calculated using the average of the values obtained by
FOM and LOM. Therefore, the output score value obtained
by MOM is [sMOM ¼ ð1∕2Þðs2 þ s4Þ]. The MeOM method
selects the mean of all defuzzification values as the output
score value. The final output score value obtained by the
MeOM method is calculated by [sMeOM ¼ ð1∕3Þðs2 þ s3 þ
s4Þ].

The output score in the COG method is calculated differ-
ently from the other defuzzification methods. The COG
method calculates the output score value based on the geo-
metrical center of the nonoverlapped area formed by the
regions defined by all IVs. As it is shown in Fig. 16(b),
the areas R1, R2, and R3 are defined based on all IVs. R1

is the quadrangle defined by the four points ½0; IV3ðLÞ�,
½s1; IV3ðLÞ�, (0.5, 0), and (0, 0). R2 is the quadrangle defined
by the four points ½s2; IV2ðMÞ�, ½s3; IV2ðMÞ�, (1, 0), and

Table 3 IVs obtained with nine combinations.

Output of
feature 1

Output of
feature 2

IV

MIN rule MAX rule

0.35 (L) 0.00 (L) 0.00 (H) 0.35 (H)

0.35 (L) 0.60 (M) 0.35 (H) 0.60 (H)

0.35 (L) 0.40 (H) 0.35 (M) 0.40 (M)

0.65 (M) 0.00 (L) 0.00 (H) 0.65 (H)

0.65 (M) 0.60 (M) 0.60 (M) 0.65 (M)

0.65 (M) 0.40 (H) 0.40 (L) 0.65 (L)

0.00 (H) 0.00 (L) 0.00 (M) 0.00 (M)

0.00 (H) 0.60 (M) 0.00 (L) 0.60 (L)

0.00 (H) 0.40 (H) 0.00 (L) 0.40 (L)

Fig. 16 Obtaining output score values of fuzzy system using different defuzzification methods. (a) FOM,
LOM, MOM, and MeOM. (b) COG.
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(0, 0), and R3 is that defined by the four points ½s4; IV1ðHÞ�,
½1; IV1ðHÞ�, (1, 0), and (0.5, 0). Finally, the optimal score
value of the fuzzy system (s5) is calculated from the
COG of regions R1, R2, and R3, as shown in Fig. 16(b).

If the output score of the fuzzy system is greater than a
threshold, our system determines that user gaze fixation has
occurred. Otherwise, our system determines that no gaze fix-
ation has occurred.

3 Experimental Results
Figure 17 shows the experimental setup of our system. In the
case that NIR illuminator is set at the left or right position of
camera, shadow happens in the opposite side of the eye
(compared to the illuminator) because the eye has 3-D
spherical shape (not 2-D plane). For example, if the illumi-
nator is set at the left position of the camera, there exists the
shadow in the right side of the eye. In this case, the pupil
boundary in the shadow region becomes less distinctive,
and correct detection of pupil area is difficult. In the case
that the NIR illuminator is set at the above position of the
camera, the consequent position of the camera becomes
lower (compared to the case of our system of Fig. 17) in
order not to hide the monitor. In this case, because the cam-
era captures user’s eye at a too low position, the vertical res-
olution of user’s eye becomes lower and pupil region is
shown more distorted in the vertical direction in the image,
which causes the error of pupil detection and measuring
change in gaze (Δd) in vertical direction (feature 2). There-
fore, the NIR illuminator is positioned below the camera in
our gaze tracking system.

We can consider the ring-type illuminator surrounding the
camera lens in order to reduce the distance between the cam-
era and NIR illuminator of Fig. 17. However, the phenome-
non that the pupil becomes brighter in the captured image
(named as “red-eye effect”) occurs, which frequently hap-
pens in case that the distance between camera and illumina-
tor is too small compared to the distance between camera and
user.49 If the pupil becomes brighter in the image, correct
detection of pupil area is difficult. Therefore, we do not use
the ring-type illuminator surrounding the camera lens in our
gaze tracking system.

To verify our classification method of gaze fixation and
nonfixation, we conducted experiments with 15 participants.

