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1 Introduction
Optical tomography1–8 is known as a safer alternative to x-ray
tomography. Usually, tomography consists of a light source gen-
erating penetrative light and a detector capturing the light, which
allows to estimate the inside of the object through which the
light is passing. The most important application is x-ray com-
puted tomography (CT), where x rays are used due to their pen-
etrative property. The balance between the radiation exposure of
the human body and the quality of the obtained results has
been debated since the early days when x-ray CT was invented.
Therefore, there is an urgent demand for a safer medical tomog-
raphy, such as optical tomography.

Modeling the behavior of light plays an important role in
optical tomography, and in the mesoscale, in which the wave-
length of light is close to the scale of tissue, the radiative trans-
port equation (RTE) is used for describing the behavior of light
scattering.5,9 At the macroscale,6 the time-independent or depen-
dent RTE is often approximated with a diffusion equation.

Similarly, the computer graphics community has the
used time-independent RTE, and in contrast to the (surface) ren-
dering equation,10,11 often calls it the volume rendering equation
(VRE).10,12

EQ-TARGET;temp:intralink-;e001;63;217ðω ·∇ÞLðx;ωÞ¼−σtðxÞLðx;ωÞ

þσsðxÞ
Z
S2
fpðx;ω;ω 0ÞLðx;ω 0Þdω 0; (1)

and the notations will be introduced in the following sections.
The use of VRE enables us to render volumes of participating
media, such as fog, cloud, and fire through which light is pen-
etrating, and to obtain realistic volume rendering images of such
scenes.13,14 The path integral, which can be considered as a

discrete version of the continuous Feynman path integral,15,16

has been recently employed to solve the VRE in an efficient
way with Monte Carlo integration, such as Metropolis light
transport17,18 or bidirectional path tracing.19

In this paper, we propose an optical tomography method
using path integral as a forward model and solving a nonlinear
inverse problem that minimizes the discrepancy between mea-
surements and model predictions in a least-squares sense. To the
best of our knowledge, the discretized path integral has not been
used in optical tomography before. In our work, we simplify the
path integral with some assumptions. The path integral, as the
name suggests, gathers (or integrates) the contributions of all
possible paths of light.17,18,20–23 We approximate the integral
of an infinite number of paths with the sum of a finite number
of paths, discretize a continuous medium into voxels of a regular
grid, and continuous light paths into discrete ones (i.e., poly-
lines). We deal with anisotropic scattering having a peak in
the forward direction, which is different from other discretiza-
tion methods using discrete ordinate or spherical harmon-
ics.13,24,25 In this work, we focus on estimating the spatially
varying extinction coefficient σtðxÞ at each discretized voxel
location of the medium while fixing scattering properties (e.g.,
scattering coefficients σs and phase functions fp). By separating
the scattering properties from our problem, we formulate optical
tomography as an optimization problem with inequality con-
straints solved by an interior point method.

An interior point method26 is an iterative method to solve
an optimization problem with inequality constraints describing
a feasible region in which the optimal solution must reside.
To this end, a series of nonconstrained optimization problems
are constructed by combining the constraints and the original
objective function and are solved by an ordinal gradient-based
(Quasi-Newton) method.

To summarize our contribution, we reformulate the problem
of optical tomography by combining a path integral with several
simplifying assumptions to model the light transport in the
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participating media. This paper is an extension of our previous
conference version27,28 with additional theoretical background
and additional experiments and discussions, and is structured
as follows. In Sec. 2, we briefly review previous work related
to path integrals and optical tomography. In Sec. 3, we describe
how to model the light transport in participating media and turn
optical tomography into an optimization problem. In Sec. 4, we
show how to solve the optimization problems. Section 5 reports
some simulation results, and Sec. 6 concludes the paper.

2 Related Work
In this section, we briefly review related work on optical tomog-
raphy and path integrals in computer graphics.

Optical tomography4,5 (or inverse transport,6,7 inverse scatter-
ing,29 scattering tomography30,31) is a problem in medical imag-
ing using light sources to reconstruct the optical properties
of tissue from measurements (time-dependent or stationary,
angular-dependent or independent) at the surface boundary.
Analytically solving the RTE [Eq. (1)] with boundary conditions
is difficult, however, and approximations, such as discrete ordi-
nates and N’th-order spherical harmonics (PN approximation),
are often used and solved numerically by, for example, finite
element methods (FEM) or finite difference methods. The
famous diffuse approximation5,6 (DA) is a P1 (thus first-order)
approximation with the assumption on a phase function being
isotropic. The DA is an approximation to RTE at a macroscopic
scale when scattering is large while absorption is low and scat-
tering is not highly peaked. Diffuse optical tomography (DOT)
is based on DA and today represents the frontier of optical
tomography32,33 with many clinical applications.34 DA, how-
ever, does not often hold in realistic participating (scattering)
media; absorption may not be small compared to scattering,
and the shapes of the phase functions can be highly peaked in
the forward direction, which is often modeled by Henyey-
Greenstein,35 Schlick,36 or Mei and Rayleigh phase func-
tions.10,12,37,38 Experimental evidence39 also suggests a highly
peaked shape of the phase functions in biological media. DOT
works, but is still limited; therefore, other methods have also
been studied for cases when DA does not hold.

Statistical Monte Carlo methods are used for media in which
the assumptions do not hold; however, they are computationally
intensive and inefficient for solving the forward problem,4–7,34

i.e., solving the RTE with given parameters. Therefore, Monte
Carlo based approaches have been used for estimating the spa-
tially constant (not varying) parameters in homogeneous media,
such as paper,40,41 clouds,42 liquids,43 plastics,44 or uniform
material samples.45 Another difficulty of Monte Carlo based
inverse methods is that an analytical forward model prediction
is hard to obtain when we want to minimize the difference
between the prediction and measurements except for very
special structures.46,47 A gradient based least-square approach
has been proposed but only for spatially constant parameter
estimation,40,41,48 while model-free approaches have relied on
genetic algorithms,42,44 numerical perturbation,49,50 voting,51

or even simple backprojection.52 One of the contributions of the
current paper is to enable us to use a gradient based optimization
approach for estimating spatially varying parameters, which is
extensible by using many optimization methods.

Similar to optical tomography, modeling light transport
plays a very important role in computer graphics. Our own work
on optical tomography is inspired by Monte Carlo based stat-
istical methods. In the last two decades, methods based on

path integrals17–19,53–55 have provided models of light transport
for efficient volume rendering. For solving RTE, a path integral
has been used for a forward problem solver,16,56,57 and has also
been applied to optical tomography, but under the diffusion
assumption.58,59 Our proposed method is based on a path inte-
gral to explicitly express the forward model prediction, which is
very suitable for solving the inverse problem with gradient
based methods. This is an advantage of our method over existing
methods because the paths used in the forward model can be
generated by either a deterministic or statistical (Monte Carlo)
method. To achieve an efficient forward model, we introduce a
simplified layered scattering model that uses a limited number
of deterministic paths instead of Monte Carlo simulated ones.

