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ABSTRACT. Purpose: The accurate detection and tracking of devices, such as guiding catheters
in live X-ray image acquisitions, are essential prerequisites for endovascular cardiac
interventions. This information is leveraged for procedural guidance, e.g., directing
stent placements. To ensure procedural safety and efficacy, there is a need for high
robustness/no failures during tracking. To achieve this, one needs to efficiently
tackle challenges, such as device obscuration by the contrast agent or other external
devices or wires and changes in the field-of-view or acquisition angle, as well as the
continuous movement due to cardiac and respiratory motion.

Approach: To overcome the aforementioned challenges, we propose an approach
to learn spatio-temporal features from a very large data cohort of over 16 million
interventional X-ray frames using self-supervision for image sequence data. Our
approach is based on a masked image modeling technique that leverages frame
interpolation-based reconstruction to learn fine inter-frame temporal correspond-
ences. The features encoded in the resulting model are fine-tuned downstream
in a light-weight model.

Results: Our approach achieves state-of-the-art performance, in particular for
robustness, compared to ultra optimized reference solutions (that use multi-stage
feature fusion or multi-task and flow regularization). The experiments show that our
method achieves a 66.31% reduction in the maximum tracking error against the
reference solutions (23.20% when flow regularization is used), achieving a success
score of 97.95% at a 3× faster inference speed of 42 frames-per-second (on GPU).
In addition, we achieve a 20% reduction in the standard deviation of errors, which
indicates a much more stable tracking performance.

Conclusions: The proposed data-driven approach achieves superior performance,
particularly in robustness and speed compared with the frequently used multi-modu-
lar approaches for device tracking. The results encourage the use of our approach in
various other tasks within interventional image analytics that require effective under-
standing of spatio-temporal semantics.
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1 Introduction
The tracking of interventional devices is an important prerequisite for interventional specialists
during catheterized cardiac interventions, such as percutaneous coronary interventions (PCIs),
cardiac electrophysiology, or transarterial chemoembolization.1–3

Tracking the tip of the catheter as a visual guidance facilitates navigation to the desired
anatomy. Furthermore, the tip of the catheter serves as an anchor point separating the catheter
from the vessel structures. The anchor point can provide a basis for mapping angiography (high-
dose X-ray with an injected contrast agent) to fluoroscopy (low-dose X-ray), thereby reducing
the usage of contrast for visualizing vessels.1,4 To co-register intravascular ultrasonography with
angiography and perform a complete examination of the vessel, lumen, and wall structure, cath-
eter tip tracking also offers a significant cue.5–7

However, tracking the tip of the catheter in X-ray images can be challenging in the presence
of various occlusions due to the contrast agent and other devices. This is in addition to the cardiac
and breathing motion of the patient. Recently, self-supervised learning methods have been devel-
oped with the aim to learn general features from unlabeled data to boost the performance in
various natural sequence imaging tasks. Most self-supervised pretraining methods learn such
features by identifying and removing inherent redundancies from sequence image data.
VideoMAE8 conducts temporal downsampling on the pixel level followed by symmetrical mask-
ing over all of the sampled frames with a high masking ratio of 90%. This deliberate design
choice prevents the network from learning fine inter-frame correspondences. SiamMAE9

improves upon this baseline using highly asymmetric masking. However, the proposed asym-
metric masking requires feeding in the first frame entirely with 0% masking, which increases the
computation complexity quadratically and prevents the network from learning spatio-temporal
features over a longer period of time.

The space-time semantics in interventional cardiac image sequences differ from natural vid-
eos in terms of both redundancies and motion. For example, visibility may largely vary based on
X-ray dosage along with varying motion based on the acquisition frame-rate, patient’s breathing
and cardiac motion. In angiography sequences, vessels have high structural similarity with devi-
ces, such as catheters and guidewires, and can gradually appear or disappear over time.

To address these challenges, in this work, we bring the following contributions in terms of
both self-supervised pretraining and the downstream device tracking.

1. We pretrain a spatio-temporal encoder on a large database of interventional cardiac X-ray
sequences from over 20,000 patients (over 16,000,000 frames) for robust device
tracking.

2. We propose a novel frame interpolation masked auto-encoder (FIMAE) to learn general-
ized spatio-temporal features from this dataset. The pretrained spatio-temporal features
play an essential role in feature extraction and feature matching for tracking. Our pre-
trained features efficiently capture the underlying temporal motion needed for tracking,
which is typically accomplished through highly optimized supplementary modules in
other device tracking models.10,11

3. To the best of our knowledge, this is the first approach that leverages spatio-temporal pre-
trained features to replace a commonly used Siamese-like architecture for single object
tracking.

4. A lightweight vision transformer (ViT)12 based model is designed to leverage the learned
features to replace a traditional two-stage tracking encoder for feature extraction and fea-
ture fusion into one spatio-temporal encoder for a highly accurate and robust real-time
device tracking with an inference speed of 42 fps on a single Tesla V100 GPU (refer
to Figs. 1 and 2).

5. We conduct comprehensive numerical experiments and demonstrate that our method out-
performs other state-of-the-art tracking methods in robustness, accuracy, and speed.