Each person conducted five trials in which they looked
at an object of interest in nine positions on a 19-in. monitor,
as shown in Fig. 17. The screen resolution is 1680 ×
1050 pixels on 19-in. monitor. The size of the circular target
is 34 pixels for radius (9 mm for radius). The interdistances
between the centers of two circular targets are 453 pixels
(120 mm) and 302 pixels (80 mm) in horizontal and vertical
directions, respectively, which are the minimum spacing
between two objects for our method to distinguish fixation
or nonfixation reliably. From this experimental environment,
we collected 675 gaze fixation data [true positive (TP) data]
and the same number of nonfixation data [true negative (TN)
data]. The TP data were collected when each participant
looked at the nine positions with the intention of activating
or selecting the object. The TN data were collected when
each participant looked at positions away from the object
of interest with the intention of simply looking at these
regions.

To measure the accuracy of the classification of gaze
fixation and nonfixation with these TP and TN data, we com-
pared the equal error rate (EER) with different defuzzifica-
tion methods. We considered type I errors, where TP data
were incorrectly classified as TN, and type II errors, where
TN data were incorrectly classified as TP. As explained in
Sec. 2.5.3, if the output score of the fuzzy system is greater
than a threshold, our system determines that user gaze fix-
ation has occurred (TP). Otherwise, our system determines
that user gaze fixation has not occurred (TN). Therefore, the
type I and II errors change according to the threshold. With a
larger threshold, the prevalence of type I errors increases,
whereas that of type II errors decreases. Conversely, with

Fig. 17 Experimental setup for the proposed method.

Table 4 Classification results of gaze fixation and nonfixation using
MIN rule (unit: %).

Defuzzification
method Threshold Type I error

Type II
error EER

FOM 0.50 0 0.83 0.42

MOM 0.50 0 0.83 0.42

LOM 0.75 0 0.83 0.42

MeOM 0.50 0 0.83 0.42

COG 0.70 0.17 0 0.09

Table 5 Classification results of gaze fixation and nonfixation using
MAX rule (unit: %).

Defuzzification
method Threshold Type I error

Type II
error EER

FOM 0.50 17.83 0 8.92

MOM 0.50 17.83 0 8.92

LOM 0.92 11 10 10.5

MeOM 0.50 17.83 0 8.92

COG 0.58 0.17 0 0.09
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a smaller threshold, the number of type I errors decreases and
the number of type II errors increases. EER is usually calcu-
lated by averaging the type I and II errors when the threshold
is such that they have a similar prevalence.

The classification results of gaze fixation and nonfixation
given by the five defuzzification methods using the MIN
and MAX rules are listed in Tables 4 and 5, respectively.
As indicated in these tables, the smallest EER (∼0.09%)
was obtained by COG with both the MIN and MAX rules.

Figures 18 and 19 show the receiver operating character-
istic (ROC) curves for the classification results of gaze
fixation and nonfixation according to the various defuzzifi-
cation methods using the MIN and MAX rules, respectively.
As shown in these figures, the classification accuracy of
COG with the MIN and MAX rules is higher than those
achieved by the other defuzzification methods.

In the ROC curves of Figs. 18 and 19, we show the
changes of “100—type II error (%)” according to the

Fig. 18 ROC curves from classification of gaze fixation and nonfixation according to various
defuzzification methods with MIN rule.

Fig. 19 ROC curves from classification of gaze fixation and non-fixation of gaze according to various
defuzzification methods with MAX rule.
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increase of type I error (%). The left-upper position of the
graphs is (0, 100) (“type I error” of 0% and “100—type II
error” of 100%). Because “100—type II error” is 100%, the
consequent type II error is 0%. Therefore, the left-upper

position of the graphs represents the position of no error
of type I and II. From that, we can know that the ROC curves
closer to the left-upper position (COG MIN of Fig. 18 and
COG MAX of Fig. 19) than others show the lower errors of
type I and II (higher accuracies of classification of gaze fix-
ation and nonfixation). EER is usually calculated by averag-
ing the type I and II errors when the threshold is such that
they (type I and II errors) have a similar prevalence. There-
fore, EER line is that passing through the two points where
types I and II errors are same. For example with Fig. 18,
these two points are (0, 100) and (2, 98). Because 100 and
98 represent the “100—type II error”, the consequent type II
errors are 0 and 2, respectively. Therefore, two points are
(0, 0) and (2, 2) in terms of type I and II errors, respectively.

