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Abstract. Mobile laser scanning (MLS), which can quickly collect a high-resolution and high-
precision point cloud of the surroundings of a vehicle, is an appealing technology for three-
dimensional (3D) urban scene analysis. In this regard, the classification of MLS point clouds
is a common and core task. We focus on pointwise classification, in which each individual point
is categorized into a specific class by applying a binary classifier involving a set of local features
derived from the neighborhoods of the point. To speed up the neighbor search and enhance
feature distinctiveness for pointwise classification, we exploit the topological and semantic infor-
mation in the raw data acquired by light detection and ranging (LiDAR) and recorded in scan
order. First, a two-dimensional (2D) scan grid for data indexing is recovered, and the relative 3D
coordinates with respect to the LiDAR position are calculated. Subsequently, a set of local fea-
tures is extracted using an efficient neighbor search method with a low computational complexity
independent of the number of points in a point cloud. These features are further merged to pro-
duce a variety of binary classifiers for specific classes via a GentleBoost supervised learning
algorithm combining decision trees. The experimental results on the Paris-rue-Cassette database
demonstrate that the proposed approach outperforms the state-of-the-art methods with a 10%
improvement in the F; score, whereas it uses simpler geometric features derived from a spherical
neighborhood with a radius of 0.5 m. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOIL: 10.1117/1.JRS.15.024523]
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1 Introduction

With the development of light detection and ranging (LiDAR) technology, mobile laser scanning
(MLS) systems, which deploy one or multiple LIDARs on a ground-based vehicle,' can quickly
collect a high-resolution and high-precision point cloud of the surroundings of the vehicle and
have gained increasing attention in three-dimensional (3D) urban scene analysis,” including
urban 3D modeling® and automated urban driving.*

Classification of MLS point clouds, in which each point in an MLS point cloud is determined
to belong to a specific class, e.g., ground,5 road,® road markings,7 vehicles,? power lines,” and
street trees,'!! is a common and core task for various applications of 3D urban scene analysis.'?
Weinmann et al."* proposed a pointwise classification framework, whereby each individual point
is classified by a binary classifier involving a set of local geometric features derived from the
neighborhoods of the point. The framework does not require expert knowledge in the specific
domain'? and thus can be applied to label a variety of urban object classes. However, the main
challenges of pointwise classification include a low distinctiveness of local geometric features and
a high computational complexity of the neighbor search. The commonly used neighbor search
approaches for MLS point clouds are based on the k-D tree algorithm, in which a k-dimensional
index tree is constructed and the average complexity for the nearest-neighbor search is O(log N)
for a point cloud with N points. To enhance the discrimination of local low-level geometric
features, multiple neighborhood scales'*'® or a selected optimal neighborhood scale'*'"!* are
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Fig. 1 Framework of the proposed pointwise classification approach.

recovered via the k-D tree, resulting in a higher computational cost. To address the above issues,
Hackel et al.'* downsampled the point cloud and built a multiscale pyramid of k-D trees to help
improve the efficiency of neighbor searching.

An MLS point cloud is usually georeferenced by merging data from LiDAR and other sen-
sors, such as inertial measurement units and global positioning systems.' However, more seman-
tic information exists among the raw data acquired by the LiDAR, i.e., the relative positions of
the measured points with respect to the LIDAR, which can be viewed as the relative positions of
these points with respect to the road surface. This information can help to monitor the presence
of most constructed objects since the spatial distributions of these objects along the road are
generally regular. In addition, the raw data recorded in scan order are beneficial for organizing
the point cloud."

To reduce the neighbor search time and enhance the distinctness of local geometric features
for pointwise classification, this study fully exploits the contextual and topological information
in the raw data of the MLS point clouds, as shown in Fig. 1. First, a two-dimensional (2D) scan
grid for data indexing is recovered, and the relative 3D coordinates with respect to the LiIDAR
position are calculated. Subsequently, a set of local features is extracted using an efficient neigh-
bor search method with a low computational complexity independent of the number of points N
in a point cloud. These features are further merged to produce a variety of binary classifiers for
specific classes via a boosting supervised learning algorithm combining decision trees.