6. We conduct a comprehensive analysis of our model’s robustness in handling long temporal
sequences and demonstrate its ability to maintain consistent performance across diverse
scenarios, including angiography, fluoroscopy, and sequences featuring additional
obstructions caused by other devices.
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2 Related Work

2.1 Self-Supervised Learning
These methods have been used in a variety of contexts to learn features from unlabeled data that
boost the performance in downstream tasks, such as using pretext tasks13–15 and contrastive
learning.16–21 In the space of sequential image data processing (e.g., video), temporal information
has been leveraged in various ways.22–28 However, self-supervised methods based on masked
image modeling (MIM), in which the input is masked to a high percentage and fed through
an encoder-decoder network to predict the missing information, have shown significant promise
recently.29–32 Some methods use symmetrical masking on temporally downsampled video frames
to reduce space-time redundancies over a long time period8,33. By contrast, others9 use asym-
metrical masking to learn inter-frame correspondence between frame pairs. However, we propose
a method for both reducing space-time redundancies over a long time period and learning fine
inter-frame correspondence.

2.2 Siamese Natural Image Tracking
These strategies leverage a Siamese architecture for matching between search and target tem-
plates, in which the extracted spatial search and template features are matched via feature fusion

Fig. 2 Overview of the key differences between our approach and previous approaches for device
tracking.

Fig. 1 Tracking error (↓) versus average speed (↑) for catheter tip tracking in coronary X-ray
sequences acquired during procedures, such as invasive coronary angiography (ICA) or PCI:
(a) average tracking error and (b) maximum tracking error. Note that the average tracking error
has two different scales indicated with a horizontal break-point for better visualization. The runtime
is measured on a Tesla V100 GPU.
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or a similar matching module.34–40 With the rise of transformers, Siamese trackers have been
extended to incorporate transformer-based models, such as Stark41 and Mixformer,42 among
other methods cited in Refs. 43–45.

2.3 Historical-Trajectory-based Natural Image Tracking
These approaches leverage prompt-based methods to integrate relevant information. In particular,
the temporal information is passed into the network as prompts to incorporate the historical tra-
jectory information. ARTrack46 employs a decoder that receives these encodings as well as coor-
dinates of the searched object from previous frames as spatio-temporal prompts for a trajectory
proposal. Another approach, SwinTrack,47 uses a multi-head cross-attention decoder that lever-
ages both the encoder output and a motion token, which represents the past object trajectory
given previous bounding box predictions.

2.4 Device Tracking in X-Ray
Specifically for the tracking of devices in X-Ray images, multiple approaches have been proposed;
these include multiple Siamese-based architectures similar to those in natural image object
tracking.34,48 Other methods, such as Cycle Ynet,10 employ a semi-supervised approach to address
the lack of annotated frames in the medical domain or leverage deep learning-based Bayesian
filtering for catheter tip tracking.1 One of the most recent approaches, ConTrack,11 uses a
Siamese architecture and a transformer-based feature fusion model. To further refine the tracking,
it incorporates a RAFT49 model applied to catheter body masks for estimating the optical flow.

3 Methods
We propose a novel FIMAE approach to train a transformer model to extract spatio-temporal
features based on a large internal dataset Du. The model is designed specifically to learn
inter-frame correspondences over a large number of frames. The pretrained encoder is then used
as the backbone for the downstream tracking task using supervised learning on a datasetDl (with
expert annotations). The pretraining method and the tracking pipeline are explained in the fol-
lowing subsections.

3.1 Self-supervised Model Training

3.1.1 Learning space-time embeddings

Given the unlabeled dataset Du, n frames are sampled from an arbitrary sequence Sk ∈ Du,
∀ k > 0, where Sk;n ¼ ½I1; I2; : : : ; In�. All image frames are randomly cropped to a size of
ðh; wÞ ¼ 384 × 384 pixels on a sequence level (i.e., the same crop is applied to each image).
Each input of size ðh; wÞ is spatially encoded into n × h

16
× w

16
tokens of dimension Dm with

no temporal downsampling.

3.1.2 Masking strategy based on frame interpolation

To learn features that capture fine spatial information and fine temporal correspondences between
frames, we propose a novel masking strategy based on frame interpolation that overcomes the
limitation of the symmetrical tube masking proposed by VideoMAE.8 Recall that the VideoMAE
approach is limited in capturing fine inter-frame correspondences. Traditionally, in the domain of
natural imaging, the frame interpolation task50,51 is defined as the sum of forward warping and
backward warping of any two neighboring frames (indexed by t > 0), given as

EQ-TARGET;temp:intralink-;e001;114;160Itþ1 ¼ τθ1ðItÞ þ τθ2ðItþ2Þ; (1)

where τθ1 denotes the forward warping operator and τθ2 denotes the backward warping operator
(parametrized by θ1; θ2). However, the change of appearance in coronary vessel structures in the
presence of contrast can be much more complex than natural images. Hence, a linear operation of
forward and backward warping can limit the potential of the network. In our case, we reformulate
this to a learning problem, seeking to optimize the parameters θ of a deep neural network to learn
a combined warping operation F as
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EQ-TARGET;temp:intralink-;e002;117;575Itþ1 ¼ FθðIt; Itþ2Þ: (2)

In our approach, we use tube masking for every alternate frame with a ratio of 75% and
combine it with frame masking. However, with such a high tube masking ratio, further masking
an entire intermediate frame for frame interpolation can make the task extremely challenging. In
addition, masking an entire frame may also lead the network to never attend to certain patch
positions during training. Hence, we mask the intermediate frame randomly to a high ratio
of 98%, instead. See Fig. 3 for a schematic visualization.

