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Abstract. Various scene-based nonuniformity correction (SBNUC) methods have been proposed to diminish
the residual nonuniformity (RNU) of the infrared focal plane array (IRFPA) sensors. Most existing SBNUC tech-
niques require a relatively large number of image frames to reduce the RNU. In some applications, however,
there is not enough time for capturing a large number of image frames prior to the camera operation, or only
several image frames are available to users. A new scene-based approach that can correct the RNU using only
several image frames is proposed. The proposed method formulates the SBNUC process as an energy min-
imization problem. In the proposed energy function, we introduce regularization terms for the parameter regard-
ing the responsivity of the IRFPA as well as for the true scene irradiance. Correction results are obtained by
minimizing the energy function using a numerical technique. Experimental results demonstrate the effectiveness
of the proposed method. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.53.5.053105]
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1 Introduction
The spatial noise caused by nonuniformity of individual
detector elements in the infrared focal plane array
(IRFPA) can limit the overall performance of imaging sys-
tems. In general, the responsivity of individual detector ele-
ments is assumed to be linear. Therefore, it is possible to
correct the nonuniformity using the well-known two-point
correction (TPC) method, where two blackbodies at different
temperatures are employed.1 Since the nonuniformity nor-
mally drifts in time2 and the correction capability of the
TPC is degraded with repeated operations,3 we need to
recalibrate the IRFPA. In practice, there are two difficulties
in using the TPC method to compensate the residual nonun-
iformity (RNU) resulting from the temporal drifit or repeated
operations: (1) we have to maintain two distinct heat sources
in imaging systems; and (2) real-time video operation is
interrupted during the correction process.4

Various scene-based nonuniformity correction (SBNUC)
algorithms have been proposed to solve these problems. In
general, SBNUC schemes can be broadly divided into two
categories: constant statistics (CS) methods4–6 and least
mean square (LMS) methods.7–10 The original CS method
assumes that the temporal mean and standard deviation of
each pixel are constant over time and space.5 The perfor-
mance of the original CS method is reliable as long as
the assumption is valid. As pointed out in Refs. 4 and 6, how-
ever, thousands of image frames are required to hold the
assumption. Zhang and Zhao4 proposed a local constant sta-
tistics (LCS) method, which assumes that the temporal sta-
tistics are constant in a local region around each pixel. The
LCS method improved the correction performance for the
same number of input frames.4 Later, Zuo et al.6 generalized

the LCS method by introducing a new constraint called mul-
tiscale CS.

In the LMS methods, the correction parameters are
learned by minimizing the LMS error between corrected
images and desired output images. The minimization is per-
formed frame-by-frame using the stochastic gradient descent
(SGD) technique.11 Since the desired output images are not
available, spatially low-pass filtered input images are used as
the desired ones.7 However, the performance of the LMS
method is degraded at strong edge points as reported in
Refs. 8 to 10. Thus, several methods improve the estimation
accuracy of correction parameters by suppressing the influ-
ence of strong edge points in the minimization process. Vera
and Torres8 adaptively adjust the learning rate which is a
fixed parameter in the original SGD techinque, according
to the local spatial standard deviations of input images. In
this way, the influence of strong edge regions, where the
local standard deviation is large, is reduced in the minimi-
zation process. This method is further improved in Ref. 9
to remove burn-in artifacts caused by temporally slowly-
varying image regions. An approach proposed in Ref. 10
updates correction parameters only when sufficient change
occurs between consecutive images.

Lately, different error functions are proposed as alterna-
tives to the LMS error in the original LMS method.12–14

Interframe registration-based LMS method12,13 first registers
the previous corrected image with the current input image by
assuming that only slight translational motion exists. Then,
this technique minimizes the LMS error between the previ-
ously shifted image and the currently corrected image. Vera
et al.14 minimize the total variation of corrected images to
obtain the correction parameters.

Although these previous SBNUC algorithms may reduce
the RNU, they have a common problem: a relatively large
number of image frames are required to acquire the*Address all correspondence to: Jun-Hyung Kim, E-mail: junkim@add.re.kr

Optical Engineering 053105-1 May 2014 • Vol. 53(5)

Optical Engineering 53(5), 053105 (May 2014)

http://dx.doi.org/10.1117/1.OE.53.5.053105
http://dx.doi.org/10.1117/1.OE.53.5.053105
http://dx.doi.org/10.1117/1.OE.53.5.053105
http://dx.doi.org/10.1117/1.OE.53.5.053105
http://dx.doi.org/10.1117/1.OE.53.5.053105
http://dx.doi.org/10.1117/1.OE.53.5.053105


correction parameters.15 Two recently proposed SBNUC
algorithms perform NUC using several image frames16 or
even only two image frames.15 These methods can achieve
good performance when the relative motion in successive
image frames is a small translation along vertical or horizon-
tal directions. However, large displacements between con-
secutive image frames can occur in some applications.17,18

To deal with the motion constraint of the previous
approaches,15,16 we propose a new SBNUC method that esti-
mates the correction parameters using several image frames.
In the proposed method, we utilize the prior information on
the parameters regarding the responsivity and the true scene
irradiance. There is no restriction on the motion in successive
image frames unless it is static.