2 Methods

This study considers an MLS system with a single 2D LiDAR sensor used in push-broom
mode;” i.e., the scan plane of the sensor is orthogonal to the direction of vehicle movement.

2.1 Scan Grid Construction

A scan line is defined as a 2D profile acquired by a single rotation of the 2D LiDAR mirror.'**!

Thus, an MLS point cloud can be organized by constructing a scan grid in which each row
represents a scan line, as shown in Fig. 2(a). In the grid, a point p measured by the i’th beam
on the j’th scan line can be indexed by (i, j). The scan grid provides a compact representation of
the point cloud with a size of Ny X N;, where N is the number of scan lines and N, is the
number of laser beams per scan line.

To construct a scan grid from the MLS data, the scan angles of the point cloud should be
recorded. Some LiDARSs do not record the point if the laser beam does not return. In this case, we
can segment the point cloud into scan lines to calculate the scan line index j for point p by
finding a significant jump between the scan angles of adjacent points. Then, the beam index
i for point p can be calculated as
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Fig. 2 One hundred scan lines acquired by an MLS system with a single 2D LiDAR sensor, for
which the scan plane is orthogonal to the direction of vehicle movement. The 2D LiDAR sensor
performs a 360 deg scan at an interval of 0.12 deg, recording 3000 points per scan line. Points are
colorized according to their class labels. (a) Scan grid, in which each row represents a scan line.
The black points represent points in which the laser beam does not return. (b) Georeferenced 3D
coordinates. (c) Relative 3D coordinates.

where 6 is the scan angle of point p, 6, is the start scan angle of a scan line, and A# is the scan
resolution, i.e., the nominal angular increment between adjacent beams on a scan line.

If the scan resolution A@ is not provided, it can be estimated using the mean or median of the
differences between scan angles of adjacent points on the same scan line.

2.2 Relative Coordinate Calculation

To obtain more contextual information from LiDAR data, a relative 3D coordinate system, where
x represents the moving distance from the origin along the trajectory of the LiDAR, y represents
the horizontal displacement with respect to the LiDAR position, and z represents the vertical
displacement with respect to the LiDAR position, is constructed for the MLS point cloud.
The relative coordinates of point p(i, j) are calculated as

x(i,j) = Ziﬂ v(k)At
y(i, j) = r(i, j) cos (i, j) » @)
z(i,7) = r(i, j) sin 6(i, j)

where v(k) is the vehicle speed at the time when the k’th scan line is acquired by the LiDAR, At
is the time interval between adjacent scan lines, r(i, j) is the radial distance of point p(i, j), and
0(i, j) is the scan angle of point p(i, j).

Since the attitude of the LiDAR (vehicle) over a short period of time can be regarded as
constant, the relative coordinates can describe a local spatial distribution of points as well as
the georeferenced coordinates, as shown in Figs. 2(b) and 2(c).

2.3 Neighbor Search

The neighborhood of each point should be recovered for local feature extraction. A spherical
neighborhood S(i, j) of point p(i, j) is defined as a set of points within a sphere centered at
p(i, j) with a radius of §. We propose a fast procedure for searching S(i, j) with a computational
complexity of O(1), i.e., independent of the number of points N in a point cloud.
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Fig. 3 Resolution Ai at point p(i, j), i.e., the minimum distance between point p(/, j) and its adja-
cent points on the j’th scan line.

Consider the measurement resolutions Ai and Aj of the scan grid at point p(i, j). The res-
olution A, the minimum distance between the point p(i, j) and its adjacent points p(i & 1, j) on
the j’th scan line, can be estimated by the distance between the point p(i, j) and the (i = 1)’th
beams on the j’th scan line, as shown in Fig. 3. The resolution A j, the distance between the point
p(i, j) and its adjacent points p(i, j £ 1), can be estimated by the distance between the j’th scan
line and the (j =+ 1)’th scan lines along the trajectory of the LiDAR. Thus, the measurement
resolutions Ai and Aj are calculated as

Ai = r(i,j)sin A
{ Aj=v(Ar ©
Then, a candidate neighborhood R(, j) can be derived from the scan grid:
R(i, j) = {p(iR,jR)IiR € i—E,i—i‘% Jr € j‘%’”%} } )
The spherical neighborhood S(i, j) is finally determined as
S(i, j) = {p(is. js)[l[p(is. js) = p(i. /)| < 8.p(is. js) € R(i. j)}- )

The computational complexity of the proposed neighbor search method can be measured by
the number of points in R(i, j):
45 457
AiAj  r(i, j)sin AQv(j)At’

Nr(i.j) = (6)

which depends on the measurement resolutions of the scan grid at point p(i, j) and is indepen-
dent of the number of points in the whole point cloud. Note that affected by the variation of point
density, the computational complexity of the proposed method becomes high with a small
range r(i, j).