3 Method: Forward Problem
We deal with the following optical tomography problem [this is
a conceptual formulation and the actual problem is shown in
Eq. (29)].

EQ-TARGET;temp:intralink-;e002;326;553min
σt

X
i;j

jIij − PijðσtÞj2; (2)

where σt is a vector representing the spatial distribution of the
extinction coefficients to be estimated. We divide our discussion
into two parts: forward and inverse problems. The forward prob-
lem focuses on building a mathematical model PijðσtÞ of the
light transport between a light source i and a detector j. We will
make some assumptions on the light transport and the medium
to simplify the forward model. An inverse problem minimizes
the difference between the observations Iij of the detector and
the forward model to estimate the spatial distribution of the
extinction coefficients σt.

3.1 Forward Model

In the forward problem, as we mentioned before, we use a path
integral to build a mathematical model for the light transport.
Here, we follow the notation developed in the computer graphics
literature17,23,53,60 to introduce the path integral. Sections 3.2 to
3.6 will show the simplified model we propose.

Given a space R3, a light source is located at x0 ∈ R3 and a
detector at xMþ1 ∈ R3, and in between them is the participating
media ν ⊂ R3 with boundary ∂ν and interior volume ν0 ≔
ν \ ∂ν. A light path x̃ connecting x0 and xMþ1 of length M þ 2
consists of M þ 2 vertices xm ∈ R3 for m ¼ 0; 1; : : : ;
M þ 1, denoted by x̃ ¼ x0; x1; · · · ; xM; xMþ1. Thus, absorption,
scattering, or reflection events happen at x1; : : : ; xM. The set of
all paths of length M is denoted by ΩM. The path space Ω is
the countable set of all paths ΩM of finite length.

EQ-TARGET;temp:intralink-;e003;326;215Ω ¼
[∞
M¼2

ΩM: (3)

A direction is denoted by ω ∈ S2, where S2 is a unit sphere in
R3. A unit vector ωxm;xmþ1

is the direction from vertex xm to
vertex xmþ1 in a path x̃.

Veach20 introduced a framework representing the rendering
equation in the form of a path integral for scenes without par-
ticipating media (i.e., no scattering), and later, Pauly et al.17

extended it to the volume rendering equation with scattering.
The amount of light I observed by the detector is given by the
path integral
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EQ-TARGET;temp:intralink-;e004;63;752I ¼
Z
Ω
fðx̃Þdμðx̃Þ; (4)

which is an integral over the path space. Here, μðx̃Þ is a measure
of path x̃.

EQ-TARGET;temp:intralink-;e005;63;696

dμðx̃Þ ¼
YMþ1

m¼0

dμðxmÞ;

dμðxmÞ ¼
�
dAðxmÞ; xm ∈ ∂ν
dVðxmÞ; xm ∈ ν0

; (5)

where dμðxmÞ denotes the differential measure at vertex xm.
fðx̃Þ is a measurement contribution function defined as follows:

EQ-TARGET;temp:intralink-;e006;63;593

fðx̃Þ¼Leðx0;x1ÞGðx0;x1Þ

×

"YM
m¼1

ffðxm−1;xm;xmþ1ÞGðxm;xmþ1Þ
#
WeðxM;xMþ1Þ;

(6)

where WeðxM; xMþ1Þ is the camera response function, and
Leðx0; x1Þ is the intensity of the light emitted from the light
source x0 to vertex x1. ffðxm−1; xm; xmþ1Þ is a scattering kernel
at xm with respect to the locations of vertices xm−1 and xmþ1.

EQ-TARGET;temp:intralink-;e007;63;463ffðxm−1;xm;xmþ1Þ¼
�
fsðxm−1;xm;xmþ1Þ; xm ∈∂ν
σsðxmÞfpðxm−1;xm;xmþ1Þ; xm ∈ ν0

:

(7)

Here, the bidirectional scattering distribution function
fsðxm−1; xm; xmþ1Þ is used for locations on the surface of
objects, and the scattering coefficient σsðxmÞ at xm and the
phase function fpðxm−1; xm; xmþ1Þ are used for those inside
the medium. Gðxm; xmþ1Þ is a generalized geometric term.

EQ-TARGET;temp:intralink-;e008;63;350Gðxm; xmþ1Þ ¼ Tðxm; xmþ1Þgðxm; xmþ1Þ; (8)

where gðxm; xmþ1Þ is a geometric term.

EQ-TARGET;temp:intralink-;e009;63;308gðxm; xmþ1Þ ¼
8<
:

jngðxmÞ·ωxm;xmþ1
j

kxm−xmþ1k2 ; xm ∈ ∂ν
1

kxm−xmþ1k2 ; xm ∈ ν0
; (9)

with unit normal ngðxmÞ of the surface at xm ∈ ∂ν. Tðxm; xmþ1Þ
is a transmittance that describes the attenuation when light
passes through the medium.

EQ-TARGET;temp:intralink-;e010;63;215Tðxm; xmþ1Þ ¼
�
e−τðxm;xmþ1Þ; fxm; xmþ1g ⊂ ν0 ∪ ∂ν
0; otherwise

;

(10)

EQ-TARGET;temp:intralink-;e011;63;154τðxm; xmþ1Þ ¼
Z

1

0

σt½ð1 − sÞxm þ sxmþ1�ds; (11)

where σtðxmÞ is the extinction coefficient at vertex xm.
Putting all together, we have a path integral of the following

infinite sum of all possible path contributions.

EQ-TARGET;temp:intralink-;e012;326;752

I ¼
X∞
M¼2

X
k∈ΩM

Leðx0; x1ÞGðx0; x1Þ

×
�YM
m¼1

ffðxm−1; xm; xmþ1ÞGðxm; xmþ1Þ
�

×WeðxM; xMþ1Þ
YMþ1

m¼0

dμðxmÞ: (12)

Note that all vertices fxmg depend on a path k; different paths
have different sets of vertices. In the equation above, however,
we omit the path index k for simplicity. Later, we will again use
k as the path index.

3.2 Assumptions on the Path Integral Formulation

As our target is optical tomography, we restrict the model to deal
with inside the participating media. To do so, we assume that the
light source x0 and detector xMþ1 are located on the surface, and
the other vertices x1; x2; : : : ; xM; xMþ1 are inside the medium,
that is, x0; xMþ1 ∈ ∂ν and x1; : : : ; xM ∈ ν0. Then the transmit-
tance is simplified as

EQ-TARGET;temp:intralink-;e013;326;504Tðxm; xmþ1Þ ¼ e−τðxm;xmþ1Þ: (13)

Furthermore, we assume that the observations are ideal and
the camera response function is the identity,WeðxM; xMþ1Þ ¼ 1.