The rest of this article is organized as follows. In Sec. 2,
the proposed SBNUC method is detailed. In Sec. 3, the per-
formance of the proposed method is evaluated. Conclusion is
drawn in Sec. 4.

2 Proposed Method
In this section, we first formulate an optimization problem
for correcting the RNU followed by its numerical solution.

2.1 Formulation

Let us assume that the characteristic of each detector element
in the IRFPA is linear.5,7 Then, the acquired signal yði; j; tÞ
for the ði; jÞ’th detector element at time t is given by

yði; j; tÞ ¼ xði; j; tÞ þ oði; j; tÞ; (1)

where oði; j; tÞ represents the offset of each detector element
and xði; j; tÞ indicates the scene irradiance. Here, we assume
that there is no gain nonuniformity since the offset compo-
nent is the dominant source of the RNU.15,19,20 Given the
image observation model [Eq. (1)], our objective is to esti-
mate xði; j; tÞ and oði; j; tÞ. This problem can be solved by
minimizing the proposed energy function, which consists of
three terms:

Eðx; oÞ ¼
X
t∈Ω

X
i;j∈I

Dðx; oÞ þ λoC1ðoÞ þ λxC2ðxÞ; (2)

where Ω and I denote the set of given image frames and the
image domain, respectively. λo and λx are regularization
parameters for C1ðoÞ and C2ðxÞ, respectively. The data-fidel-
ity term D which measures the mismatch between the
observed image and the estimates is given by

Dðx; bÞ ¼ ½yði; j; tÞ − xði; j; tÞ − oði; j; tÞ�2: (3)

Solving Eq. (3) alone is an underconstrained problem in
which the number of unknowns is greater than that of equa-
tions. Thus, a regularization approach is taken to estimate
xði; j; tÞ and oði; j; tÞ in this work. The regularization
term for the offset oði; j; tÞ is defined as follows:

C1ðoÞ ¼
�
∂oði; j; tÞ

∂t

�
2

: (4)

C1ðoÞ is derived from the observation that the offset
changes very slowly in time.7,9 In other words, the offset
remains almost constant for several consecutive image
frames.20 This regularization term favors the offset with
small changes along the time axis. If we correctly estimate
oði; j; tÞ for the given image frames, their temporal variation
is negligible, which means that C1ðoÞ is very close to zero.

The last term C2ðxÞ in Eq. (2) is introduced to regularize
the scene irradiance xði; j; tÞ. In general, xði; j; tÞ is smooth
in the spatial domain. This fact is implictly used in the origi-
nal LMS method, where the desired image is the spatially
low-pass filtered input image.7 Thus, it is natural for us to
require xði; j; tÞ to be smooth in the spatial domain. Since
the degree of the spatial smoothness can be measured via
the image gradient, C2ðxÞ is given by

C2ðxÞ ¼ wi½yði; j; tÞ�
�
∂xði; j; tÞ

∂i

�
2

þ wj½yði; j; tÞ�
�
∂xði; j; tÞ

∂j

�
2

: (5)

The smoothness term C2ðxÞ is proportional to the magni-
tude of the spatial intensity change of the scene irradiance.
Therefore, the smoother the scene irradiance is, the smaller
the value of C2ðxÞ is. However, the smoothness constraint is
not appropriate at edge points as pointed out in Sec. 1. Since
the spatial variation of xði; j; tÞ is normally greater than that
of RNU,2 the large spatial variation in the input image
yði; j; tÞ is mainly due to the edge points of xði; j; tÞ. We
adaptively adjust the effect of the smoothness constraint
according to the gradient of yði; j; tÞ. The weighting factors
wi½yði; j; tÞ� and wj½yði; j; tÞ� in Eq. (5) are defined as follows

wiðyÞ ¼
����� ∂yði; j; tÞ∂i

����
γ

þ ε

�−1
; (6)

wjðyÞ ¼
����� ∂yði; j; tÞ∂j

����
γ

þ ε

�
−1
: (7)

The exponent γ controls the sensitivity to the spatial gra-
dients of yði; j; tÞ and ε is a small constant that prevents
dividing by zero. Since the weighting factors are inversely
proportional to the spatial gradients of yði; j; tÞ, the smooth-
ness constraint has little effect on edge regions. These
weighting factors are the same as smoothness weights for
the image smoothing operator in Ref. 21.