2.4 Feature Extraction

To demonstrate the effectiveness of the relative 3D coordinates, a set of intuitive geometric fea-
tures are extracted from the spherical neighborhood with a § = 0.5 m radius, as shown in
Table 1. The density feature is corrected with the measurement resolutions to eliminate the
influences of varying vehicle speeds and measurement ranges:

d(i.j) = Ns(i. j)AiAj, @

where N(i, j) is the number of points in the spherical neighborhood.

In addition, radiometric and penetrating features are derived based on the intensities / and
numbers of echoes n measured by the LiDAR, providing further distinctive properties not
covered by geometric features.
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Table 1 Local features extracted from the spherical neighborhood.

Symbol Description

X,y,2 I, and n Relative 3D coordinates, intensity, and number of echoes of the central point
Hxs Hys Mz, Hy, @nd pp Means within the neighborhood

Ox, Oy, 0z, 65, and o Standard deviations within the neighborhood

Ay, Ay, Ay Ajyand A, Ranges within the neighborhood

L, P,, S, and O, Shape features within the neighborhood'®

d Density corrected with measurement resolutions

2.5 Classifier Learning

The local features should be merged into a series of binary classifiers for a variety of specific
classes by using supervised learning algorithms. The decision tree adopts a divide-and-conquer
strategy by partitioning the feature space into subregions with a high class purity on the training
set.”? A top-down tree structure is constructed and each node chooses the best feature from the
feature set to split the training data. Since a single decision tree has a very low bias and extremely
high variance, we use the boosting framework to ensemble multiple decision trees to improve the
classification accuracy and generalization ability.

We chose the GentleBoost algorithm, in which the total exponential loss on the training set is
minimized using a functional Newton-like numerical optimization method.** The ensemble clas-
sifier is

M
F=3) T, ®)

m=1

where T, is a decision tree generated as an incremental function in the m’th iteration and M is
the number of iterations.

3 Resulis

3.1 Dataset

To compare our method with prior state-of-the-art methods, we use a publicly available and
labeled database, namely Paris-rue-Cassette.” It contains 12 million points recorded on a street
section in Paris with a length of ~200 m. A 2D LiDAR sweeps from —180 deg to 180 deg with
At = 10 ms time interval. The starting scan angle 6, is —180 deg, i.e., the upward direction. All
coordinates are geo-referenced (E,N,U) in Lambert 93 and altitude IGN1969 (grid RAF09) refer-
ence system. For the points with laser beam return, the range r, scan angle 6, intensity /, number
of echoes n, and georeferenced LiDAR position (xg, vy, zg) are recorded in scan order in addition
to the georeferenced coordinates. The object classes for the experiments include fagade, ground,
cars, two-wheelers, road inventory, pedestrians, and vegetation. See Table 2 for details.

3.2 Recovery of the Scan Grid

The point cloud was first divided into scan lines at the positions where the sign of the scan angle
changed from positive to negative. Then, the angle resolution A = 0.12 deg was estimated by
analyzing the distribution of the difference between scan angles of adjacent points on the same
scan line. Finally, a scan grid with a size of 4642 x 3000 was constructed, as shown in Fig. 4.
Given the real-time speeds v of LiDAR estimated by the georeferenced LiDAR positions, the
relative 3D coordinates were computed using Eq. (2).
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Table 2 Object classes in the Paris-rue-Cassette database.