Apart from the assumptions above, we rewrite the geometric
term and the differential measure. The definitions above use area
measures dAðxmÞ and volume measures dVðxmÞ along with the
squared distance geometric term;17,23,53 however, steradian mea-
sures dωðxmÞ and the identity geometric term is equivalent and
also widely used.10,12,60

EQ-TARGET;temp:intralink-;e014;326;380gðxm; xmþ1ÞdμðxmÞ ¼ dωðxmÞ: (14)

Therefore, we employ the steradian measures and rewrite it
as follows:

EQ-TARGET;temp:intralink-;e015;326;323gðxm; xmþ1Þ ¼ 1; (15)

EQ-TARGET;temp:intralink-;e016;326;281dμkðxmÞ ¼
�
dAðx0Þ; m ¼ 0

dωðxmÞ; m ¼ 1; : : : ;M þ 1
: (16)

Now, Eq. (12) is written as
EQ-TARGET;temp:intralink-;e017;326;230

I¼
X∞
M¼2

X
k∈ΩM

Leðx0;x1ÞTðx0;x1ÞdAðx0Þ

×
�YM
m¼1

ffðxm−1;xm;xmþ1ÞTðxm;xmþ1ÞdωðxmÞ
�
dωðxMþ1Þ:

(17)

3.3 Discretization of the Forward Model

For numerical computation, we first discretize the medium into
voxels of a regular grid, where each voxel has its own extinction
coefficient σt½b� (b is the index of the voxel) as shown in Fig. 1.
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With this voxelization, the paths of light are also divided into
segments, as explained below. First, we explain the integral
[Eq. (11)] along a single segment xm; xmþ1 of a path x̃. It
describes the attenuation of light along the segment due to
the extinction coefficients of the voxels involved. Because of
the discretization of the medium, Eq. (11) can be written as a
sum of voxel-wise multiplications.

EQ-TARGET;temp:intralink-;e018;63;464τðxm; xmþ1Þ ¼
Z

1

0

σt½ð1 − sÞxm þ sxmþ1�ds

¼
X

b∈Bxm;xmþ1

σt½b�dxm;xmþ1
½b� ¼ σTt dxm;xmþ1

: (18)

For the second equality, b is the index of a set Bxm;xmþ1
of all

voxels involved by segment xm; xmþ1, and dxm;xmþ1
½b� is the

length of the part of the segment xmxmþ1 passing through
voxel b. This is illustrated in Fig. 1(c). The extinction coefficient
σt is now a piece-wise constant function because of the voxe-
lization; then the integral turns into a sum (the idea that this
integral can be turned into a sum has been discussed before,61

however, not in the context of tomography).
This simplifies the computation; however, the sum over a set

Bxm;xmþ1
is not preferable in terms of implementation and opti-

mization. We propose here to use a vector representation of both
extinction coefficients and segment lengths, which is the third
equality of the above equation. The first vector σt stores the val-
ues of the extinction coefficients σt½b� of all voxels. This vector
can be generated by serializing the voxels on the grid in a certain
order. The second vector dxm;xmþ1

contains the values of the
lengths dxm;xmþ1

½b� for all voxels. We should note that this vector
is very sparse; most of the voxels have no intersection with the
segment xm; xmþ1. Hence, only a few elements in dxm;xmþ1

have
nonzero values, and the other elements are zero because those
voxels b have no intersection and dxm;xmþ1

½b� ¼ 0.
This sparsity of the vector facilitates the construction of a

whole path x̃ because path segments can be added as follows:

EQ-TARGET;temp:intralink-;e019;63;134Dk ¼
XM
m¼0

dxm;xmþ1
; (19)

where Dk is the vector of a complete path k of lengthM þ 2; the
b’th element can be interpreted as the length of the segment

when the path passes through voxel b. This notation simplifies
a part of Eq. (17) as follows:
EQ-TARGET;temp:intralink-;e020;326;519YM
m¼0

Tðxm; xmþ1Þ ¼
YM
m¼0

e−τðxm;xmþ1Þ ¼ e−
P

M
m¼0

τðxm;xmþ1Þ

¼ e−
P

M
m¼0

σTt dxm;xmþ1 ¼ e−σ
T
t Dk : (20)

Using this notation to rewrite Eq. (17), we have

EQ-TARGET;temp:intralink-;e021;326;438I ¼
X∞
M¼2

Leðx0; x1Þ
X
k∈ΩM

Hke−σ
T
t Dk ¼ Leðx0; x1Þ

X
k∈Ω

Hke−σ
T
t Dk ;

(21)

where the factor Hk, defined as

EQ-TARGET;temp:intralink-;e022;326;364Hk ¼ dAðx0ÞdωðxMþ1Þ
YM
m¼1

ffðxm−1; xm; xmþ1ÞdωðxmÞ;

(22)

describes the contributions of the scattering coefficients and
phase functions, and the exponential factor represents attenua-
tion due to absorption (and outscattering) over the path.

3.4 Two-Dimensional Layered Model of Forward
Scattering

As a first attempt, we design a two-dimensional (2-D) layered
grid, instead of the three-dimensional (3-D) one. Since we vox-
elize the medium into a regular grid, the 2-D medium consists of
parallel layers. Hereafter, a 3-D direction ω between vertices is
written as a 2-D direction θ and a steradian measure dω as an
angular measure dθ.

As shown in Fig. 2, we assume a particular layer scattering
having the following properties. First, vertices x1; · · · ; xM of
path x̃ are located at the centers of each voxel. The light source
x0 is located on the boundary of the top surface of the voxels in
the top layer. Similarly, the detector xMþ1 is located on the boun-
dary of the bottom surface of the voxels in the bottom layer.
Second, directions θx0;x1 and θxM;xMþ1

at the beginning and end
of a path are perpendicular to the boundary. This means that
scattering begins at x1 and ends at xM. Third, forward scattering

(a) (b) (c)

Fig. 1 Illustration of a discretization example. (a) Voxelization of the medium into a regular grid of size
5 × 5. Voxels are indexed in raster scan order in this example, from left to right, and top to bottom. Each
voxel b has extinction coefficient σt ½b�. (b) A path segment between vertices x1 and x2. Voxels involved in
the segment are shaded. (c) Lengths d12½b� of the involved voxels b ¼ 2;3;8; 9. Here we denote d12½b�
instead of dx1 ;x2

½b� for simplicity.
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happens layer by layer. More specifically, light is scattered at the
center of a voxel in a layer and then goes to the center of a voxel
in the next (below) layer. Scattering is assumed to happen every
time the light traverses voxel centers. Even if the next voxel is
just below the current voxel and the path segment is straight, it is

regarded as scattering. Fourth, the scattering coefficient is uni-
form, σsðxÞ ¼ σs.