2.2 Numerical Solution

The proposed energy function Eðx; oÞ in Eq. (2), a function
of two variables, is nonconvex. We minimize the energy
function by solving two convex subproblems in an alternat-
ing way with initial estimates xð0Þ ¼ y and oð0Þ ¼ 0:

xðnÞ ¼ argmin
x

E½x; oðn−1Þ�; (8)
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oðnÞ ¼ argmin
o

E½xðnÞ; o�: (9)

The above process is repeated until there is no significant
change in the estimates xðnÞ and oðnÞ.

We compute the partial derivative of Eq. (2) with respect
to x in order to solve Eq. (8). First, we represent Eq. (2) in
matrix notation as follows:

X
t∈Ω

½yðtÞ− xðtÞ− oðtÞ�T½yðtÞ− xðtÞ− oðtÞ�

þ λx½xðtÞTDT
i WiðtÞDixðtÞ þ xðtÞTDT

j WjðtÞDjxðtÞ�;
(10)

where yðtÞ, xðtÞ, and oðtÞ are the lexicographically ordered
vectors corresponding to the acquired signal, the scene irra-
diance, and the offset at time t, respectively.WiðtÞ andWjðtÞ
denote diagonal matrices containing values of the weighting
factors wiðyÞ and wjðyÞ at time t, respectively. Di and Dj are
the backward difference operators along i and j directions,
which approximate the spatial partial gradients. Note that the
regularization term for the offset C1ðoÞ is omitted in Eq. (10)
since C1ðoÞ is constant with respect to x. Then, ∂E∕∂x in
matrix notation is given by

∂E
∂x

¼
X
t∈Ω

½AðtÞxðtÞ − bðtÞ�; (11)

where

AðtÞ ¼ λx½DT
i WiðtÞDi þ DT

j WjðtÞDj�; (12)

bðtÞ ¼ yðtÞ − oðtÞ: (13)

Therefore, we solve a large system of linear equations
[i.e., AðtÞxðtÞ ¼ bðtÞ] for each xðtÞ. The conjugate-gradient
(CG) method is used to solve the linear equations in this

work since the matrix A is sparse, symmetric, and positive
definite.22

We rewrite Eq. (2) in different matrix notation from that
represented in Eq. (10) to solve Eq. (9):
X
i;j∈I

½yði; jÞ − xði; jÞ − oði; jÞ�T½yði; jÞ − xði; jÞ − oði; jÞ�

þ λo½oði; jÞTDT
t Dtoði; jÞ�; (14)

where yði; jÞ, xði; jÞ, and oði; jÞ are vectors formed by
lexicographically stacking the acquired signal, the scene irra-
diance, and the offset in the time domain, respectively, for
each detector element located in ði; jÞ. Dt is the temporal
backward difference operator. Similar to Eq. (10), we
exclude the regularization term C2ðxÞ in Eq. (14) since it
is constant with respect to o. Differentiation with respect
to o produces

∂E
∂o

¼
X
i;j∈I

½A 0oði; jÞ − b 0ði; jÞ�; (15)

where

A 0 ¼ Iþ λoDT
t Dt; (16)

b 0ði; jÞ ¼ yði; jÞ − xði; jÞ: (17)

I denotes identity matrix in Eq. (16). The CG method is
used here again to obtain the values of the offset for
each oði; jÞ.

3 Simulation Results
To our best knowledge, no study has been reported on cor-
recting the RNU with several image frames that have large
displacements. Therefore, no comparison is made with
existing SBNUC methods in this work. The regularization
parameters are empirically set to λo ¼ 6, λx ¼ 0.1 for all
experiments in this article, and the value of γ is determined

Fig. 1 Simulated nonuniformity images.
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to be 0.2. At first, we test the convergence of the proposed
method with eight synthetic images as shown in Fig. 1. The
eight images are generated by adding the artificial offset9,15

to calibrated infrared images caputured by a 320 × 256 InSb
focal plane array camera operating in the 3 to 5 μm range.
The RNU is generally composed of two patterns, the low-
frequency one and white noise-like one as reported in
Ref. 23. However, only the white noise-like pattern
is usually prominent to observers together with natural
scenes. This is due to the masking effect of the human visual
system, which attenuates contrast sensitivity at low-spatial
frequencies.24 Therefore, the artificial offset is generated

as realizations of independent identically distributed
Gaussian random variables.9

We plot the proposed energy function in Eq. (2) against
the number of iterations. As shown in Fig. 2, the value of the
energy function drops quickly. We obtain good results with
11 iterations in our expeirments. In Fig. 3, we present images
corrected by the proposed NUC method. Close-up views of
some parts of the images are depicted in Fig. 3(b) to help the
reader observe the visual quality improvement. The proposed

Fig. 2 Convergence of the proposed method.