Let pt ∈ Ωtube be the token indices of the tube masked tokens for frame t, where Ωtube

denotes the set of all tube masked token indices. Similarly, qt ∈ Ωframe refers to the frame masked
token indices for frame t in all randomly frame masked token indices. Mathematically, if ρ is the
probability for masking, Ωtube∶BernoulliðρtubeÞ, where different time t shares the same value. On
the other hand, Ωframe ∼ BernoulliðρframeÞ and is drawn uniquely for each frame at t. Let p 0

t ∈
Ω 0

tube and q 0
t ∈ Ω 0

frame be the sets of remaining visible token indices. Combining tube and frame
masking strategies, we obtain the following reconstruction objective for any three given frames:

EQ-TARGET;temp:intralink-;e003;117;400It; Itþ1; Itþ2 ¼ FθðItðp 0
t Þ; Itþ1ðq 0

tþ1Þ; Itþ2ðp 0
tþ2ÞÞ; (3)

where 0 < t < n − 1 denotes the index of an arbitrary frame from the sampled sequence and
Itðp 0

t Þ denotes the visible patches of frame It with tube/frame masking applied. The three-frame
objective shown in Eq. (3) can be generalized to all n frames.

3.1.3 Encoder-decoder training

The unmasked patches are passed through a ViT encoder, which adopts a joint space-time atten-
tion, that is, each token for frame t, is projected and flattened into Dm-dimensional vector query,
key, and value embedding: ðqt; kt; vtÞ. The joint space-time attention is based on the concat-
enated vectors, given as

EQ-TARGET;temp:intralink-;e004;117;255AttentionðQ;K; VÞ ¼ softmax

�
QKTffiffiffi

d
p

�
V; (4)

where the variables ðQ;K; VÞ are defined as Q ¼ Concatðq1; q2; : : : ; qnÞ, K ¼
Concatðk1; k2; : : : ; knÞ, V ¼ Concatðv1; v2; : : : ; vnÞ for n sampled consecutive frames. The
encoded visible patches are then concatenated with learnable masked tokens. A lightweight
transformer decoder attends to the encoded patches and the masked token to reconstruct the
initially masked patches. The decoder incorporates additional positional encoding to ensure the
correct positions of the masked and unmasked patches as per the original frames.

3.1.4 Pretraining loss function

We use a weighted mean squared error loss, L ¼ Ltube þ γLframe between the masked tokens and
the reconstructed ones in the pixel space based on the masking strategy, where γ is the weighting
factor. The losses are calculated as

Fig. 3 Schematic visualization of tube-frame masking.
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EQ-TARGET;temp:intralink-;e005;114;736Ltube ¼
1

jΩtubej
Xn

t¼2ηþ1

X
pt∈Ωtube

kItðptÞ − ÎtðptÞk2; (5)

EQ-TARGET;temp:intralink-;e006;114;688Lframe ¼
1

jΩframej
Xn

t¼2ηþ2

X
qt∈Ωframe

kItðqtÞ − ÎtðqtÞk2; (6)

where I is the input image, Î is the reconstructed image, and 0 ≤ η ≤ ðn − 2Þ∕2. We use a
weighted loss for reconstruction to compensate for the imbalance between low masked frames
(less reconstruction tokens) and highly masked frames (more reconstruction tokens). The var-
iable γ is defined as the ratio of the number of Ωtube tokens and the number of Ωframe tokens.

3.2 Downstream Application: Device Tracking
In particular, for tracking the tip of the catheter, our goal is to track its location, ŷt ¼ ðut; vtÞ at
any time t; t > 0 given a sequence of X-ray images fItgnt¼1 with a known initial location of the
catheter tip y1 ¼ ðu1; v1Þ on the labeled dataset Dl. We consider the sequences Sk ∈ Dl, ∀ k > 0

to have only a few annotated labels, Sk;n ¼ ½ðI1; y1Þ; ðI2Þ; : : : ; ðI7; y7Þ; ðI8Þ; : : : �. To identify the
location of the tip of the catheter at the current search frame, existing approaches build a corre-
lation with a template frame. The template frame is usually a small crop around the catheter tip
location from a previously predicted frame. Similar to ConTrack, during training, we use three
template frames that are cropped from the first annotated frame and the previous two annotated
frames, respectively. We use the current frame for template frames if no previously annotated
frames are available. During inference, the initial location of the catheter tip serves as the first
template crop and is kept intact. The remaining two template frames are updated dynamically
based on the model’s predictions.

3.2.1 Feature transfer

The spatio-temporal transformer backbone inputs three template frames and a search frame as
four distinct frames. We interpolate the positional encoding from the pretraining frame positions
appropriately to ensure that the network distinguishes each template and search frame as distinct
frames. In particular, each template frame and the search frame correspond to the positions of
center crops of individual frames in the pretraining setup. Therefore, the encoder inputs
Concatðte1; te2; te3; seÞ, where te1;2;3 and se are template patches and search patches, respec-
tively. Given that transformers are isotropic models, we obtain an encoded feature set,
fc ¼ Concatðfte1 ; fte2 ; fte3 ; fseÞ. The spatio-temporal transformer backbone is trained to extract
fine inter-frame correspondences. Hence, this results in a joint feature extraction and feature
matching between the template frames and the search frame. The overview of the proposed
model is depicted in Fig. 4.

