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Abstract. Convolutional neural network (CNN) models achieve state-of-the-art performance for
natural image semantic segmentation. An approach for extracting vegetation from Gaofen-2
(GF-2) remote sensing imagery based on the CNN model is presented. We constructed a con-
volutional encoder neural networks (CENN) consisting of two layers. The first layer has two sets
of convolutional kernels for extracting the features of farmland and woodland, respectively. The
second layer consists of two encoders that use nonlinear functions to encode the learned features
and map the encoding results to the corresponding category number. In the training stage, sam-
ples of farmland, woodland, and other lands are categorically used to train the CENN. After
training is accomplished, the CENN would acquire enough ability to accurately extract farmland
and woodland from GF-2 imagery. The CENN was trained on 36 GF-2 images and tested on
three other GF-2 images. We compared the proposed method to a deep belief network, a fully
convolutional network, and a DeepLab model using the same images. The experiments dem-
onstrate that the proposed approach improves upon the accuracy of existing approaches. The
average precision, recall, and kappa coefficient of the proposed approach were 0.91, 0.87,
and 0.86, respectively. Thus, the proposed approach is proven to effectively extract vegetation
from GF-2 imagery. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.12.042804]
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1 Introduction

Image segmentation is the precondition and foundation for the extraction and target identi-
fication of high-resolution remote sensing images.1 In a high-resolution image, spectral con-
fusion is more serious, differentiation is substantially reduced, and the accuracy of the spectral
statistics-based segmentation method is reduced.2,3 Object-oriented image segmentation
method can overcome the influence of “salt and pepper” noise and improve accuracy by
using object structure and spectral signature. Because this approach must adjust the segmen-
tation scale to obtain an acceptable image segmentation result and it is difficult to determine
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a suitable segmentation scale, development of the object-oriented segmentation method has
been slow.4,5

With the development of machine learning technology, researchers began to apply algo-
rithms, such as neural networks (NNs)6,7 and support vector machines (SVM),8,9 to the segmen-
tation of high-resolution images.3,10,11 Studies have revealed that image segmentation based on
machine learning algorithms can obtain more optimal results compared to traditional statistical
and object-oriented methods.12,13 Both SVMs and NNs are shallow learning algorithms,14–16

owing to their limited network structures. Shallow learning algorithms have difficulty expressing
complex functions effectively. So, when sample size and diversity are increased, shallow learn-
ing models cannot adapt to the increasing complexity. 17,18

Advancements in deep learning enable us to address these problems with deep neural networks
(DNNs).19–22 As one of the most important branches of deep learning, the convolutional neural
network (CNN) is commonly applied to image data owing to its superior feature learning
ability.23–25 The CNN is a deep learning network composed of multiple, nonlinear mapping layers
with strong learning abilities that obtain excellent results in image segmentation.26,27 Traditional
deep learning methods include deep convolutional neural networks (DCNN)18,28 and deep decon-
volutional neural networks (DeCNN).29 Since then, many methods of remote sensing image seg-
mentation based on CNN have been developed.30,31 Many large CNNs with performance that can
be scaled depending on the size of training data, model complexity, and processing power have
achieved meaningful improvements in the object segmentation of images.32–39

A fully convolutional network (FCN) is a deep learning network for image segmentation
originally proposed in 2015.39 Leveraging the advantages of convolutional computation in fea-
ture organization and extraction, an FCN establishes a multilayer convolution structure and rea-
sonable sets deconvolution layer to realize pixel-by pixel segmentation.40–42 Researchers have
since developed a series of segmentation models based on convolution, including segNET,43

UNet,44 DeepLab,45 multiscale FCN,46 and reSeg.47 Each of these segmentation models has
its own strengths and works well with certain selected types of images.

Segmentation models such as FCN are effective because the multilayer structure of these
models adeptly handles the rich detail features of images. However, in regions of vegetation
in Gaofen-2 (GF-2) imagery, one pixel usually contains several different types of plants or
crops. Thus, the information between pixels does not reflect this variety and the image texture
is smoother. Although a single tree is larger than most crop plants, a typically sized tree occupies
two or three pixels in the GF-2 imagery and smaller trees may only occupy one pixel or less,
continuing the problem of little information difference between pixels. Therefore, because the
detail features of a vegetation region may be lacking, the effect of deep layer CNN may also be
weak and may even pull in greater noise, resulting in poor segmentation accuracy. To obtain
accurate segmentation results from GF-2 images, the size of the coverage area of individual
plants relative to the spatial resolution of the GF-2 imagery must be considered when designing
a CNN.