Class name Urban objects No. of points

Facade Outside of a building 7,027,016

Ground Roads, sidewalks, curbs, and other ground 4,229,639

Car Cars 368,271

Two wheelers Bicycles and other two-wheeled vehicles 40,331

Road inventory Bollards, lampposts, traffic signs, meters, grids, and other 46,105
road objects

Pedestrian Still pedestrians, walking pedestrians, standing pedestrians, 23,999
and other pedestrian

Vegetation Trees and potted plants 212,131

Total 11,947,492
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Road inventory

® Pedestrian

® Vegetation

4000

3000

2000
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1000 2000 3000

Fig. 4 Scan grid for the Paris-rue-Cassette database.

3.3 Neighbor Search Efficiency

To compare the computational complexities of the k-D tree algorithm and the proposed neighbor
search method in searching spherical neighborhood, we run the two algorithms on a laptop PC
with an AMD Ryzen 5 4600H CPU (hexa-core, 3.0 GHz) and 16 GB of RAM. The k-D tree
algorithm was performed over the raw Paris-rue-Cassette dataset, while the proposed neighbor
search method was performed over the scan grid of the Paris-rue-Cassette dataset. The Point
Cloud Library was used for the k-D tree neighbor search. The search radius 6 is set to 0.2, 0.5,
and 0.8 m. As shown in Table 3, our method is much faster.

Table 3 Computational complexity of the neighbor search.

Paris-rue-Cassette k-D tree Proposed approach

Time of index creation 31.872 s 0.392 s

Time of neighbor search per 1000 pts §=02m 1.944 s 0.010 s
6=05m 3.314 s 0.041 s
5§=08m 5.568 s 0.088 s
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Fig. 5 Frequency distribution of search rate on Paris-rue-Cassette. The average search rate is
49.49%.

Figure 5 shows the frequency distribution of the search rate Ng/Ny on the Paris-rue-
Cassette dataset with an average search rate of 49.49%, demonstrating the efficiency of the
proposed neighbor search method.

3.4 Effectiveness of the Relative 3D Coordinates

To demonstrate the effectiveness of the relative 3D coordinates, we compare the distinctiveness
of the geometric features derived from the georeferenced and relative 3D coordinates. The geo-
metric features in Table 1 are divided into three kinds for comparison: (i) single coordinates of
the central point; (b) basic features derived from the neighborhood using a single coordinate, i.e.,
the means, standards, and ranges within the neighborhood; and (c) shape features derived from
the structure tensor of the neighborhood using three coordinates, i.e., the linearity L, planarity
P,, scattering S,, and omnivariance O;.
The Bayes error’” for each feature is numerically estimated as follows:

Ny

e= % > min[h* (ny). h™(n)], ©)

n,=1

where h'(n,) and h~(ny,) are the n;,’th bins of the probability histograms with N;, = 100 bins
for a single feature, corresponding to an object class and a nonobject class, respectively. All
features are mapped to the interval [0, 1].

The search radius ¢ is set to 0.5 m. Figure 6 shows the average Bayes error for each kind of
geometric feature on the seven classes. Figures 6(a) and 6(b) show that single relative coordi-
nates are more distinctive than single georeferenced coordinates, implying that the relative coor-
dinates introduce more semantic information. Figure 6(c) shows that shape features using three
relative coordinates have similar distinctiveness as those using three georeferenced coordinates,
implying that the relative 3D coordinates can maintain the local spatial distribution of points as
well as the georeferenced 3D coordinates.

3.5 Pointwise Classification Accuracy

The best results of pointwise classification we are aware of are those of Refs. 14, 24, and 25. In
Ref. 25, a hierarchical framework composed of ground filtering, structural segmentation, and
contextual classification was proposed. In Refs. 14 and 24, geometric features are derived at
multiple scales or an optimal scale and then are combined into pointwise object classifiers.
To improve the classification accuracy, statistical features derived from the 2D projection of
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Fig. 6 Distinctiveness of the three kinds of geometric features using the georeferenced and rel-
ative coordinates, measured as the average of numerically estimated Bayes errors. (a) Single
coordinates of the central point. (b) Basic features using a single coordinate, i.e., the means, stan-
dards, and ranges within the neighborhood. (c) Shape features L;, P;, S;, and O, using three
coordinates. F, facade; G, ground; C, cars; 2W, two-wheelers; RI, road inventory; P, pedestrians;
and V, vegetation.

the point cloud, the shape context 3D, and signature of histogram of orientations features are also
utilized in Refs. 14 and 24 as well as fundamental geometric features.

