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ABSTRACT. The on-chip photonic switch is a critical building block for photonic integrated circuits
and the integration of phase change materials (PCMs) enables non-volatile switch
designs that are compact, low-loss, and energy-efficient. Existing switch designs
based on these materials typically rely on weak evanescent field interactions, result-
ing in devices with a large footprint and high energy consumption. Here, we present
a compact non-volatile 2 × 2 switch design leveraging optical concentration in slot
waveguide modes to significantly enhance interactions of light with PCM, thereby
realizing a compact, efficient photonic switch. To further improve the device’s energy
efficiency, we introduce an integrated single-layer graphene heater for ultrafast
electrothermal switching of the PCM. Computational simulations demonstrate
a 2 × 2 switch crosstalk (CT) down to −24 dB at 1550 nm wavelength and more
than 55 nm 0.3 dB insertion loss (IL) bandwidth. The proposed photonic switch
architecture can constitute the cornerstone for next-generation high-performance
reconfigurable photonic circuits.
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1 Introduction
In the past few decades, the rapid development of photonic integrated circuits (PICs) has
demonstrated their potential in telecommunication and data communications. Moreover, the
von Neumann bottleneck in electronics1 suggests that scalable programmable PICs could be
an alternative solution for energy-efficient classical and/or quantum information storage and
processing.2,3 Programmable PIC reported to date predominantly rely on thermo-optic effects,4

free-carrier effects,5 or electro-optic effects6 of materials. The small change in refractive index
afforded by these effects, however, limits the tunability and scalability of these methods, leading
to a large device footprint and excessive energy consumption. Although plasmonic light confine-
ment can mitigate the issue that results in lossy devices,7 making the approach unsuitable for
large-scale PICs. Moreover, these effects are volatile and demand a constant power supply
(∼10 mW). This disqualifies them for applications where only sporadic re-programming or
reconfiguration is needed, such as optical switching and routing in data centers,8 optical neural
networks,9 and photonic memories.10,11
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Chalcogenide-based phase change materials (PCMs) emerge as promising candidates to
enable ultra-compact and energy-efficient reconfigurable photonics. They can reversibly switch
between two stable states (amorphous and crystalline) in a non-volatile fashion and with excep-
tionally high refractive index contrast (Δn ∼ 1).11–14 Phase transition in PCMs can be triggered
by ultrashort optical or electrical pulses,15 and a multitude of intermediate states (between fully
amorphous and crystalline) can be accessed by changing the pulse parameters.16 In addition,
PCMs offer compatibility with large-scale integration, as they can be conveniently prepared
using various large-area deposition methods11,12,17,18 onto different photonic integrated circuit
(PIC) platforms in a CMOS backend-compatible manner.12,19 Despite these advantages, conven-
tional PCMs, such as Ge2Se2Te5 (GST) and GeTe, display significant absorption in both phases
at optical communication wavelengths, limiting their effectiveness in photonic phase shifters—a
crucial component of programmable PICs. Recently, interest has been growing in wide-bandgap
PCMs, such as GeSbSeTe (GSST),20,21 antimony selenide (Sb2Se3),

22 and antimony sulfide
(Sb2S3).

22,23 For example, Sb2Se3 exhibits minimal losses at 1550 nm and a substantial index
contrast (Δn ≈ 0.77).22 These characteristics position Sb2Se3 as a promising phase-change
material for applications in programmable photonics within the telecommunication bands.

One essential design element in PCM-based configurable devices is the heating mechanism.
Electro-thermal heating using resistive micro-heaters facilitating scalable on-chip integration
have been investigated in numerous recent studies. Various heater materials have been employed,
including metals,24,25 transparent conducting oxides (TCOs),26 and doped Si.27–29 While metals
prove effective for free-space reflective devices, they introduce notable optical losses in trans-
missive or waveguide components. Doped silicon stands out as an excellent choice for integrat-
ing PCMs into the silicon-on-insulator (SOI) platform. However, applying it to Si3N4-based
devices, another widely used photonic platform, or to other non-silicon waveguide platforms
poses challenges. TCO heaters, while suitable for devices operating in the visible spectrum,
encounter exacerbated optical losses in the infrared due to free carrier absorption. To address
these challenges, graphene has emerged as a promising heating material due to its exceptional
thermal and electrical conductivity, versatile integration compatibilities, and remarkable
stability.30,31 In addition, the infrared optical losses associated with graphene can be minimized
by leveraging the doping-induced Pauli blocking effect. Recent theoretical analysis and exper-
imental reports32–34 indicate that graphene heaters exhibit two orders-of-magnitude higher figures
of merit for overall performance (heating efficiency and induced loss) than that of doped Si or
TCO heaters when applied to PCM switching.