3.2.2 Multi-task transformer decoder

We use a lightweight transformer decoder similar to the original transformer model.52 First, all of
the features fc are projected to a lower dimension dm. The decoder uses two learnable query
tokens ðhd;mdÞ, one for a heatmap head and one for a mask head. Then, each layer first computes
attention on the query tokens as per Eq. (4). It is followed by cross-attention with encoded fea-
tures fc, where key and value embeddings are computed by projecting the features fc to dimen-
sion dm. The resulting query tokens are then correlated with the search features, unflattened, and
passed through a convolutional neural network (CNN) head. The catheter predicted heatmap and
mask are given as

EQ-TARGET;temp:intralink-;e007;114;141Ph ¼ ConvhðUnflattenðcorrðfse; hdÞÞÞ; (7)

EQ-TARGET;temp:intralink-;e008;114;106Pm ¼ ConvmðUnflattenðcorrðfse; mdÞÞÞ: (8)

The final tip coordinates are obtained by ŷ ¼ maxðPhÞ, where Ph and Pm refer to the pre-
dicted heatmap of the catheter tip and predicted mask of the catheter, respectively. We compute
soft dice loss Ldice ¼ Lh þ λLm, for both heatmap and mask predictions, given as
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EQ-TARGET;temp:intralink-;e009;117;437Lh ¼
2 �PGh � PhP
G2

h þ
P

P2
h þ ϵ

; (9)

EQ-TARGET;temp:intralink-;e010;117;393Lm ¼
� 2�

P
Gm�PmP

G2
mþ
P

P2
mþϵ

; if Gm exists

0 otherwise;
(10)

where G represents ground truth labels and λ is the weight for the weighting mask loss.

4 Experiments and Results

4.1 Dataset
An unlabeled internal dataset Du of coronary X-ray sequences is utilized to pretrain our model.
Du consists of 241,362 sequences collected from 21,589 patients, comprising 16,342,992 frames
in total. It contains both fluoroscopy (“Fluoro”) and angiography (“Angio”) sequences. We ran-
domly sample 10 frames at a time, with varying temporal gaps between them, ranging from 1 to 4
frames. We repeat the last frame in sequences in which the number of frames is less than 10. The
model is then pretrained for 200 epochs with a learning rate of 1e−4.

For the downstream tracking task, we use dataset Dl. Note that Dl ∩ Du ¼ ∅. The distri-
bution of the field of view for both Du and Dl is depicted in Fig. 5 and is estimated based on the
positioner angles. The positioner primary angle is defined in the transaxial plane at the imaging
device’s isocenter with zero degrees in the direction perpendicular to the patient’s chest,
þ90 deg at the patient’s left side, and −90 at the patient’s right side. The positioner secondary
angle is defined in the sagittal plane at the imaging device’s isocenter with zero degrees in the
direction perpendicular to the patient’s chest. Figure 5 shows that the distribution of the sequen-
ces in both datasets are concentrated around similar positioner angles. Other attributes from both
datasets Dl and Du are depicted in Table 1.

The annotations on the frames in Dl represent the coordinates of the tip of the catheter,
which are converted to Gaussian heatmaps with standard deviations of ≈5 mm. Mask annota-
tions of the catheter body are also available for a subset of these annotated frames. On average,
the catheter body takes up 0.009% of the total area of a frame. The training and validation set
consists of 2314 sequences totaling 198,993 frames, out of which 44,957 have annotations. In

Fig. 4 Overview of our framework. First, the encoder is trained to learn spatio-temporal features
from a large unlabeled dataset of angiography and fluorscopy using FIMAE (a). Then, the weights
are transfered into the ViT encoder for feature extraction and feature matching for tracking the
catheter tip (b) (Video 1, MP4, 40.3 MB [URL: https://doi.org/10.1117/1.JMI.11.3.035001.s1]).
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this set, 2,098 sequences are Angio and only 216 sequences are Fluoro. The test set consists of
219 sequences, in which all 17,988 frames are annotated. For evaluation, we split the test set into
three categories: 94 Fluoro sequences (8494 frames and 82 patients), 101 Angio sequences (6904
frames and 81 patients), and 24 devices sequences (2593 frames and 10 patients).11 The latter
category, “devices,” covers all sequences in which sternal wires are present; these cause occlu-
sion and thus further increase the difficulty of catheter tip tracking. Examples of these cases are
illustrated in Fig. 6. The signal to noise ratio (SNR) of the image intensity at the catheter tip with

Table 1 Dataset statistics (range and median) for unlabeled dataset (Du) and Catheter tip dataset
(Dl ).

Unlabeled dataset (Du ) Catheter tip dataset (Dl )

Attributes Range Median Range Median

FPS 1 to 30 15 1 to 30 15

No. of frames 1 to 552 83 4 to 920 77

Resolution (mm/pixel) 0.129 to 0.616 0.279 0.108 to 0.368 0.279

Peak kilo volt 45.16 to 125.0 87.1 61.0 to 125.0 86.3

Tube current (mA) 1.0 to 928.0 757.0 7.0 to 904.0 740.0

Exposure time (msec) 3 to 20235 522 5 to 14160 503

Fig. 5 Distribution of the datasets based on the field of view (positioner primary angle and posi-
tioner secondary angle): the left plot denotes the unlabeled dataset (Du) and the right plot denotes
the catheter tip dataset (Dl ).