By ignoring paths exiting from the sides of the grid, the num-
ber of all possible paths is NM, whereM is the number of layers
and N is the number of voxels in one layer.

3.5 Approximating the Phase Function with
a Gaussian

We use a Gaussian model fpðθ; σ2Þ as an approximation of the
phase function
EQ-TARGET;temp:intralink-;e023;326;634

fpðxm−1; xm; xmþ1Þ ≡ fpðθm; σ2Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−θ2m
σ2

�
;

−
π

2
< θm <

π

2
; (23)

where the variance σ2 controls the scattering property; larger
values of σ2 mean strong forward scattering. This Gaussian
approximation is convenient in our case because of the follow-
ing two reasons.

First, existing phase function models10,12,35–38 are those
for 3-D scattering, not for 2-D. This means that those func-
tions are normalized for integrals over the unit sphere S2:
∫ S2fpðωÞdω ¼ 1. Most of the phase functions assume isotropy
(rotational symmetry), and hence, the function has a form taking
angle θ as an argument; however, ∫ π

−πfpðθÞdθ ≠ 1. These func-
tions, therefore, are not adequate for our case.

Layer 1

Layer 2

Layer M

Fig. 2 Proposed two-dimensional layered model of scattering. This
example shows path x̃ consisting of vertices x1; · · · ; xM located at
the centers of voxels in a grid with M parallel layers. x0 is a light
source located on the top surface, and xMþ1 is a detector at the bot-
tom. At each vertex, the light scatters to voxels in the next layer, and
possible scattering directions are indicated by arrows.

(a) (b)

Fig. 3 Comparison of two-dimensional phase functions. The upward vertical direction is θ ¼ 0, and hori-
zontal directions are θ ¼ �ðπ∕2Þ. (a) Gaussian approximated phase functions with σ2 ¼ 0.1;0.2; : : : ;1.0.
The tallest and narrowest shapes correspond to σ2 ¼ 0.1, and the shape becomes shorter and rounder
for larger values of σ2. (b) Heino’s two-dimensional analogs62 of Henyey-Greenstein’s phase function
with parameter g ¼ 0.1;0.2; : : : ;1.0. The tallest and narrowest shapes correspond to g ¼ 1.0, and
the shape becomes shorter and close to a hemisphere for smaller values of g.
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Second, our assumption of layer-wise forward scattering
does not allow scattering to happen backwards or sideways,
and the Gaussian model is suitable for it. As shown in
Fig. 3, the Gaussian model has the form of forward-only scat-
tering (no backwards or sideways) in a reasonable range of σ2,
and it is almost normalized; ∫ π∕2

−π∕2fpðθ; σ2Þdθ ≈ 1. Other 2-D
phase functions exist which are not forward-only. For example,
Heino et al.62 introduced a 2-D analog of Henyey-Greenstein’s
phase function,35 shown in Fig. 3. Although the parameters are
different, the two functions in Fig. 3 have similar shapes. The
most important difference is that Heino’s function has back-
ward scattering, but our Gaussian model does not. More real-
istic scattering rather than the layer-wise forward scattering
introduced here needs Heino’s or Henyey-Greenstein’s
phase function.

We should note one further simplification in our layer-wise
forward scattering model. The angle θm in the phase function is
usually defined between θxm−1;xm and θxm;xmþ1

, that is, the differ-
ence of directions changed by the scattering event. Instead of
dealing with such an exact difference of directions, we use the
angle between θxm;xmþ1

and the vertical (downward) direction for
efficiency of computation. This assumption enables us to discre-
tize the Gaussian phase function much more easily. Since fpðθÞ
integrates to (approximately) one, such a normalization can be
discretized with a sum as follows:

EQ-TARGET;temp:intralink-;e024;326;752

Z
π∕2

−π∕2
fpðθ; σ2Þdθ ≈

X
b∈Bn

fpðθb; σ2ÞΔθb ≈ 1; (24)

where B is a set of voxel indices in the next layer n, θb is
an alternative form of the corresponding θxm;xmþ1

, and Δθb is
the angle measure as shown in Fig. 4.

The above equation can be considered as the energy distri-
bution from a voxel in one layer to the voxels in the next layer.
For a voxel b at direction θb, the value of fpðθb; σ2ÞΔθb
describes what percentage of the energy will be scattered to
this voxel. Figure 5 shows plots of the values corresponding to
two phase functions with different parameters. We can see that,
due to forward scattering, most of the energy is concentrated in
the voxel just below, and a small part goes to the adjacent voxels.

The contribution Hk in Eq. (22) now needs to be rewritten
so that it deals with the Gaussian phase function and the discre-
tized energy distribution discussed above. First, we reorder the
measure

EQ-TARGET;temp:intralink-;e025;326;548Hk ¼ dAðx0ÞdθðxMþ1Þ
YM
m¼1

ffðxm−1;xm;xmþ1ÞdθðxmÞ (25)

EQ-TARGET;temp:intralink-;e026;326;501 ¼ dAðx0Þdθðx1Þ
YM
m¼1

ffðxm−1; xm; xmþ1Þdθðxmþ1Þ; (26)

and then replace the factors with the Gaussian phase function.

EQ-TARGET;temp:intralink-;e027;326;445Hk ¼ dAðx0ÞΔθx0;x1σMs
YM
m¼1

fpðθxm;xmþ1
; σ2ÞΔθxm;xmþ1

: (27)

Note that the factor dAðx0ÞΔθx0;x1σMs is common for all paths
because we assumed that the grid is uniform so that dAðx0Þ is
constant, and the direction θx0;x1 (or ωx0;x1 ) is perpendicular to
the top surface, and σs is constant.

3.6 Observation Model

Suppose the 2-D layered medium is an M × N grid; it has M
layers, each of which is made of N voxels. We now construct

Fig. 4 An illustration of angle measure Δθb for voxel b in the next
layer. For the center voxel of the upper layer, voxel b (shaded) in
the next layer subtends an angle of Δθb , which is used for the
angle measure in Eq. (24).
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Fig. 5 (a) The phase functions with parameter σ2 ¼ 0.2 (dashed line) and σ2 ¼ 0.4 (solid line). Plot of
the value f pðθb; σ2ÞΔθb for each voxel b for (b) σ2 ¼ 0.2 and (c) σ2 ¼ 0.4. Note that index b is relative to
the voxel in the next layer just below the voxel in consideration. The voxel just below is b ¼ 0, the voxel
on its right side is b ¼ 1, and that on the left side is b ¼ −1.
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an observation model of the light transport between a light
source and a detector: emitting light to each of the voxels at
the top layer, and capturing light from each voxel from the bot-
tom layer. More specifically, let i ∈ B1 and j ∈ BM be voxel
indices of the light source and detector locations, respectively.
By restricting the light paths to only those connecting i and j,
the observed light Iij is written as follows:

EQ-TARGET;temp:intralink-;e028;63;433Iij ¼ I0
XNij

k¼1

Hijke−σ
T
t Dijk ; (28)

where Hijk and Dijk are the same as in Eqs. (27) and (21),
respectively, but are restricted to paths connecting i and j,
and I0 ¼ Leðx0; x1Þ assuming the light source to be constant.