Here, we present the design of a compact non-volatile photonic 2 × 2 switch on the SOI
platform utilizing Sb2Se3 and a single-layer graphene heater. The design exploits a configuration
involving a slotted waveguide filled with PCM. Compared to traditional layouts where the PCM
typically interacts only with evanescent fields, the design leverages strong field concentration in
the slot region to boost light-PCM interactions,35 thus simultaneously achieving low insertion
loss, a compact form factor, high extinction ratio, and zero-static power consumption.

2 Structure and Design
Figure 1 shows the proposed 2 × 2 photonics directional-coupler switch design in a semi-stan-
dard SOI platform. The switch consists of a multimode slotted waveguide (the two-waveguide
coupling zone) attached to four single-mode waveguides serving as input and output ports, on
either side of the multimode section. The height and width of the single-mode waveguides are
h ¼ 240 nm and Wwg ¼ 450 nm, respectively. The slot waveguide has a length Lslot ¼ 10 μm
and a centrally located slot with a widthWslot ¼ 100 nm, which is completely filled with Sb2Se3.
In the telecommunication C-band, the refractive indices of Sb2Se3 are taken from Ref. 22 as
3.825 and 4.050 at 1550 nm wavelength for the amorphous Sb2Se3 and crystalline Sb2Se3,
respectively. The loss of crystalline Sb2Se3 was also reported in the same paper to be as low
as 0.01 dB μm−1. The whole device is cladded all around by SiO2 with a thickness of
2 μm. Directly on top of the multimode slot waveguide, there is a single-layer graphene heater.
The dimensions of the graphene layer are Lgr ¼ 9 μm and Wgr ¼ 3 μm, and it is symmetrically
positioned on the slot waveguide. Ti/Au contact pads are placed on both sides of the graphene
heating layer to minimize contact resistance. Figure 1(b) demonstrates the working principle of
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the switch as the PCM is switched reversibly by a sequence of voltage pulses applied to the
graphene heater. Short pulses (several hundreds of nanoseconds) with high voltage will reset
the PCM back to the amorphous state while long pulses (several milliseconds) with moderate
voltage are used to crystallize the material. Sb2Se3 was reported to be successfully amorphized at
Ta ¼ 620°C for 400 ns and crystallized at Tc ¼ 200°C for minimally 0.1 ms.12 In this study, the
fundamental transverse electric (TE) mode at the telecommunication wavelength of 1550 nm was
targeted. Yet, the design principle is not wavelength-sensitive and can be applied to a broadband
device, as we will show later. The whole design could be realized by standard lithography and dry
etching processes. Sb2Se3 be deposited in the slot by conformal coating methods, such as atomic
layer deposition36 and solution processing.37 Alternatively, thermal reflow has been demonstrated
as an effective means for filling thin slots with chalcogenide materials.38 The graphene heater can
be fabricated by transferring chemical-vapor-deposition (CVD) grown single-layer graphene via
the standard wet transfer technique,39 followed by lithographic patterning and metallization.

The substantial refractive index contrast provided by Sb2Se3 facilitates the generation of
even and odd TE modes within the multimode slot waveguide region, characterized by signifi-
cant shifts in effective indices upon transitioning the phase of the slot material [as shown in
Figs. 2(a) and 2(b)]. Exploiting the disparities in the confinement and effective indices of these
supermodes at amorphous and crystalline states, the photonic switch can be dynamically shifted
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Fig. 1 (a) Schematic of the 2 × 2 photonic switch based on Sb2Se3. (b) Schematic of switching
operation utilizing amorphization/crystallization voltage pulses to induce Joule heating.
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Fig. 2 (a), (b) The cross-sectional electric field distribution for even and odd TE modes of the
multimode slot waveguide, (c) Transmission through the two ports as functions of PCM length.
(d) Transmission through the two ports as function of crystallized PCM section’s length.
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from a bar state to a cross state. Due to the difference in propagating constants, the interference
between odd mode and even mode results in the oscillation between bar state and cross state
when we increase the slot length. The ultralow loss exhibited by Sb2Se3 allows the PCM to
have a strong overlap with the supermodes in the slot region without incurring excessive losses,
thereby enhancing the phase modulation effect. The effective index differences between the even
mode and the odd mode are 0.2951 and 0.3875 for amorphous and crystalline Sb2Se3 states,
respectively, corresponding to different beating lengths in the two states.