The experiments use the same training and test sets as in Refs. 14 and 24; i.e., 1000 points per
class are randomly selected as training samples and the remaining data are used as test samples.
The number of iterations for GentleBoost is M = 500. Table 4 shows the classification results.
Results of a variety of pointwise classification approaches are provided in Ref. 22, and the
best result for each class is used for comparison. Compared with the prior state-of-the-art
methods, our approach achieves an approximately 10% improvement in terms of the F; score.
The improvement increased to 15% by adding radiometric and penetrating features mentioned
in Sec. 2.4 into the classifiers.

The F; score depends on the decision threshold. When the decision threshold changes, the F,
score changes. The area under the receiving operating characteristic (ROC) curve (AUC) does
not depend on the decision threshold, so it is better than F; score to evaluate the performance of a
classifier. Figure 7 shows the ROC curves for the proposed approach with all features. The AUC
can summarize the relationship between the true- and false-positive rates of a binary classifier for
different decision thresholds; hence, we also use the AUC to evaluate our approach in Table 4.

Table 4 Pointwise classification results.

Proposed method

Geometric
Hackel et al.' Landrieu et al.?* Li et al.® features All features

Class F, F, F, F, AUC F, AUC

F 0.9685 0.957 0.9860 0.9656 0.9923 0.9740 0.9941
G 0.9847 0.982 0.9815 0.9806 0.9986 0.9842 0.9987
C 0.8943 0.835 0.8401 0.8835 0.9936 0.9057 0.9951
2W 0.6784 0.667 0.5725 0.7723 0.9983 0.8594 0.9993
RI 0.3134 0.327 0.2540 0.5639 0.9917 0.6736 0.9932
P 0.3960 0.659 0.5454 0.7674 0.9984 0.8003 0.9988
\' 0.6790 0.549 0.9099 0.7788 0.9951 0.8213 0.9963
Avg. 0.7020 0.711 0.7270 0.8160 0.9954 0.8598 0.9965

Note: F, fagade; G, ground; C, cars; 2W, two-wheelers; Rl, road inventory; P, pedestrians; V, vegetation.
Bold values indicate our experimental results, which are better than the state-of-the-art (the second, third, and
fourth columns).
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Fig. 7 ROC curves for the pointwise classifiers.

4 Discussion and Conclusion

This study aims to speed up the neighbor search and enhance feature distinctiveness for point-
wise classification by exploiting topological and contextual information among raw data.
Considering an MLS system with a single 2D LiDAR sensor, the cores of our approach are:
(i) to construct a scan grid according to the scan pattern to organize an MLS point cloud; (ii) to
compute the relative 3D coordinates with respect to the LiDAR position; and (iii) to recover the
neighborhood by a fast search method. The computational complexity of the proposed neighbor
search strategy is independent of the number of points in a point cloud with an average search
rate of 49.49%. In terms of the Bayes error, geometric features using the relative coordinates are
more distinctive than these features using georeferenced coordinates. Compared with the state-
of-the-art methods, the proposed pointwise classification achieves an approximately 10% im-
provement in terms of the F| score, whereas it uses simpler geometric features derived for a
search radius of 0.5 m. Furthermore, our approach is straightforward to parallelize and would
be faster when taking advantage of parallel programming.

The proposed approach has several limitations: (1) the proposed neighbor search approach
only works on an MLS system with a single 2D LiDAR sensor used in push-broom mode; (ii) to
construct or recover a scan grid from the MLS data, the scan angles of the point cloud should be
recorded, and the MLS data needs to be recorded in scan order or time stamps of the MLS data
are recorded; (iii) because the proposed approach uses local features derived from several adja-
cent scan lines, it will not work well if the vehicle drives have multiple drive-runs in different
directions (e.g., drive forward and backward along the road).

In future work, the proposed approach will be extended to MLS systems with a single 3D
LiDAR or multiple 2D/3D LiDARs by exploring the measurement geometry of 3D LiDARs as
well as the spatial relationship of multiple LiDARs. Furthermore, postprocessing, such as soft
labeling,>* will be considered to improve the classification accuracy.
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