Based on the above analysis, we constructed convolutional encode neural networks (CENN)
to accurately distinguish and extract farmland and woodland from GF-2 imagery. Because the
CENN considers the previously described complexities presented by the features of vegetation
regions in the GF-2 imagery, such as the smaller coverage area size of a single plant, fewer detail
features, and the continuous appearance of vegetation, our approach achieves improved accuracy
compared to the existing approaches.

The following summarizes the proposed method for the segmentation of vegetation in GF-2
images and its evaluation.

(1) A network structure consisting of a convolution layer and an encoder layer has been
designed based on the features specific to vegetation regions in the GF-2 imagery.
The convolution layer is used to extract the features of farmland and woodland respec-
tively, the encoder layer is used to encode the learned features and map the encoded
results to the corresponding category number.

(2) In the model training stage, a categorical training method was adopted. To train the
CENN and obtain a set of convolutional kernels with which to identify farmland, we
use an image sample of farmland as the positive sample and employ other images as
the negative sample. Then, to train the CENN to identify woodland, we repeated the
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previous process, using a sample of forestland as the positive sample and others as the
negative sample. After training, the CENN can accurately extract farmland and wood-
land from GF-2 images.

(3) Finally, the trained CENN were used to segment GF-2 images. The accuracy of the seg-
mentation results was then evaluated as per a comparative experiment conducted using
three existing segmentation models.

2 Methods

In accordance with established conventions for image segmentation using CNNs, we divide the
work into two stages, training and classification, as depicted in Fig. 1. The upper part of Fig. 1
shows the training stage. Together, GF-2 imagery and corresponding pixel-by-pixel artificial
classification labels are input to the CENN as training samples. The error between the predicted
classification labels and the artificial classification labels is calculated and backpropagated
through the network using the chain rule. Then the parameters of the CENN are updated
using the gradient descent method. The above process iterates until the error is less than a pre-
determined threshold. The lower part of Fig. 1 details the classification stage, in which the
trained CENN accurately extracts vegetation from input GF-2 imagery.

2.1 Network Architecture

The CENNmodel is divided into four functional groups of components, input, convolution layer,
encoder layer, and output, as shown in Fig. 2. In the training stage, the inputs are original images
and artificial classification labels. In the classification stage, the inputs are the original GF-2
images, the output is a single-band file, and the content of each pixel in the output is the category
number of the corresponding original image pixel. The CENN indicate farmland using category
number 100, woodland is denoted by category number 150, and category number 200 distin-
guishes other land use.

2.1.1 Convolution layer

In Sec. 1, we analyzed the characteristics of vegetation areas in GF-2 imagery. Based on this
analysis, we constructed a convolution structure in the convolution layer known as “width con-
volution.”With this convolution structure, we can extract more features to improve segmentation
accuracy.

The convolutional kernels of the CENN are in r � c � h form, where r denotes the width of
the convolutional kernel, c denotes the height of the convolutional kernel, and h denotes the
number of channels of the convolutional kernel. In this paper, h is set to 3 because only
three channels of GF-2 imagery are employed. As shown in items (b) and (c) of Fig. 2, we

Fig. 1 The training and classification stages of the proposed approach.
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adopted four types of convolutional kernel in the CENN, which are referred to as A-type, B-type,
C-type, and D-type, respectively; r and c of A-type are set to 1, r and c of B-type are set to 3, r
and c of C-type are set to 5, r and c of D-type are set to 7. This structure earns the name “width
convolution” owing to how all the convolutional kernels use the GF-2 images as direct inputs and
process the images parallel to each other.

The primary function of the A-type convolutional kernels is to extract the color features of
each pixel. The B-type convolutional kernels are divided into two groups. The first group of
convolutional kernels must be trained. They are used to extract the texture features of the central
pixels and the surrounding eight pixels. The second group consists of eight convolutional ker-
nels. The values of these convolutional kernels are fixed, and no further training is required.
These eight convolutional kernels are used to calculate the absolute value of the color difference
between the central pixel and eight adjacent pixels surrounding the central pixel. The roles of the
C-type and D-type convolutional kernels are similar to that of the B-type convolutional kernels,
and these two types are also composed of two groups. However, the C-type and D-type convolu-
tional kernels have a wider range with which to exploit the features between center pixels and
their surrounding pixels.