Figure 2(c) plots transmission through the ports 1 and 2 in the amorphous Sb2Se3 state with
different PCM-filled slot length Lslot, simulated using 3D finite-difference time-domain (FDTD)
and fitted to sine curves. Following the result, we take the slot length to be 10 μm, which yields
the maximum transmission in the amorphous (bar) state. To realize switching with maximum
contrast, we selectively crystallize the center section of the PCM as shown in Fig. 2(d). In prac-
tice, this can be implemented by controlling the temperature profile along the y-axis, as the center
portion of the PCM slot experiences the highest temperature and hence preferentially crystallizes
first (refer to Fig. 4 and discussions for more details). Figure 2(d) shows the simulated trans-
mission through the output ports as a function of crystallized Sb2Se3 slot length. The plot implies
that an optical crystallization section length of 8.5 μm (i.e., leaving 0.75 μm of amorphous
region on either side) would result in maximal switching contrast. This leads to an overall device
(including the four single-mode waveguide ports) footprint of 5.5 μm × 24 μm. We note that
partial crystallization of PCMs has been discussed in a number of literature reports showing
good reproducibility.40–42 The main difference between our assumption here and the actual
experiment implementation is that there is no abrupt interface between the amorphous and crys-
talline Sb2Se3 sections. Instead, a gradual transition region with varying crystalline fraction is
likely present. This contributes to lowering reflection and scattering from the abrupt interface and
can lead to even lower insertion losses than the simulations presented here.

3 Results
We conducted 3D FDTD simulations to validate the switching efficiency of our proposed design.
Figures 3(a) and 3(b) show the transmission spectra of our 2 × 2 photonic switch and the
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corresponding in-plane electric field distributions corresponding to amorphous and crystalline
Sb2Se3 states. The overall insertion loss (IL) is −0.27 dB (cross state) and −0.11 dB (bar state) at
1550 nm and is consistently <0.5 dB across 1525 to 1575 nm wavelengths. The 0.3 dB IL band-
width is no <55 nm. The crosstalk (CT), defined as the contrast ratio between the on/off states at
the output ports, reaches −23.9 dB (cross state) and −27.4 dB (bar state) at 1550 nm and stays
better than −15 dB throughout the 1525 to 1575 nm band. These performance metrics compare
favorably to state-of-the-art PCM switches as summarized in Table 1.

Next, we discuss the thermal performance of the single-layer graphene heater. The graphene
heater has been reported to have outstanding performance as a heating element for integrated
photonic devices incorporating PCMs, offering exceptional energy efficiency and high opera-
tional speed,31,32 owing to its ultralow heat capacity and high in-plane thermal and electrical
conductivity. Compared to doped Si, which is another popular choice of heater material,
graphene heaters claim significantly lower induced loss and higher heating efficiency.32,33 Joule
heating employing the graphene heater follows similar phase change dynamics demonstrated in
Refs. 12 and 29. The pulse width and voltage are contingent on the microheater’s properties.
With our specific proposed graphene heater, pulses of 2 V, which induces a current of 5.67 mA,
with a duration of 100 μs are applied to partially crystallize the Sb2Se3 slot, heating its 8.5 μm
long center section to above the crystallization temperature Tc (here set as 200°C). It is reported
that pulses (as short as 5 μs) can crystallize Sb2Se3 but result in spatially non-uniform crystal-
lization. Longer pulses lasting 100 μs or more are necessary to crystallize the PCM uniformly,12

which justifies our pulse parameter choice here. To induce amorphization, we investigated
two types of pulses, a single 8.6 V (22.4 mA), 100 ns pulse12,22 or a 6.6 V (18.7 mA),
400 ns pulse. Both can elevate the temperature of the entire PCM-filled slot above the melting
point, Tm ¼ 620°C (893 K). The total energy consumption for crystallization is 1.13 μJ and
21/49.4 nJ (100/400 ns pulse) for amorphization. Clearly, a trade-off between pulse voltage and
switch energy exists for the amorphization process. Figure 4(a) demonstrates the temperature
evolution over amorphization and crystallization cycles from finite-element method (FEM)
simulations using COMSOL Multiphysics. For crystallization, the temperature remains stably
higher than Tc across the target section. Figure 4(b) plots the temperature across the Sb2Se3
slot at the end of the crystallization and amorphization (100 ns) pulses. The coordinate
z ¼ 0 nm refers to the boundary between the silicon waveguide layer and the buried oxide

Table 1 Comparison of PCM-based optical switches.