In the above equation, k indexes the light paths, which share
the same i and j. Due to the layered scattering model in the
N ×M grid, the number of different paths between i and j is
Nij ¼ NM−2. This is, however, too large even for small N and
M, e.g., N ¼ M ¼ 10. Therefore, we exclude paths having
small contributions from the computation. This is done by a sim-
ple thresholding while computingHijk as shown in Algorithm 1.

This results in generating fewer paths; Nij ≤ NM−2. For exam-
ple, there are Nij ¼ 742 paths for N ¼ M ¼ 20 with σ2 ¼ 0.4
when th ¼ 0.001, which enables us to reduce the computa-
tion cost.

4 Method: Inverse Problem
Next, we propose a method for the inverse problem of the for-
ward model [Eq. (28)] to estimate the extinction coefficients of
the 2-D layered model. As we mentioned before, we fix the light
paths and assume that the scattering coefficients and parameters
of the Gaussian phase function are uniform and known in
advance.

4.1 Cost Function

In theM × N 2-D layered medium described in Sec. 3.6, we had
assumed a configuration of a light source and detector similar to
the left-most one shown in Fig. 6; the light source is located
above the medium and the detector is below, and the observed
light is Iij, where i; j are the voxel indices of the light source and
detector locations. By sliding the light source and the detector,
we can obtain N2 observations, resulting in the following least-
squares equation:

EQ-TARGET;temp:intralink-;e029;326;501min
σt

f0; f0 ¼
XN
i¼1

XN
j¼1

����Iij − I0
XNij

k¼1

Hijke−σ
T
t Dijk

����
2

; (29)

under 2MN constraints

EQ-TARGET;temp:intralink-;e030;326;4370⪯σt⪯u; (30)

where ⪯ denotes the generalized inequality, i.e., all elements in
the vector must satisfy the inequality. The lower bound 0 comes
from the fact that any media must have positive extinction coef-
ficients, while the upper bound u is used for numerical stability
to exclude unrealistic values to be estimated.

Furthermore, as shown in Fig. 6, we have four configurations
of light sources and detectors by changing their positions. This
gives us four different sets of observations Iij and paths ijk.
These four different sets lead to four objective functions
(fT2B, fL2R, fB2T , fR2L) as shown in Fig. 6. Since the four objec-
tive functions share the same variables σt, we can use all of them
at the same time by adding them to form a new single function
f0 at the expense of additional (factor of four) computation cost.

Algorithm 1 Computing contribution Hijk and omitting low contribu-
tion path by thresholding.

Input: Threshold th, path x̃ ¼ x0; · · · ; xMþ1.

Output: Contribution Hijk .

1 Hijk ¼ 1;

2 for m ¼ 1 to M do

3 Hijk ¼ Hijk f pðθxm ;xmþ1
; σ2ÞΔθxm ;xmþ1

4 if Hijk ≤ th then

5 stop;

6 omit this path;

7 accept this path;

8 return Hijk ;

Fig. 6 Four configurations of light sources and detectors. From left to right, we call configurations T2B
(top-to-bottom), L2R (left-to-right), B2T (bottom-to-top), and R2L (right-to-left), which represent locations
of light sources and detectors.
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EQ-TARGET;temp:intralink-;e031;63;752min
σt

f0; f0 ¼ fT2B0 þ fL2R0 þ fB2T0 þ fR2L0

subject to 0⪯σt⪯u:
(31)

4.2 Optimization Problem with Inequality
Constraints

Since the inverse problem [Eq. (31)] is nonlinear, we employ
an interior point method,26 an iterative optimization algorithm
for problems with constraints. Here, we first review several key
points in optimization; then we will develop an algorithm to
solve Eq. (31) along with the required first- and second-order
derivatives of the cost function.

4.2.1 Unconstrained problem: Quasi-Newton

First, we review optimization without constraints, which is used
inside the interior point method. The general form of uncon-
strained optimization is

EQ-TARGET;temp:intralink-;e032;63;536min
σt

fðσtÞ; (32)

where σt ∈ RN×M is a real vector and f: RN×M → R is an
objective function that is twice continuously differentiable.

To solve it, an iterative procedure begins with an initial guess
σ0t and generates a sequence fσkt g∞k¼0. It stops when the change
of solutions is small enough. The information about function f
at σkt or even previous estimates σ0t ; σ1t ; · · · ; σk−1t is used to cal-
culate a direction pk to move with a step size αk. A line search
is often used to determine the step size by searching along the
direction starting from σkt for finding σ

kþ1
t with the least value of

the objective function

EQ-TARGET;temp:intralink-;e033;63;389min
αk>0

fðσkt þ αkpkÞ: (33)

Once we find the step size, the estimate σkþ1
t is updated as

σkþ1
t ← σkt þ αkpk. The direction is pk ¼ −Bk∇fðσkt Þ for the

Newton’s method, where Bk ¼ ∇2fðσkt Þ−1 is the inverse of
the Hessian.

The Newton’s method is well known for its second-order
convergence and accuracy. However, when the dimension of
the problem is large, calculating the Hessian and its inverse
is computationally expensive. Therefore, Quasi-Newton meth-
ods are often used, where the inverse Hessian is updated by
incremental approximations in order to reduce the computation
cost. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update
rules are well known.63

EQ-TARGET;temp:intralink-;e034;63;219s ¼ σkt − σk−1t ; (34)

EQ-TARGET;temp:intralink-;e035;63;184y ¼ ∇fðσkt Þ − ∇fðσk−1t Þ; (35)

EQ-TARGET;temp:intralink-;e036;63;154Bk ¼
�
I −

syT

yTs

�
Bk−1

�
I −

ysT

yTs

�
þ ssT

yTs
: (36)

When the conditions yTs > 0 and B0 ≻ 0 (where ≻ 0 means
positive definite) are satisfied, the BFGS update guarantees
the positive definiteness of Bk. Algorithm 2 shows the Quasi-
Newton method.