Fig. 6 Visualization of tip of the catheter in fluoroscopy, angiography, and cases with other
devices.
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respect to the background is shown in Table 2, further quantifying the challenge of tracking. The
SNR was calculated based on the following equation:

EQ-TARGET;temp:intralink-;e011;117;635SNR ¼ 20 log10
Pw

σf
; (11)

where Pw is the mean intensity in the window of size 6 × 6 (≈2 mm × 2 mm) and σf denotes the
standard deviation of the intensity of the background in the window of size 30 × 30

(≈10 mm × 10 mm) with the catheter tip as the center of both windows.
We follow the same image pre-processing pipeline as ConTrack, i.e., we resample and pad to

the size of 512 × 512 with 0.308 mm isotropic pixel spacing. We use 160 × 160 crops for the
search image and 64 × 64 crops for the template images. We train our model for 100 epochs, with
a learning rate of 2e−4 using AdamW optimizer and cosine annealing scheduler with warm
restarts.

4.2 Performance Evaluation
We evaluate our work against state-of-the-art methods, explore the impact of the proposed pre-
training strategy, and investigate whether complex additional tracking refinement modules are
necessary. All of the evaluations are performed based on expert annotations.

4.2.1 Benchmarking against state-of-the-art

We report the performance of our model against the state of the art device tracking models in
Table 3. Here, we evaluate the euclidean distance error in mm between the prediction and the
ground truth annotations. Overall, our method demonstrates the best performance on the test
dataset, excelling in both precision and robustness. Our approach significantly reduces the over-
all maximum error, e.g., by 66.31% against the comparable version of ConTrack (ConTrack-
mtmt) and by 23.20% against ConTrack-optim, a highly optimized solution leveraging

Table 2 SNR of different categories in the catheter tip dataset (Dl ).

Fluoro Angio Devices

24.72 dB 21.38 dB 23.64 dB

Table 3 Comparison study of sequence-level tracking errors (mean euclidean distance) and
runtime for different methods for catheter tip tracking in coronary X-ray sequences. The best num-
bers are marked in bold. We also show the performance of different versions of ConTrack.
ConTrack-base refers to its base version, which has no additional modules; ConTrack-mtmt refers
to multi-task and multi-template version; and ConTrack-optim is its final optimal version, which has
all modules including flow refinement.

Models
Median
(mm) ↓

Mean
(mm) ↓

Std
(mm) ↓

95 percentile
(mm) ↓

Max
(mm) ↓

Speed
(fps) ↑

SiameseRPN34 7.13 9.01 6.81 22.37 46.23 18

STARK41 2.65 4.14 4.93 9.24 31.34 22

MixFormer42 2.68 5.15 7.1 19.20 49.29 20

Cycle Ynet10 1.96 2.68 2.4 6.75 21.04 109

ConTrack-base11 1.13 2.17 3.75 6.34 31.35 21

ConTrack-mtmt11 1.12 1.97 3.61 5.53 30.37 19

ConTrack-optim11 1.08 1.63 1.7 5.18 13.32 12

Ours 1.02 1.44 1.35 3.52 10.23 42
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multi-stage feature fusion, multi-task learning, and flow regularization. In comparison with pre-
vious state-of-the-art approaches, our approach results in fewer failures, as depicted by the error
distribution in Fig. 7. At least 95% of all test cases has an error below the average diameter of the
vessels (≈4 mm). Notably, our approach stands out from other tracking models by eliminating
the need for a two-stage process involving the extraction of spatial features and subsequent
matching using feature fusion. Instead, our spatio-temporal encoder jointly performs both.

Other approaches often require two or more forward passes for two-stage processing to
incorporate varying the template-search size, which increases computational complexity. This
is further amplified by the inclusion of additional modules, such as multi-task decoders and the
flow-refinement network in ConTrack-optim.11 By contrast, our model accomplishes the task
with a single forward pass for both the multiple templates and the search frame. The only addi-
tional modules in our model are the two CNN heads for multi-task decoding. This design choice
enables us to achieve a significantly higher real-time inference speed of 42 fps on a single Tesla
V100 GPU without compromising on accuracy, as shown in Fig. 1. Despite Cycle Ynet10 also
relying on multiple forward passes for feature extraction, its simplicity and computationally
friendly CNN architecture allows it to reach a higher speed, albeit at the expense of accuracy
and robustness.

4.2.2 Impact of pretraining

Next, we focused on the impact of pretraining by comparing tracking performance utilizing our
proposed pretraining strategy (FIMAE) against current prevalent pretraining methods for sequen-
tial image processing; see Table 4. The findings indicate that pretraining on domain-specific data,
as opposed to natural images (VideoMAE-Kinetics), offers significant advantages. However,
even when including the models trained onDu (VideoMAE and SiamMAE) into the comparison,
our model surpasses all by more than 30% across all reported metrics. VideoMAE lacks fine
temporal correspondence between frames, leading to non-efficient feature matching between the
template and search frames. Although SiamMAE has the ability to learn inter-frame correspon-
dence, it relies on only two frames at a time, which is insufficient for fully capturing the under-
lying motion. Qualitative results, shown in Fig. 8, are based on a challenging angiography
sequence with contrast-based device obstruction and other visible sternal wires. The figure shows
how our model is able to handle this challenging case by not losing track of the tip of the catheter,
whereas the other models fail to differentiate the catheter from the sternal wires.