Fig. 3 Nonuniformity correction (NUC) results on the synthetic images. (a) Whole images. (b) Close-ups
of the input (left) and the proposed (right).

Table 1 Peak signal-to-noise ratio results of the proposed method
with various numbers of input images.

Image # Input 2 images 4 images 6 images 8 images

1 27.65 29.61 31.4 32.19 32.6

2 27.64 29.52 31.37 32.17 32.6

3 27.62 — 31.34 32.19 32.65

4 27.59 — 31.27 32.17 32.64

5 27.59 — — 32.12 32.62

6 27.57 — — 32.01 32.55

7 27.54 — — — 32.48

8 27.52 — — — 32.38

Average 27.59 29.57 31.35 32.14 32.57
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method produces acceptable results no matter how complex
the spatial distribution is, as shown in Fig. 3.

We investigate the effect of the number of input images on
the estimated scene irradiance using the eight synthetic
images. Table 1 shows the peak signal-to-noise ratio results
for different numbers of input images. As the number of
input images increases, we can obtain more accurate results.
This can be described by the fact that the information gained
from consecutive image frames leads to high-quality NUC
results and enhanced temporal consistency in the offset.
Note that, however, raising the number of input images
increases processing time. Thus, selecting a proper number
of input images demands trade-off between the computa-
tional complexity and the image quality.

We also perform an experiment on two sets of real infrared
images as shown in Fig. 4. We have collected the two sets of
images using a 640 × 512 InSb focal plane array camera oper-
ating in the 3 to 5 μm range. One set of images in Fig. 4(a)
shows drastic intensity changes among them due to atmos-
pheric effects. The other set of images in Fig. 4(b) has rela-
tively largemotion. Objective results for the proposedmethod
are provided in Table 2. We employ a roughness metric8,9,15

which is defined by

ρ ¼ kh1 � Ik1 þ kh2 � Ik1
kIk1

; (18)

where h1 and h2 are horizontal and vertical difference filters,
respectively, I represents the image under test, kk1 is the L1

norm, and * denotes discrete convolution. The roughnessmet-
ric ρmeasures the amount of high-frequency energy due to the
RNU. As pointed out in Ref. 9, the metric cannot distinguish
between true high-frequency energy and that from the RNU.
However, the metric can be a useful indicator of the RNU to
some degree when taken along with subjective evaluation.9

The correction results of the proposed method are depicted
in Figs. 5 and 6. Similar to the simulated nonuniformity
case, our method consistently suppresses the RNU as
shown in Figs. 5(b) and 6(b). We also present the difference
images between the input and the corrected in Fig. 7 to visu-
alize the RNU corrected by the proposed method.

We have implemented the proposed method using C lan-
guage. The simulation is performed on a PC with an Intel i7

Fig. 4 Real infrared images.

Table 2 Roughness results for real images.

Image #

Fig. 4(a) Fig. 4(b)

Input Proposed Input Proposed

1 0.2211 0.0717 0.2183 0.0626

2 0.1290 0.0798 0.3981 0.0618

3 0.4618 0.0648 0.4338 0.0465

4 0.7389 0.0484 — —

5 0.3975 0.0685 — —
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Fig. 5 NUC results on images shown in Fig. 4(a). (a) Whole images. (b) Close-ups of the input (top) and
the corrected (bottom).

Fig. 6 NUC results on images shown in Fig. 4(b). (a) Whole images. (b) Close-ups of the input (top) and
the corrected (bottom).
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3.40-GHz CPU and 4-GB memory. Our optimization
procedure takes 5.6 and 3.8 s for the set of images in
Figs. 4(a) and 4(b), respectively.

4 Conclusion
We presented a regularization approach to SBNUC with sev-
eral image frames. Our work formulated the SBNUC process
as the energyminization problem that incorporates the slowly
varying nature of the detector responsivity and the smooth-
ness constraint for the scene irradiance. In the proposed
method, no assumption was made about the motion among
input images except that the motion is static. Therefore, the
proposed method can be used in applications where only sev-
eral image frames are available and large displacements exist
among the given images. Simulation results on both synthetic
and real infrared images demonstrated that the proposed
method can reduce the RNU. In future works, we plan to
apply more advanced numerical techniques to reduce the
computational complexity of the proposed method.
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Fig. 7 Difference images between the input and the corrected for (a) the fifth image in Fig. 4(a) and the
third image in Fig. 4(b).
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