Design Ref. PCM IL (dB) CT (dB) Footprint (μm2) Optical BW (nm) Switching energy

DCd 14 GST 2 −10 5 × 45 30 —

DCd 18 GST 2 −10 5 × 50 30 380 nJ (6.8 μJ)

MZId 12 Sb2Se3 0.3a 6.5/15 100 × 100 15 176 nJ (3.8 μJ)

MZId 43 Sb2Se3 3 −12 100 × 100 20 —

MRR 44 GST 2 −20 15 × 15 <1 —

MRRd 45 GST 3 14 25 × 25 <1 0.25 nJ (11 nJ)c

MRRd 46 GST 5.1/4.3b 5 60 × 60 <1 0.19 nJ (17.1 nJ)c

MMId 47 Sb2Se3 0.5a 8 6 × 33 — 14 nJ (0.95 mJ)c

DC 48 Sb2Se3 0.26 −31.3 4.9 × 25.4 35 9.59 nJ (—)

DC This work Sb2Se3 0.3 −23.9 5.5 × 24 55 21 nJ (1.13 μJ)

DC, directional coupler; MZI, Mach–Zehnder interferometer; MRR, micro-ring resonator; MMI, multimode inter-
ferometer; IL, insertion loss; CT, crosstalk; Optical BW, optical bandwidth for the corresponding IL; switching
energy, energy per switching event for amorphization/(crystallization).
aAdditional loss due to PCMs to the total device IL.
bThrough/drop port IL.
cOptical pulse energy.
dExperimental results.
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(BOX). The yellow line shows that the entire Sb2Se3 middle section (from y ¼ −4.25 μm to
y ¼ 4.25 μm) was elevated to be above its melting point, which guarantees complete amorph-
ization. The 3D temperature profile predicted by thermal FEM simulation at the end of the 100 ns
amorphization pulse was shown in Fig. 4(c), suggesting that the heat is effectively confined
within the target section of Sb2Se3.

The out-of-plane temperature variation is particularly relevant for graphene heaters, given
that graphene exhibits varying out-of-plane thermal resistance due to the surface polar phonons
(SPoPh) scattering effect.49 Consequently, a temperature gradient is established along the out-of-
plane direction, as heat transfer occurs more efficiently toward the substrate than toward the top
cladding. In order to ensure complete amorphization of Sb2Se3 following the melt-quenching
pulse, a series of dynamic simulations was conducted with varying amorphization pulse power.
Thermal FEM simulations [Fig. 4(b)] suggest that the crystallization length within the slot barely
changes at z ¼ 0 and z ¼ 240 nm, implying that the crystallization is uniform along the z-direc-
tion. The kinks near the two ends of the orange curve in Fig. 4(b) are attributed to the ends of
the graphene sheet.

The quenching rate after the amorphization pulse, which is critical in gauging whether crys-
tallization can be bypassed, is predominantly governed by thermal conductance through cladding
material and BOX. As shown in Fig. 4(a), the quenching rate is ∼1 K∕ns, which is sufficient to
prohibit re-crystallization of Sb2Se3.

Finally, we assess the scalability of our design to large switch matrices. 2m × 2m switches
built from 2 × 2 building blocks using the Benes network can be used to estimate the perfor-
mance of our proposed design.20 Using the values presented in Table 1, we can estimate the total
insertion loss and the lower and maximum CTof an m-order switch matrix (assuming that the IL
of a waveguide crossing in the C-band as 0.1 dB50):

EQ-TARGET;temp:intralink-;e001;114;234 ILm ¼ ð2m − 2Þ × 0.1 dBþ ð2m − 1Þ × 0.45 dB; (1)

EQ-TARGET;temp:intralink-;e002;114;199CTm ¼ −ð15 dB − 10log10 m dBÞ: (2)

Scaling from our 2 × 2 switch’s performance, a 16 × 16 switch is anticipated to exhibit
maximal 3.2 dB insertion loss and −24 dB CT at 1550 nm, representing highly promising
performance metrics, compared to the state-of-the-art (volatile) on-chip 16 × 16 switch reported
by Lu et al.51 The devices can also be put to good use in creating large-scale, programmable,
rectangular and triangular and hexagonal meshes52 (Fig. 5).

4 Conclusion
In conclusion, the non-volatile 2 × 2 photonic switch design takes advantage of a PCM-slot con-
figuration to achieve an ultra-compact footprint (5.5 × 24 μm2) with minimal CT (−23.9 dB),
and the low-loss PCM Sb2Se3 enables a low insertion loss of 0.27 dB, and a single-layer
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graphene heater achieves low switching energies of 1.13 μJ for crystallization and 21 nJ for
amorphization. The design further demonstrates its scalability toward large-scale non-blocking
switch matrices. Our proposed design, therefore, holds the potential for the development of
future large-scale PCM-based programmable PICs.
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