4.2.3 Performance without complexity

The strength of our approach comes from the pretrained spatio-temporal features that facilitate
effective feature matching between the template frames and the search frame. Another key

Fig. 7 Percentile plot of Cycle YNet, ConTrack, and Ours (a) for all test cases and (b) zoomed in
for percentiles from 90’th to 100’th. The 95’th percentile of our method’s performance is lesser than
the average diameter of the vessels (≈4 mm).
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advantage is its prior understanding of the inherent cardiac/respiratory motion. This knowledge
significantly reduces or even eliminates the impact of additional modules, such as flow refine-
ment. Our approach thereby achieves high robustness in tracking, with minimal variations across
different additional modules, such as multi-task. To illustrate this, Fig. 9(a) highlights the relative
stability of the maximum error across different versions of our model compared with the high
volatility observed in ConTrack under different module configurations. In addition, ConTrack
reaches its best performance only when utilizing all modules, in particular, including flow-refine-
ment, which in turn leads to increased inference time. Contrary to ConTrack, adding the flow
refinement module to our model even reduced its performance marginally in terms of accuracy
(1.54 mm) and robustness (max error of 11.38 mm). We postulate that this is attributable to the
fact that, although flow refinement can indeed learn intricate temporal correspondences between
the previous and current frames, it can also propagate noise originating from inaccurately pre-
dicted catheter masks.

To further assess the robustness of the tracking systems, we introduce the tracking success
score (TSUC), which draws parallels with most tracking benchmarks prevalent in single object
tracking in the natural image domain.53 TSUC is computed as the ratio of the number of instances

Fig. 8 Qualitative results. Comparison of different methods on a challenging sequence of angi-
ography, in which tracking receives obstruction from vessels and sternal wires (other devices).
Note that the images have been cropped around the region of interest for better visualization.
The mean error depicted in the figure is the average error computed over the entire sequence.

Table 4 Study of effect of pretraining startegies on the performance of the catheter tip tracking.
Pretraining is performed either on our internal dataset (denoted as Du) or on natural images
(in case of the first approach). The best values are marked in bold.

Pretraining
Strategy

Median
(mm)

Mean
(mm)

Std
(mm)

Max
(mm)

VideoMAE-Kinetics 1.93 3.67 4.95 36.99

VideoMAE (Du ) 1.48 2.75 4.64 53.26

SiamMAE (Du ) 1.54 2.79 3.44 23.76

Ours: FIMAE (Du ) 1.02 1.44 1.35 10.23
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(frame or sequence) in which the distance error falls below a specific threshold to the total num-
ber of instances. To establish a relevant threshold, we set it at twice the average vessel diameter in
our test dataset (≈8 mm). Figures 9(b) and 9(c) summarize the results for sequence-level and
frame-level TSUC, respectively. Our approach consistently achieves an impressive 99.08%
sequence-level TSUC across all additional modules, with only a small drop to 98.61% in the
multi-task configuration. At the frame level, our optimal version (multi-task multi-template)
yields a TSUC of 97.95%, compared with 93.53% for ConTrack under the same configuration.
ConTrack achieves its best frame-level TSUC of 95.44% using the flow-refinement variant.

The robustness of a method is also influenced by its ability to effectively handle long sequen-
ces as the accuracy of current frame predictions is dependent on previous frame predictions,
resulting in a gradual accumulation of errors over time. We examine the mean TSUC for sequen-
ces exceeding a certain frame count (nframes) in Fig. 10. The plot shows that our method con-
sistently demonstrates stable TSUC values across various sequence lengths, indicating its robust
performance. Conversely, different versions of the ConTrack exhibit a gradual decline in mean
TSUC as the frame count threshold increases, suggesting a reduced reliability in predicting out-
comes over extended sequences.

4.2.4 Performance breakdown for different cases

We further conduct detailed comparison with the best-performing state-of-the-art method,
ConTrack, for the different image categories defined earlier; see Fig. 11. We further compare
our model’s performance with ConTrack for the challenging cases, i.e., angiography and devices,
via percentile plots in Fig. 12. In the cases of angiography, our method shows a 15% improved
accuracy and 45% reduction in the maximum error. Similarly, for the devices (occlusion)

Fig. 9 Comparison of robustness between our method and different versions of Contrack, via
(a) maximum distance error (↓), (b) sequence-level TSUC (↑), and (c) frame-level TSUC (↑).

Fig. 10 Robustness with respect to the sequence length: mean TSUC for all sequences greater
than the frame count (nframes). Note that the dataset consists of only four sequences with a frame
count greater than 210.
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category, we achieve a 43% better accuracy and 60% reduction in the maximum error (Figs. 11
and 12). Our model’s performance on Angio and devices cases is compared qualitatively with
ConTrack in Fig. 13. The example cases in the figure show the effectiveness of our approach in
the presence of complex occlusions from the vessels and sternal wires. ConTrack achieves a
better performance than our method in Fluoro cases with a slightly better median and lesser
maximum error. However, for Fluoro, ConTrack achieves a TSUC of 99.01% (inaccurate in one
sequence) compared with our model’s TSUC of 97.69% (inaccurate in three sequences). The
inaccuracy of our model is seen in sequences in which the visibility of the catheter is faint due
to low-dose X-rays. We hypothesise that this is due to the transformer’s architecture using 16 ×
16 non-overlapping patches, which makes it less effective toward faint visibility in low-dose X-
rays compared with CNNs in ConTrack, which uses overlapping 3 × 3 windows.