4.2.2 Constrained problem: interior point

Here we introduce a constrained optimization with inequality
constraints of the form

EQ-TARGET;temp:intralink-;e037;326;505min
σt

f0ðσtÞ subject to fiðxÞ ≤ 0; i ¼ 1; : : : ; m; (37)

where σt ∈ RN×M is a real vector and f0; : : : ; fm: RN×M → R
are twice continuously differentiable.

The idea is to approximate it as an unconstrained problem.
Using Lagrange multipliers, we can first rewrite Eq. (37) as

EQ-TARGET;temp:intralink-;e038;326;424min
σt

f0ðσtÞ þ
Xm
i¼1

I½fiðσtÞ�; (38)

where I: R → R is an indicator function, which keeps the
solution inside the feasible region.

EQ-TARGET;temp:intralink-;e039;326;353IðfÞ ¼
�
0; f ≤ 0

∞; f > 0
: (39)

Equation (38) now has no inequality constraints, while it is
not differentiable due to I.

The barrier method26 is an interior point method that intro-
duces a logarithmic barrier function to approximate the indicator
function I as follows:

EQ-TARGET;temp:intralink-;e040;326;254ÎðfÞ ¼ −ð1∕tÞ logð−fÞ; (40)

where t > 0 is a parameter to adjust the accuracy of approxima-
tion. The log barrier function goes to infinity rapidly as f goes
close to 0, while it is close to 0 when f is far away from 0. Since
ÎðfÞ is differentiable, we have

EQ-TARGET;temp:intralink-;e041;326;177min
σt

f0ðσtÞ þ
Xm
i¼1

−ð1∕tÞ log½−fiðσtÞ�; (41)

or equivalently,

EQ-TARGET;temp:intralink-;e042;326;117min
σt

tf0ðσtÞ −
Xm
i¼1

log½−fiðσtÞ�: (42)

Algorithm 2 The Quasi-Newton method with BFGS update rule.

Input: A feasible initial solution σ0t , and B0 ≻ 0.

Result: An estimate σ⋆t .

1 repeat

2 Compute the Quasi-Newton direction: pk ¼ −Bk∇f ðσkt Þ.

3 Find step length αk with line search.

4 Update estimate σkþ1
t ←σkt þ αkpk .

5 Update Bk with BFGS.

6 until convergence;

Journal of Medical Imaging 033501-8 Jul–Sep 2015 • Vol. 2(3)

Yuan et al.: Optical tomography with discretized path integral



The barrier method solves Eq. (42) iteratively by increasing
the parameter t. At the limit of t → ∞, the above problem coin-
cides with the original problem [Eq. (38)].

4.3 Algorithm for Solving the Inverse Problem

Algorithm 3 shows our algorithm, which uses a barrier method
with Quasi-Newton for solving the inverse problem. We should
mention the following parts where we have modified the original
algorithm.26

Warm start: For each inner loop, the Quasi-Newton method
needs an initial guess of the inverse Hessian B0. Instead of fixing
B0 for every inner loop, we reuse the Bk of the last inner loop
to accelerate the convergence (shown in lines 4 and 19 in
Algorithm 3).

Checking feasibility: Since the Quasi-Newton method and
line search estimate without constraints, the next estimate
σkþ1
t may go beyond the constraints; in our case, each element

σkþ1
t ½b� in σkþ1

t must be inside ½0; u� after the step size has been

determined. Therefore, in line 8, we check the feasibility of the
estimate σkþ1

t for the current step size αk. If it exceeds the boun-
dary of the feasible region, we pull the estimate back into the
feasible region by halving the step size. If it is still outside the
feasible region, then the step size is halved again. Why do we
not just set the step size so that σkþ1

t is exactly on the boundary?
The reason is the log-barrier: if σkþ1

t is on the boundary, in other
words, σkþ1

t ½b� is either 0 or u, then logðσt½b�Þ or logðu − σt½b�Þ
becomes infinite, which results in numerical instability.
Therefore, the procedure described above is needed.

Checking for positive definiteness: The BFGS update rules
guarantee Bk to be positive definite if yTs > 0 and B ≻ 0 are
satisfied. While the latter is satisfied by giving an appropriate
initial guess, the former depends on the updates at each iteration.
If it is not satisfied, then the BFGS updates are no longer valid,
and we reset the inverse Hessian Bk to a scaled identity63 at
line 16.

4.3.1 Jacobian

Here, we represent the Jacobian of the objective function f0 in
Eq. (29). Note that the objective function f0 in Eq. (31) can be
derived in the same manner.

We first rewrite the objective function f0 as follows:

EQ-TARGET;temp:intralink-;e043;326;491f0 ¼
XN
i¼1

XN
j¼1

����Iij − I0
XNij

k¼1

Hijke−σ
T
t Dijk

����
2

(43)

EQ-TARGET;temp:intralink-;e044;326;440

¼
XN
i¼1

XN
j¼1

�
I2ij − 2IijI0

XNij

k¼1

Hijke−σ
T
t Dijk

þ I20
XNij

k¼1

XNij

l¼1

Hijke−σ
T
t DijkHijle−σ

T
t Dijl

�
(44)

EQ-TARGET;temp:intralink-;e045;326;358 ¼
XN
i¼1

XN
j¼1

�
I2ij − 2IijI0

XNij

k¼1

Hijke−σ
T
t Dijk

þ I20
XNij

k¼1

XNij

l¼1

HijkHijle−σ
T
t ðDijkþDijlÞ

�
; (45)

and the gradient of f0 is given by

EQ-TARGET;temp:intralink-;e046;326;251

∂f0
∂σt

¼
XN
i¼1

XN
j¼1

�
2IijI0

XNij

k¼1

Hijke−σ
T
t DijkDijk

− I20
XNij

k¼1

XNij

l¼1

HijkHijle−σ
T
t ðDijkþDijlÞðDijk þ DijlÞ

�
:

(46)

To simplify the equation, we use the following notation:

EQ-TARGET;temp:intralink-;e047;326;138E ¼

2
6664

e−σ
T
t Dij1

e−σ
T
t Dij2

..

.

e−σ
T
t DijNij

3
7775; H ¼

2
6664

Hij1

Hij2

..

.

HijNij

3
7775; (47)

Algorithm 3 Barrier method of interior point with Quasi-Newton
solver.

Data: Parameters μ > 1, ε > 0, and t ¼ t init > 0.

Input: A feasible initial estimate σ0t , and B ≻ 0.

Result: An estimate σ⋆t .

1 while ð2MN∕tÞ ≥ ε do // outer loop: barrier method

2 t←μt .

3 Set a log-barriered cost function

f ðtÞ ¼ t f 0 −
P

bflogðσt ½b�Þ þ logðu − σt ½b�Þg

4 k←0, Bk←B, σkt ←σt .