As shown in Fig. 2, all the convolutional kernels were divided into two groups, a farmland
group (b) and a woodland group (c). Both groups contain A-type, B-type, C-type, and D-type
convolutional kernels. The purpose of this two-group design is to enable the CENN to better
express the characteristics of vegetation, and thus improve their capacity for distinction of differ-
ent vegetation types.

2.1.2 Encoder layer

As shown in Fig. 2, the encoder layer contains two sublayers of encoders to better simulate the
nonlinear relationship between features and outputs. There are two encoders in the first encoder

Fig. 2 The network architecture of CENNs.
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sublayer, the encoder-farmland (d) and the encoder-woodland (e), as observed in Fig. 2. The role
of each encoder is to regress and simulate the characteristics of their respective land uses. The
second encoder sublayer has a single encoder, the encoder-adjust (f), as depicted in Fig. 2. The
role of the encoder-adjust (f) is to adjust the calculations of the upper sublayer so that farmland,
woodland, and other lands are distinguished from each other. Then, the flag-function (g) maps
the encoded result of encoder-adjust (f) to the appropriate category number.

2.2 Network Training

2.2.1 Label sample

The training dataset comprised a total of 39 GF-2 remote sensing images (size
7300 × 6900 pixels) of Shandong Province, China. Of these images, 21 images were captured
on February 17, 2016, and 18 images were captured on May 12, 2017. The spatial resolution of
the panchromatic band was 1 m. The spatial resolution of the multispectral was 4 m.
Environment for visualizing images (ENVI) software was used for preprocessing tasks, such
as fusion and color stretching. We then selected the 321 band as RGB band to improve visual
effects.

Artificial label samples are an important training foundation. Because the CENN use pixels as
the primary learning object, they must be accurately labeled. We used ENVI software for labeling
and designed a preprocessor to build the mask. The process of artificial labeling is as follows:

(1) Use the region-of-interest (RoI) tool in the ENVI software to select farmland regions,
woodland regions, and other regions in the image. Then, the map locations of the pixels
in each region are output to different files according to category.

(2) The preprocessor added a band to the image file as the mask band. The spatial resolution,
size, and other parameters of the mask band were the same as the original image. Then,
the category number of each pixel is written to the mask band according to the map
location of the pixel previously output.

We manually labeled all images at the pixel level. Thus, for each image, there exists a 7300 ×
6900 label map, with a row–column indexed pixel-class correspondence. We used 36 images for
training and the remaining three images for testing. Figure 3 shows an example of one image-
label pair.

Fig. 3 Image-label pair example: (a) original image and (b) labels.
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2.2.2 Model training

Images from two different time periods were selected as training data. We select images from
different periods to increase the anti-interference abilities of the CENN, mitigating complica-
tions, such as the change of seasons, and thus enhancing applicability. The training stage pro-
ceeded through the following steps:

(1) Image-label pairs were input into the CENN as training samples.
(2) The cross-entropy loss was calculated and backpropagated.
(3) The network parameters were updated using stochastic gradient descent (SGD)41,48 with

momentum.

Training obtained farmland group convolutional kernels and woodland group convolutional
kernels. Each group enhanced the farmland or woodland features, whereas features of all other
types were suppressed as much as possible. For example, in the woodland group, woodland
features were enhanced while features of all other types were suppressed.

In our training, the SGD method with momentum was used for parameter updates, and the
following expression illustrates the SGD41,48 method with momentum:

EQ-TARGET;temp:intralink-;e001;116;537Wðnþ1Þ ¼ WðnÞ − ΔWðnþ1Þ; (1)

where WðnÞ denotes the old parameters, Wðnþ1Þ denotes the new parameters, and ΔWðnþ1Þ is the
increment for the current iteration. The iteration increment, which is a combination of old param-
eters, gradient, and historical increment, is calculated as shown below:

EQ-TARGET;temp:intralink-;e002;116;468ΔWðnþ1Þ ¼
�
dw · WðnÞ þ ∂JðWÞ

∂WðnÞ

�
þm · ΔWðnÞ; (2)

where, JðWÞ is the loss function, ϑ is the learning rate for step length control, dw denotes the
weight decay, and m denotes the momentum.

2.3 Segment Using the Trained Network

After successful training, the CENN can be used to segment the input imagery pixels-by-pixel.
According to our design, the output is written into a new band. The benefit of this design is that
in saving the segmentation result to a new band, it avoids damaging the original file.