Fig. 20 The type I and II errors according to threshold. (a) COG method with MIN rule. (b) COG method
with MAX rule.

Fig. 21 Example of incorrect detection of pupil boundary and center,
which causes type I errors.

Table 6 EER comparison between our method and previous method
(unit: %).

Method EER

Proposed method 0.09

Dwell time-based method 1.53

Optical Engineering 063109-15 June 2016 • Vol. 55(6)

Naqvi and Park: Discriminating between intentional and unintentional gaze fixation using multimodal. . .



Figure 20 shows the type I and II errors according to
threshold using COG with the MIN and MAX rules. It can
be seen that the proposed method produces the small
common area of type I and II errors, which shows that the
EER by our method is low.

As shown in Tables 4 and 5, the proposed method with
COG gave type I errors in 0.17% of cases, whereas it pro-
duced no type II errors. As explained before, type I errors
occur when TP data are incorrectly classified as TN. Type
I errors occurred for the following reason. In people whose
pupil is partially occluded by their eyelid, an incorrect pupil
boundary can be detected (as shown in the right eye of
Fig. 21) compared to the left eye, which causes the incorrect
pupil center to be detected. In our approach, the final gaze
position is calculated by averaging the gaze positions of both
eyes. Therefore, incorrect detection of the right pupil center
can cause incorrect gaze detection. The pupil center may be
correctly detected in one image and incorrectly detected in
the next image because of occlusion of the pupil by the eye-
lid. The consequent gaze position will fluctuate, causing the
change in gaze (Δd) of Eq. (7) to increase and resulting in a
type I error.

In a second experiment, we compared the performance of
our proposed method with that of a popular approach based
on the dwell time.13 This comparison uses the same 675 gaze
fixation data (TP data) and 675 nonfixation data (TN data)
obtained from the 15 participants in the first experiment. As
indicated in Table 6, our method outperformed the previous
method in the classification of gaze fixation and nonfixation.

Furthermore, we analyzed the processing time of our pro-
posed method on a desktop computer with a 2.5-GHz CPU
and 4-GB memory. The results are presented in Table 7. The
proposed method required a total processing time of∼31 ms,
most of which is dedicated to detecting the pupil and glint
centers. These results confirm that our method can operate at
fast speeds [∼31.5 fpsð¼ 1000∕31.727Þ].

In our research, 15 people took part in the experiments,
and each person conducted five trials. The ages of the people
ranged from 24 to 45. Five people wore contact lens, and it
did not affect the experimental results, six female, and nine
male. From the experiments, we can confirm that gender did
not affect the experimental results, either. Each participant
was not requested to take a rest before experiments, and they
were randomly selected without the preparation for experi-
ment. Therefore, people having various mental or physical
state took part in the experiments, which show that mental
or physical state did not give much effect on the results,
either. Nevertheless, the pupil accommodation can be
affected by the change of environmental lighting conditions50

and psychological effect such as severe auditory emotional
(negative or positive) stimuli.51 Therefore, environmental
light was not changed by being maintained as about 350
lux. (considering conventional office environment52) and
any severe auditory emotional stimuli was not given to peo-
ple during the experiments because it is not often the case

with the frequent change of environmental light and severe
auditory emotional stimuli assuming that our system is used
in conventional office environment. However, in general, the
speed of pupil size change is reported to be lower with the
old people compared to the young people.53 Therefore, in
case our system is used for the old people whose age is over
50- or 60-years old, the Peakedness (Pk) of Eq. (2) can be
measured with the time window of larger size than the origi-
nal one [W of Eq. (2)].

4 Conclusions
In this study, we have developed a determination method for
gaze fixation in NIR camera-based gaze tracking systems.
We employed two features, i.e., the change in pupil size
(for measuring pupil accommodation) and change in gaze
position over a short dwell time. A fuzzy system was adopted
using these two features as input values, and the gaze fixation
or nonfixation was determined through defuzzification. The
performance of the proposed method was investigated by
comparing the defuzzification results with ROC curves
and EER. From the results, we verified that the COG method
with MIN and MAX rules outperformed other methods in
terms of accuracy and that our system can operate at fast
speeds.

In future work, we intend to enhance the performance of
gaze fixation by combining the features of the change in
pupil size and change in gaze position with texture informa-
tion from the target region.
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