4.3 Ablations
The following ablation studies investigate the impact of three key components on the overall
tracking performance.

4.3.1 Positional encoding

As reported in Table 5, the positional encoding strategy has a notable impact on the downstream
task performance. The naive positional encoding simply applies 1D sine-cosine positional

Fig. 11 Breakdown of different cases in a violin plot for comparison of our method with ConTrack.

Fig. 12 Percentile plots of different versions of ConTrack and ours for (a) Angio cases and
(b) device cases.
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encoding over all patches and hence loses the temporal information about the patches, resulting
in unsatisfactory results. If learnable positional encoding is used, the temporal positions are still
needed to be learned, leading to sub-optimal performance. Interpolating from the central patch
positions of the pretrained frames (frame-aware positional encoding) gives the best results.

4.3.2 Masking ratio

We further compare the performance of different intermediate frame masking ratios in Table 6.
The best results are obtained with an intermediate frame masking ratio of 98%. Although results
with 95% are largely equivalent, there is a notable reduction in performance when the entire

Fig. 13 Visualization of predictions of ConTrack and our model in two Angio sequences (top two)
and an extra device case (bottom). Note that the frames are sampled randomly from the sequence
for visualization.

Table 5 Effect of different positional encoding incorporated in the downstream task. The best
values are marked in bold.

Positional encoding Median Mean Std Max

Naive 1.47 2.51 3.43 36.24

Learnable 1.37 1.86 1.54 11.22

Frame-aware (Ours) 1.02 1.44 1.35 10.23

Table 6 Tracking performance with FIMAE trained with different intermediate frame masking
ratios, i.e., masking ratio of Ωframe. The best values are marked in bold.

Frame masking ratio (%) Median Mean Std Max

95 1.09 1.47 1.24 10.34

98 1.02 1.44 1.35 10.23

100 1.08 1.78 2.09 15.12
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frame is masked, which may be due to the lack of patches and its relative position information
during pretraining.

4.3.3 Effect of initialization

Recall that the first template crop during both training and inference was obtained from the initial
catheter tip location and was not updated. We explore its impact in Table 7. To assess its impor-
tance, we conduct two experiments. First, we dynamically update the initial template frame dur-
ing inference, as with the others. Second, we introduce random noise (2 to 16 pixels) to the initial
tip location instead of updating the template. Our findings highlight the crucial role of initial-
ization in tracking. Updating the initial template frame worsens performance due to greater accu-
mulated prediction errors over time compared with the original setup. Additionally, even small
noise levels of 2 pixels can noticeably affect performance, increasing the maximum error by 5
pixels.

4.3.4 Modality bias

The distribution between Angio and Fluoro varies to some degree in terms of dosage and pres-
ence of contrasted vessel structures. We remind the reader that, in our training dataset, the dis-
tribution of Angio:Fluoro sequences was 2098:216 of the total of 2314 sequences. Our objective
in this study is to develop a model that exhibits strong performance across both modalities. We
present the results of training on individual modalities compared with training on combined data
in Table 8. Our findings indicate that training solely on one modality results in suboptimal per-
formance on the other modality. Notably, although training on Angio data yields an improvement
in Angio performance, training exclusively on Fluoro data fails to enhance performance in
Fluoro. We hypothesize that a possible reason for this effect is the imbalance of 2098:216
(Angio to Fluoro sequences), with the following effects.

1. 2098 Angio sequences is a large enough dataset to ensure good Angio performance when
training on this data alone;

2. 216 Fluoro sequences is too little to power the training of a large transformer model, lead-
ing to inferior results when training/testing on Fluoro only;

3. transitioning from Angio to using all data for training has a negative effect on the Angio
test performance—we hypothesize that adding the few Fluoro sequences to training
increases the complexity of the training problem, as the distribution of Angio training
cases is enhanced with the distribution of Fluoro cases, based on only 216 examples; and

4. transitioning from Fluoro to using all data for training has a positive effect on the Fluoro
test performance—we hypothesize that this is because the 216 Fluoro sequences are a
complement with many more non-contrasted frames from all Angio sequences to substan-
tially increase the dataset and thereby improve performance.

Table 7 Significance of initialization in catheter tip tracking: how the performance is affected if first
template frame is updated or some noise is introduced to the initial tip coordinates. The best values
are marked in bold.

Upate first
template init noise (∓px) Median Mean Std Max

✓ 0 1.17 1.90 2.51 24.55

✗ 16 1.53 2.44 3.18 25.42

✗ 8 1.45 1.94 2.25 26.45

✗ 4 1.13 1.69 2.07 20.72

✗ 2 1.05 1.55 1.60 15.36

✗ 0 1.02 1.44 1.35 10.23
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Furthermore, the challenges posed by device obstruction exhibit nuanced differences
between Fluoro and Angio, contributing to a reduced performance when the model is trained
on a single modality.