3 Experiments

We designed a set of test experiments and comparative experiments to verify the feasibility of the
proposed CENNmethod. The proposed approach was implemented using Python 2.7 on a Linux
Ubuntu 16.04 operating system using an NVIDIA GeForce Titan X Graphics device with 12 GB
graphic memory.

The data and classification criteria used were described in Sec. 2.2.1.

3.1 Learning Ability Indicators

The primary functions of the CENN are reflected in their feature extraction and encoding abil-
ities. The concentration degree of feature values was used as an index to examine feature extrac-
tion capabilities, using distinctions between farmland, woodland, and other lands as an index to
examine encoding capacity.

3.2 Comparison Model

We chose the deep belief network (DBN) model, the FCN model, and the DeepLab model as the
comparison models. A comparative experiment was conducted using methods established in
published literature.
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3.2.1 Deep belief network

The paper of Dawei et al.2 presented a method of pixel-by-pixel classification for high-resolution
images using DBN. Their method calculated the texture features of an image through non-sub-
sampled contourlet transform and used the DBN to classify high-resolution remote sensing
images based on spectral-texture features. The training process included two subprocesses: pre-
training and fine-tuning. Pretraining was performed in an unsupervised manner. A greedy algo-
rithm was used to perform layer-by-level optimization during training, and the parameters of
each restricted Boltzmann machine (RBM) were adjusted individually. After training the
upper layer, the output is used as the input to train the RBM of next layer. After completing
the pretraining, the last-level backpropagation network was trained in a supervised learning man-
ner. The error was propagated backward through the layers and the weight of the entire DBN
network was fine-tuned.

3.2.2 Fully convolutional network

For the FCN model, we directly employed the FCN-8s model proposed by Long et al.40 The
architecture of the model was derived from the VGG-16 network. After the upsampling oper-
ation, the final prediction was fused from the output of three branches—the primary network, the
pool4 layer, and the pool3 layer. In the training phase, the input data and the training parameters
for FCN-8s in the comparative experiment were the same as those used to train the proposed
model. The testing stage also used the same classification parameters as applied in the proposed
approach.

3.2.3 DeepLab

For the DeepLab model, we directly employ the DeepLab v3 model proposed by Chen et al.45

DeepLab was also developed based on the VGG network. Unlike the FCN model, to ensure that
the output size would not be not too small without excessive padding, DeepLab changed the
stride of the pool4 and pool5 layers of the VGG network from the original 2 to 1, plus 1 padding.
To compensate for the influence of the stride change on the receptive field, DeepLab used a
convolution method called “Atrous convolution” to ensure that the receptive field after pooling
remains unchanged and the output is more refined. Finally, DeepLab incorporated a fully con-
nected conditional random fields (CRF) model to refine the segmentation boundary.

Fig. 4 Learning result of A-type convolutional kernels.
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3.3 Results and Comparison

3.3.1 Learning ability of the CENN

Figure 4 graphs the distribution of the feature values learned from the farmland samples, wood-
land samples, and other samples using A-type convolutional kernels. Figure 4 reveals that after
the convolution operation, the feature values of farmland and woodland are concentrated in two
regions while the other land use type is scattered. This is mainly because the different seasons in
which the data were collected results in substantial differences in color values. The features’
concentration of woodland is less than that of farmland, mainly because the seasonal color
change of woodland is more dramatic than that of farmland.

Figure 5 shows the feature values learned from the farmland samples, woodland samples, and
other samples using B-type convolutional kernels. As shown in Fig. 5, because the B-type con-
volutional kernels are primarily used to learn the color difference between adjacent pixels, the
features of farmland samples have a better concentration degree, and the dispersion level of

Fig. 5 Learning result of B-type convolutional kernels.

Fig. 6 Learning result of C-type convolutional kernels.
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woodland sample is substantially larger. The results reflect the smooth texture of farmland and
the rough texture of woodland.

Additionally, for farmland samples, the features’ concentration of C-type convolutional ker-
nels and D-type convolutional kernels is both less than that of B-type convolutional kernels. This
is because as the field of view expands, more other-type pixels are introduced at the boundary.
For woodland samples, the C-type convolutional kernels achieve the best concentration of fea-
tures. Figure 6 shows the learning results of C-type convolutional kernels.

Based on the learning results, we observe that although multispace convolutional kernels are
more suitable for the extraction of farmland and forestland features than deep convolution, it
remains necessary to combine multiple features to accurately determine the category to
which each pixel belongs.