5 repeat // inner loop: Quasi-Newton

6 Compute the Quasi-Newton direction: pk ¼ −Bk∇f ðσkt Þ.

7 Find step length αk with line search.

8 while σkt þ αkpk is not feasible do

9 Halve the step size: αk←αk∕2.

10 Update estimate σkþ1
t ←σkt þ αkpk .

11 s ¼ σkþ1
t − σkt .

12 y ¼ ∇f ðσkþ1
t Þ − ∇f ðσkt Þ.

13 if yTs > 0 then

14 Update Bkþ1 with BFGS [Eq. (36)].

15 else

16 Reset Bkþ1←ðyT s∕yT yÞI.

17 k←k þ 1.

18 until ð1∕2Þ∇f ðσkþ1
t ÞT Bkþ1∇f ðσkþ1

t Þ ≤ ε;

19 B←Bkþ1, σt←σkt .
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(a) (b) (c) (d) (e)

Fig. 7 Numerical simulation results for a grid of size 20 × 20mm. Darker shades of gray represent larger
values (more light is absorbed at the voxel). The bars on the side show extinction coefficient values
[mm−1] in gray scale. The first row shows ground truth for five different types of media [(a)–(e)] used
for the simulation. The second and third rows show estimated results for σ2 ¼ 0.2 and σ2 ¼ 0.4, respec-
tively, of the Gaussian phase function.

(a) (b) (c) (d) (e)

Fig. 8 Visualization of the observations I i j in a matrix form. Each matrix shows I i j in its i ’th row and j ’th
column. The horizontal index i indicates the location of the light source, and the vertical index j indicates
the location of the detector. Hence, I i j is the light intensity with the detector at j and the light source at i .
Darker shades of gray represent larger observation values (brighter light is observed). Left to right col-
umns: five different media [(a)–(e)] used for the simulation in the same order as in Fig. 7. Top to bottom
rows: I i j for T2B and L2R configurations for σ2 ¼ 0.2 and σ2 ¼ 0.4.
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EQ-TARGET;temp:intralink-;e048;63;488Dij ¼

2
6664

Dij1

Dij2

..

.

DijNij

3
7775;

D̃ij ¼

2
6664

Dij1 þDij1 Dij1 þDij2 · · · Dij1 þDijNij

Dij2 þDij1 Dij2 þDij2 · · · Dij2 þDijNij

..

. ..
.

· · · ..
.

DijNij
þDij1 DijNij

þDij2 · · · DijNij
þDijNij

3
7775:

(48)
Now, f0 and the gradient can be represented as

EQ-TARGET;temp:intralink-;e049;63;345f0 ¼
XN
i¼1

XN
j¼1

½I2ij − 2IijI0ETH þ I20ðETHÞ2�; (49)

EQ-TARGET;temp:intralink-;e050;63;294

∂f0
∂σt

¼
XN
i¼1

XN
j¼1

ð2IijI0sum½ðE ×HÞ ⊗ Dij�

− I20sumf½ðE ×HÞðE ×HÞT � ⊗ D̃ijgÞ; (50)

where sum½ � stands for the sum over the elements of the con-
tainer [Eq. (49)] of vectors, × is the element-wise product, and
⊗ denotes the tensor product, defined as

EQ-TARGET;temp:intralink-;e051;63;198A ¼

2
6664
a11 a12 · · · a1m
a21 a22 · · · a2m
..
. ..

.
· · · ..

.

an1 an2 · · · anm

3
7775;

B ¼

2
6664
b11 b12 · · · b1m
b21 b22 · · · b2m
..
. ..

.
· · · ..

.

bn1 bn2 · · · bnm

3
7775;

(51)

EQ-TARGET;temp:intralink-;e052;326;488A ⊗ B ¼

2
6664
a11b11 a12b12 · · · a1mb1m
a21b21 a22b22 · · · a2mb2m

..

. ..
.

· · · ..
.

an1bn1 an2bn2 · · · anmbnm

3
7775: (52)

5 Numerical Simulations
In this section, we report the results obtained by numerical sim-
ulations using the proposed model.

The following parameters have been used in Algorithm 3:
tinit ¼ 1.0, μ ¼ 1.5, ε ¼ 10−2. For the line search, the range
for the step size was αk ∈ ½0; 100�. For the initial guess, we
used B ¼ I, σ0t ¼ 0. For the 2-D layered medium, the grid
size was set to N ¼ M ¼ 20 with square voxels of size 1 (mm),
i.e., the medium is 20 ðmmÞ × 20 ðmmÞ, and dA ¼ 1 (mm). The
values of the extinction coefficients are set between 1.05 and
1.55 (mm−1), and the upper bound in Eq. (30) is set to
u ¼ 2.0 (mm−1). The parameter of the Gaussian phase function
is 0.2 or 0.4, and the scattering coefficient is set to σs ¼
1 (mm−1). The threshold for excluding low contribution paths
is th ¼ 0.001.

The ground truth and the estimated extinction coefficients are
shown in Fig. 7. The matrix plots in the top row of the figure
represent five different media [from (a) to (e)] used for the sim-
ulation. Each voxel b is shaded in gray according to the values of
the extinction coefficient σt½b�, and darker gray represents larger
values of σt½b�. Also, the values of σt½b� are displayed at each
voxel. In the same manner, the middle and bottom rows show
the estimated results when the following values of the parameter
of the Gaussian phase function were used: σ2 ¼ 0.2 and 0.4.
Figure 8 shows the observations Iij in a matrix form, from
which the extinction coefficients are estimated. Each element
in these plots is now an observation Iij. We can see observations
with higher values (shown in darker shades of gray in the plots)
on the diagonal. The observations obtained for σ2 ¼ 0.4 seem to
be fainter than those obtained for σ2 ¼ 0.2 due to the larger
amount of scattering.

(a) (b)

Fig. 9 Original cost function values f 0 over iterations of the outer loop of Algorithm 3 with (a) σ2 ¼ 0.2 and
(b) 0.4. The horizontal axis shows the number of outer iterations, and the vertical axis represents the log
of the original cost function values. Different plots indicate five different types of media [(a)–(e)] used for
the simulation.
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(a) (b)

(c) (d)

Fig. 10 Log-barriered cost function values f over iterations of all inner loops of Algorithm 3 for medium
(e) with σ2 ¼ 0.2 [(a) and (b)] and 0.4 [(c) and (d)]. The horizontal axis shows the number of total inner
iterations accumulated across different outer loops. The vertical axis represents the original cost function
values (left) in log scale and (right) in linear scale.

Table 1 Root mean squared errors (RMSEs) and computation time for the numerical simulations for five different types of media [(a) to (e)] with a
grid size of 20 × 20, for two different Gaussian phase function parameter values. Numbers in the brackets are relative errors of RMSE to the
background extinction coefficient values (i.e., 1.05).