5 Conclusion
In this study, we presented FIMAE, an MIM approach that is introduced for the purpose of
acquiring generalized features from a large unlabeled dataset containing more than 16 million
interventional X-ray frames, with the objective of device tracking. FIMAE overcomes the limi-
tation of tube masking as proposed in VideoMAE and applies frame interpolation-based masking
for capturing fine inter-frame correspondences. The acquired features are subsequently applied to
the task of device tracking within fluoroscopy and angiography image sequences. Our pre-trained
FIMAE encoder surpassed all prevalent MIM-based pretraining methods for sequential imaging
processing.

The spatio-temporal features acquired during the pretraining phase significantly influenced
the extraction and matching of features for the purpose of device tracking. We demonstrated that
an efficient spatio-temporal encoder can replace the frequently utilized Siamese-like architecture,
yielding a computationally lightweight model that maintains a high degree of precision and
robustness in the tracking task. By adopting our methodology, we achieved a noteworthy
23.2% reduction in the maximum tracking error, even without the incorporation of supplemen-
tary modules such as flow refinement, when compared with the state-of-the-art multi-modular
optimized approach. This performance enhancement was accompanied by a frame-level TSUC
score of 97.95% at a 3× faster inference speed than the state-of-the-art method. The results also
show that our approach achieved superior tracking performance, particularly in the challenging
cases in which occlusions and distractors are present.

5.1 Limitations and Future Work
Our investigation is primarily centered on leveraging pre-trained features for the tracking of devi-
ces within X-ray sequences. Consequently, we contend that the pre-trained model can be further
extended to other tasks within interventional image analytics, such as stenosis detection, guide-
wire localization, and vessel segmentation. Furthermore, the absence of annotated frames within
our sequential imaging dataset imposes a constraint on the utilization of historical trajectory
information, a commonly exploited approach in recent single object tracking methodologies
in the natural imaging domain. Thus, a more comprehensive investigation is needed to effectively
make use of this information in our specific context.

6 Appendix A: Pretraining Details
The detailed architecture illustration and the implementation details of the pretraining are illus-
trated in Tables 9 and 10, respectively. We use a 10-frame vanilla ViT-Base as our encoder archi-
tecture; it incorporates joint space-time attention on visible patches. The decoder is of a lower
dimension and lower depth than the encoder, which incorporates similar joint space-time atten-
tion on all patches. The decoder is only responsible for reconstruction and is discarded for down-
stream tasks.

Table 8 Performance variation across modalities based on modality-specific training. The best
values are marked in bold.

Fluoro Angio Devices

Trained on Mean Median Max Mean Median Max Mean Median Max

Fluoro data 1.44 0.84 10.54 4.15 2.36 22.96 6.58 4.62 19.47

Angio data 1.41 0.75 11.42 1.49 1.14 5.56 2.80 0.99 22.55

All data 1.24 0.75 10.23 1.61 1.38 7.33 1.54 0.98 4.27
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7 Appendix B: Downstream Model Details
The architectural detail of the downstream tracking model is depicted in Table 11. The encoder is
the same as the pretraining encoder, whereas the decoder is a lightweight transformer decoder,

Table 9 Architecture details of FIMAE. We use a 10-frame vanilla ViT-Base as our architecture.
“MHA” here denotes the joint space-time self-attention. The output sizes are denoted by C × T × S
for channel, temporal and spatial sizes, respectively.

Stage Vision transformer (base) Output size

Data Temporal gaps = [1,2,3,4] 1 × 10 × 384 × 384

Patch embed 1 × 16 × 16, 768 768 × 10 × 576

Stride 1 × 16 × 16

Mask ρ = tube 75% + frame 98% 768 × 10 × [576 × (1 − ρ)]

Encoder [MHA(768), MLP(3072)] × 12 768 × 10 × [576 × (1 − ρ)]

Projector MLP(384) and

concat learnable tokens 768 × 10 × 576

Decoder [MHA(384), MLP(1536)] × 4 384 × 10 × 576

Projector MLP(256) 256 × 10 × 576

Reshape from 256 to 1 × 1 × 16 × 16 1 × 10 × 384 × 384

Table 10 Pretraining setting.

Config Name/params

Optimizer AdamW

Base learning rate 1.5e−4

Weight decay 1e−4

Optimizer momentum β1, β2 ¼ 0.9,0.95

Batch size 8

Learning rate schedule Cosine decay

Warmup epochs 15

Augmentation MultiScaleCrop

Table 11 Architecture details of downstream tracking model. “CA” refers to cross-attention.

Stage ViT-base + multi-task decoder Output size

Data 3 templates + 1 search 1 × 3 × 64 × 64, 1 × 1 × 160 × 160

Patch embed 1 × 16 × 16, 768 768 × 148
Stride 1 × 16 × 16

and concatenate

Encoder [MHA(768), MLP(3072)] × 12 768 × 148
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followed by two CNN heads that output the catheter tip heatmap and catheter body mask respec-
tively. The implementation details are further explained in Table 12.
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Code and Data Availability
Based on the data usage agreements, the data cannot be shared with the community. More infor-
mation about the code can be shared upon request.

Disclaimer
The concepts and information presented in this paper are based on research results that are not
commercially available.
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