Figure 7 shows the encoding result of the first encoder sublayer, and Fig. 8 shows the encod-
ing result adjusted by the second encoder sublayer. As demonstrated by the figure, the adjusted
encoding result could already be used to segment image.

Fig. 7 Encoding result of the first encoder sublayer.

Fig. 8 Encoding result of the second encoder sublayer.
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3.3.2 Experiment result comparison

In the comparative experiment, we apply our trained model to three GF-2 images for segmen-
tation. All images were equally sized at 7300 × 6900 pixels. These images were only used for

Fig. 9 Segmentation results on GF-2 images: (a) original images, (b) ground truth, (c) our results
corresponding to the images in (a), (d) results of DBN, (e) results of FCN, and (f) results of
DeepLab.
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testing and were not involved in training. Figure 9 illustrates the results obtained from the com-
parison methods and the proposed method.

Table 1 lists the confusion matrix C of our classification results. From the table, we can see
that our approach achieves higher classification performance. In the above example, our recall
for farmland and woodland is 0.855. The average proportions of “farmland” wrongly classified
as “woodland” and “others” are 0.053 and 0.033, respectively. The average proportions of
“woodland” wrongly classified as “farmland” and “others” are 0.047 and 0.053, respectively.

We employ precision, recall, and kappa coefficient as indicators to evaluate our approach.
These indexes are calculated from confusion matrix C. Precision denotes the average proportion
of pixels correctly classified to one class from the total retrieved pixels. Precision is calculated as
follows:

EQ-TARGET;temp:intralink-;e003;116;376Precision ¼ 1

3

X
i

Cii

.X
j

Cij; (3)

Table 1 Confusion matrix C of our approach for Fig. 9.

Experiment GT/predicted Farmland Woodland Others

Experiment-1 Farmland 0.93 0.06 0.04

Woodland 0.07 0.91 0.07

Others 0.05 0.03 0.89

Experiment-2 Farmland 0.92 0.05 0.03

Woodland 0.04 0.93 0.06

Others 0.05 0.04 0.91

Experiment-3 Farmland 0.91 0.06 0.03

Woodland 0.03 0.92 0.03

Others 0.04 0.05 0.90

Table 2 Comparison between approaches using DBN, FCN, DeepLab, and CENN.

Approach Index Experiment-1 Experiment-2 Experiment-3

DBN Precision 0.69 0.74 0.76

Recall 0.61 0.63 0.62

Kappa 0.58 0.69 0.71

FCN Precision 0.79 0.81 0.76

Recall 0.72 0.75 0.69

Kappa 0.71 0.73 0.64

DeepLab Precision 0.84 0.86 0.79

Recall 0.77 0.79 0.73

Kappa 0.79 0.81 0.77

CENN Precision 0.89 0.91 0.92

Recall 0.85 0.86 0.89

Kappa 0.84 0.86 0.88
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where Cii denotes the number of pixels of category i that are correctly classified, and Cij denotes
the number of pixels of category j that misclassified into category i.

Recall represents the average proportion of pixels that are correctly classified in relation to
the actual total pixels of a given class. Recall is computed as follows:

EQ-TARGET;temp:intralink-;e004;116;687Recall ¼ 1

3

X
i

Cii

.X
i

Cij: (4)

The kappa coefficient measures the consistency of the predicted classes with the artificial
labels. The indicator values are listed in Table 2.

4 Discussion

This paper presents a classification approach, which extracts vegetation from GF-2 images using
the CENN. Compared with the three typical deep learning-based approaches, the proposed
method substantially improves classification accuracy. In the following sections, we discuss
the reasons for the improvement and the benefits of using the proposed approach to classify
land use.

4.1 Deep Belief Network versus the Proposed Approach

In the method of pixel-by-pixel segmentation based on DBN, the texture features of an image are
first calculated. The obtained two-dimensional texture features are converted into one-dimen-
sional vectors. Then, three channel values of RGB are added to the vectors, and they are merged
into a single vector. Finally, the DBN network is constructed using each component value of the
vector as an independent input to classify the pixels. Although texture features are completely
different from spectral values, this method uses them in combination, resulting in logical con-
fusion. If only the value of the texture feature is used, it cannot indicate spatial relations rep-
resented by texture, which results in information loss in the texture extraction. Therefore, like
traditional spectral-based methods, this method utilizes only the spectral characteristics of the
pixel itself and effectively ignores the spatial relationship between pixels, which makes it easy to
generate the incorrect classifications.