(a) (b) (c) (d) (e)

RMSE σ2 ¼ 0.2 0.0067506 0.014253 0.017771 0.016220 0.057692

(0.643%) (1.36%) (1.69%) (1.54%) (5.49%)

σ2 ¼ 0.4 0.0075305 0.014369 0.017704 0.015692 0.058464

(0.717%) (1.37%) (1.69%) (1.49%) (5.57%)

Computation time (s) σ2 ¼ 0.2 142 113 297 190 269

σ2 ¼ 0.4 127 110 186 156 267
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The left-most column of Fig. 7(a) shows the simplest case:
the medium has almost homogeneous extinction coefficients of
value 1.05 (voxels shaded in light gray) except for a few voxels
with much higher coefficients of 1.2 (voxels shaded in dark
gray), which means that those voxels absorb much more light
than other voxels. The coefficients are estimated reasonably
well as shown in the middle and bottom rows, and the root
mean squared error (RMSE) shown in Table 1 is small enough
with a relative error of 0.0075∕1.05 ¼ 0.7% to the background
coefficient value. The other media, shown in columns (b) to (e),
have more complex distributions of the extinction coefficients.
We summarize the quality of the estimated results in terms of
RMSE in Table 1. Numbers in the brackets are relative errors
of RMSE to the background extinction coefficient values
(i.e., 1.05). Computation time is also shown in Table 1. Note
that our proposed method has been currently implemented in
MATLAB®, which can be accelerated further by using C++.

The values of the cost function f0 over iterations of the outer
loop in Algorithm 3 are shown in Fig. 9 for each medium. These
curves show that the proposed method effectively minimizes the
original objective function [Eq. (31)] for the five different types
of media shown here and probably for other media. Figure 10
demonstrates how the log-barriered cost function f in
Algorithm 3 evolves over all iterations of the inner loop; the
number of iterations in the horizontal axis accumulates all inner
iterations of the Quasi-Newton method. We can see that each
inner loop successively minimizes the log-barriered function

and the warm start (reusing the Hessian from the previous
outer loop) may help the gap of values between inner loops.

5.1 Comparison Results

We compare our method to a standard DOTwith FEM (Refs. 64
and 65) using different optimization methods implemented in
the Electrical Impedance Tomography and Diffuse Optical
Tomography Reconstruction Software (EIDORS).64,65 The
ground truth used in this comparison is shown in the top row
of Figs. 11(a)–11(e): N ¼ M ¼ 24 medium of size 24 ðmmÞ ×
24 ðmmÞ with extinction coefficient distributions almost the
same as those shown in Figs. 7(a)–7(e).

For solving DOT by EIDORS, we used 24 × 24 × 24 ¼ 1152
triangle meshes (i.e., each voxel is divided into two triangle
meshes), and for the boundary condition, we placed 16 light
sources and 16 detectors at the same intervals around the
medium. We chose two solvers: Gauss-Newton (GN) method
and primal-dual (PD) interior point method. We used σ0t ¼ 0
as the initial guess for both our method and EIDORS.

The results obtained by our method (σ2 ¼ 0.4) and DOTwith
GN and PD are shown in Fig. 11. The results obtained by the
proposed method are shown in the second row, which are similar
to those in the third row of Fig. 7. The third row in Fig. 11 shows
the results for DOT with GN. These kind of blurred results are
typical for DOT estimation due to its diffusion approximation.
The last row shows results for DOTwith PD, which look better

(a) (b) (c) (d) (e)

Fig. 11 Numerical simulation results for a grid of size 24 × 24mm, comparing our method to diffuse opti-
cal tomography (DOT) with two solvers. Darker shades of gray represent larger values (more light is
absorbed at the voxel). The bars on the side show extinction coefficient values [mm−1] in gray scale.
First row shows the ground truth for five different types of media [(a)–(e)] used for the simulation.
Second row shows the estimated results of the proposed method. Third and fourth rows show estimated
results for DOT by using Gauss-Newton (GN) and primal-dual (PD) interior point solvers.
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than those obtained for DOTwith GN, but still have a tendency
of overestimating the high coefficient value areas.

We summarize RMSE values and computation time for each
method in Table 2 in the same format as Table 1. RMSE values
of our method are two to five times smaller than those of DOT,
and this demonstrates that the proposed method can achieve
much more accurate results.

The current disadvantage is its large computation cost, as our
method takes up to 1000 times longer than DOT. We plan to
reduce the computation cost by optimizing the code using
C++ and adopting other solvers.

6 Conclusion with Discussion
In this paper, we have proposed a path integral based approach
to optical tomography for multiple scattering in discretized par-
ticipating media. Assuming the scattering coefficients and phase
function are known and uniform, the extinction coefficients at
each voxel in a 2-D layered medium are estimated by using
an interior point method. Numerical simulation examples are
shown to demonstrate that the proposed framework works better
than DOT in the simplified experimental setup, while its com-
putation cost needs to be reduced.

There are many directions for further research, including
relaxing the assumption of 2-D layered scattering model to
more realistic scattering with other phase functions, using paths
generated by Monte Carlo based statistical methods, extending
the formulation to a full 3-D scattering model, and solving the
issues mentioned below.

Limitations—stability and uniqueness: The current formu-
lation presented in this paper estimates only the extinction
coefficients; the scattering coefficients and phase function
parameters are assumed to be known and uniform. This is one
of the limitations of the proposed method, however, it is a
common limitation of optical tomography. It is known that
the scattering and absorption coefficients cannot be separated
from stationary measurements of light intensity,34 and the sol-
utions are not unique. Also, given stationary measurements
without angle information, the problem becomes ill-posed6,7 and
hence not stable. To overcome this limitation, we need to extend
the current formulation to handle other measurements that

enable stability and uniqueness, such as time-dependent, fre-
quency-dependent, or angle-dependent measurements.

Computational cost: A large part of the computational cost of
the proposed method comes from the forward model prediction
[Eq. (28)], which appears in the gradient computation [Eq. (7)].
It depends on the number of paths Nij; we currently use about
700 paths out of all 2018 possible paths, and for each path, we
need to compute path vectors Dijk, Dijk þ Dijl, and factors Hijk.
A possible acceleration is the precomputation of these variables,
but this would lead to a trade-off with storage cost. EachDijk has
dimensions of 20 × 20 ¼ 400, each pair of ij has about 700 vec-
tors of Dijk, and the number of pairs ij (hence observations) is
20 × 20 ¼ 400. In total, ∼450 MB memory would be required
even if single precision floating numbers were used for storing
allDijk. Fortunately, these vectors are necessarily sparse, and we
have used sparse matrices to store them. However, the increase
will be linear in the number of paths Nij and quadratic with the
grid size maxðN;MÞ. Therefore, we plan to consider more effi-
cient implementations.
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