Unlike the DBN method, the CENN model makes full use of the advantages of convolution
in information aggregation and uses A-type convolutional kernels to extract the common features
of the original spectral value. Three kinds of convolutional kernels: B-type, C-type, and D-type
are used to extract textural features in three sizes. The CENN use the two-stage encoder to sim-
ulate nonlinear equations and encode the features. These strategies effectively improve the clas-
sification accuracy.

In GF-2 images, it is easy to confuse tall crops and small, dense trees owing to the relatively
small differences in texture and spectrum. As observed in Fig. 10, the proposed method is sub-
stantially more effective than the DBN method.

4.2 Fully Convolutional Network versus the Proposed Approach

The advantage of the FCN model is that it maximizes the information available in the rich details
of GF-2 imagery using deep convolution. This advantage is obvious when extracting a target
object that covers many pixels, but if the target object covers fewer pixels, even pixels that con-
tain several target objects, the effect of deep layer convolution drastically weakens, and even
greater noise may be pulled in, resulting in poor segmentation effect. When FCN is used to
extract farmland and woodland from GF-2 images, although the farmland or woodland may
cover many pixels, the advantages of FCN cannot be exploited because of the small differences
between pixels.

Unlike the FCN model, which expands the view through deep convolution, the proposed
CENN expand the view by using three convolutional kernels of B-type, C-type, and D-type.
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By combining three convolutional kernels, the maximum observed area size is about 49 m2,
which is fully capable of covering most of the canopy. The CENN not only make full use
of the pixels’ own features but also fully exploit the spatial features between pixels, adeptly
accounting for the continuous appearances of crops and trees. Additionally, the CENN also
fully consider the natural characteristics of farmland and woodland, providing further advantages
in identifying corner pixels.

Figure 11 demonstrates that the FCN model and the CENN have the same segmentation
accuracy when identifying the interior regions of farmland and woodland. However, when iden-
tifying the pixels in the corner region, the FCN model had many errors, whereas the CENN has
almost no errors.

4.3 DeepLab versus the Proposed Approach

Compared to the FCN model, there are two important improvements in the DeepLab model:
(1) the deconvolution part is improved and (2) the network uses the fully connected CRF
model to refine the segmentation boundary. According to existing literature, when identifying
large objects such as buildings, the segmentation accuracy at the boundary of DeepLab is better
than that of the FCN. This is because DeepLab makes better use of the details of the image and
spatial correlation of pixels. However, when DeepLab was used to identify woodland and farm-
land, because the information between pixels does not noticeably change and the image texture is
smoother, the advantages of DeepLab are lost.

As explained in Sec. 4.2, the CENN not only make full use of the pixels’ own features but
also make fully exploit the spatial features between conjoint pixels and account for the continu-
ous appearance of crops and trees. Therefore, the CENN can effectively avoid the defects of the
DeepLab approach and ensure the segmentation accuracy. As shown in Fig. 12, the segmentation
accuracy of the CENN at the boundary and corners is much better than that of DeepLab
approach.

Fig. 10 Segmentation errors: (a) errors of ours and (b) errors of DBN.
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Fig. 12 Segmentation errors: (a) errors of ours and (b) errors of DeepLab.

Fig. 11 Segmentation errors: (a) errors of ours and (b) errors of FCN.
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4.4 Benefits of Using the Proposed Approach to Classify Land Use

Accurate land use classification results play an important role in scientific research and agricul-
tural production. The use of remote sensing data to produce land use classification results is
becoming more common. In the GF-2 image, it is difficult to accurately distinguish between
forest land and farmland using traditional methods. Because our approach can better solve
this problem, it has played an important role in agricultural surveys and improved the efficiency
of agricultural surveys. Our approach has been applied in the Meteorology Bureau of Shandong
Province, China.

5 Conclusions

This paper presents a CENN model that extracts vegetation in farmlands and woodlands from
GF-2 images. Compared to the traditional DBN model, FCN model, and DeepLab model, the
proposed CENN fully consider the characteristics of farmland and woodland in the GF-2 images.
According to the characteristics of the model, categorical training was implemented to enable the
model to effectively discriminate farmland and woodland from other land types and extract veg-
etation from GF-2 images with high accuracy. The paper also provides a software-based method
of using RoI for sample annotation, which can reduce the manual workload and enhance the
efficiency of marking.

The main limitation of our approach is that the accuracy of the extraction results is greatly
reduced when the CENN is applied to submeter level images, which results in a limited appli-
cation scope of the model. In the following work, we will try to use multilayer convolutions, to
further enhance its applicability.
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