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Abstract. Action recognition in realistic scenes is a challenging task in the field of computer vision. Although
trajectory-based methods have demonstrated promising performance, background trajectories cannot be filtered
out effectively, which leads to a reduction in the ratio of valid trajectories. To address this issue, we propose a
saliency-based sampling strategy named foreground trajectories onmultiscale hybrid masks (HM-FTs). First, the
motion boundary images of each frame are calculated to derive the initial masks. According to the characteristics
of action videos, image priors and the synchronous updating mechanism based on cellular automata are
exploited to generate an optimized weak saliency map, which will be integrated with a strong saliency map
obtained via the multiple kernels boosting algorithm. Then, multiscale hybrid masks are achieved through
the collaborative optimization strategy and masks intersection. The compensation schemes are designed to
extract a set of foreground trajectories that are closely related to human actions. Finally, a hybrid fusion frame-
work for combining trajectory features and pose features is constructed to enhance the recognition performance.
The experimental results on two benchmark datasets demonstrate that the proposed method is effective and
improves upon most of the state-of-the-art algorithms. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JEI.27.5.053049]
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1 Introduction
Human action recognition from videos is one of the research
hotspots in the field of computer vision. As recognition algo-
rithms have been innovated continuously, recognizing fewer
categories of actions in a specific environment is not a sig-
nificant challenge. However, for the videos captured in real-
istic scenes, where the problems such as camera movement,
viewpoint change, and target occlusion are widespread, and
the stability of a recognition system needs to be further
improved.

In general, the methods used to achieve action recognition
are divided into two categories according to different feature
types,1 i.e., handcrafted methods and deep-learned methods.
Recently, the handcrafted methods2–6 using global represen-
tations or local representations have achieved promising
performance on a variety of datasets.7,8 For the global rep-
resentation methods, Bobick and Davis9 extracted the motion
energy image (MEI) and the motion history image (MHI)
and then used the HU invariant moments of MEI and
MHI as templates to achieve template matching. Yilmaz
and Shah10 exploited contour information to extract the
three-dimensional (3-D) spatiotemporal volume (STV),
and the peak point, valley point, and saddle point on the sur-
face of STV are treated as the expression of human behav-
iors. Sadanand and Corso5 generated cascaded features based
on time-space pyramids, which are utilized as action repre-
sentations to train a variety of templates and construct a
behaviors warehouse named action bank. Then, action

recognition is achieved by calculating the response of testing
video to the templates.

For the local representation methods, the final recognition
performance is determined by the strategies of feature extrac-
tion and feature encoding. An early approach2 extracts space-
time interest points from videos, then the descriptors of the
histogram of oriented gradients (HOG)11 and the histogram
of oriented flow (HOF)12 are computed at these points. Wang
et al.13 demonstrated that dense sampling is more efficient
than all the tested interest point detectors in realistic video
settings. Since the dense trajectory (DT)3,6 method extracts
trajectories by densely sampled points across frames and
obtains good performance in various experiments, it is fre-
quently employed as a baseline feature to compare with other
methods. However, the original DT feature adopts an indis-
criminate dense sampling strategy in all regions of each
frame, which has some unavoidable drawbacks for the com-
plex action scenes. For example, when there are other mov-
ing objects in the background or the camera is in motion,
background trajectories are generated extensively because
the area of background is usually much larger than that of
action subjects. These action-irrelevant trajectories do not
contain any information that facilitates action recognition,
thereby limiting the performance of trajectory features. To
improve the DT features, Wang et al.7,8 extracted feature
point matches between frames using the speeded up robust
features (SURF) and dense optical flow. A homography
matrix estimated by matches is used to remove the trajecto-
ries consistent with homography and cancel out the camera
motion from optical flow. Peng et al.14 proposed a motion
boundary (MB)-based sampling strategy, which can effec-
tively filter out background trajectories while retaining the
discriminative power of DT features. Yi et al.15 utilized
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the appearance saliency and motion saliency to classify the
dense trajectories into two categories. Then, the salient fore-
ground trajectories are obtained by subtracting the possible
background trajectories based on the low-rank property of
background motion. For feature encoding, current methods
can be roughly classified into three categories,16 i.e., voting-
based encoding,3 reconstruction-based encoding,17 and super
vector-based encoding.7,16 As a super vector encoding
method, fisher vector (FV) aggregates information using the
first- and second-order statistics and performs well on many
challenging datasets7,16,18 when handcrafted features are
employed. Another representative encoding method is the
vector of locally aggregated descriptors (VLAD),19 which
is an improved variant of FV and only retains the first-
order statistics. Despite the high efficiency of VLAD, its
recognition accuracy is slightly lower than FV.

Besides, the human pose feature constructed using joints
information is typically designed by experts and considered
as another form of the handcrafted feature. It is mainly gen-
erated in two steps, i.e., pose estimation and pose feature
description. Yang and Ramanan20 achieved pose estimation
in static images based on a flexible mixture model, which is
used for capturing contextual co-occurrence relations
between human parts and extending the conventional spring
model that encodes spatial relationships. Jhuang et al.21

evaluated the pose estimation algorithm in Ref. 20 by
using various types of descriptors derived from joint anno-
tations. The result suggests that even though the estimated
joint positions are not entirely accurate, the performance
of resulting pose features is not inferior to handcrafted fea-
tures. Nie et al.22 introduced a spatial–temporal and-or graph
(ST-AOG) model, where each action is described as a tree
structure composed of poses, ST-parts, and parts, and action
recognition and pose estimation benefit from each other in
the same framework.

Due to the success of deep learning technology in image
classification, many studies on human behavior analysis
based on deep architecture have been launched. Ji et al.23

developed a 3-D convolutional neural networks (3-D CNN)
model that constructs features from both spatial and temporal
dimensions by performing 3-D convolutions. Karpathy
et al.24 extended CNN connectivity in the time-domain
and proposed an architecture that processes input at two
spatial resolutions for accelerated training. Simonyan and
Zisserman25 designed a two-stream CNN structure in com-
bination with spatial and temporal networks and verified that
CNN trained on multiframe dense optical flow could
effectively improve recognition performance. Cheron et al.26

presented a pose-based CNN (P-CNN) features and demon-
strated the importance of a representation extracted from
poses. Similarly, an action conditioned pictorial structure
based on CNN is proposed in Ref. 27. By utilizing long
short-term memory (LSTM), Krishnan et al.28 proposed a
recurrent neural network variant to keep track of joints
and train the network on joint information across an ordered
sample of several frames from a video. Mavroudi and Tao29

used deep appearance and motion features extracted from
STVs defined along body part trajectories to learn midlevel
classifiers. Wang et al.30 proposed the trajectory-pooled
deep-convolutional descriptor (TDD), which combines the
advantages of handcrafted features and deep-learned fea-
tures. Wang et al.31 combined the ideas of segmentation

and sparse sampling into the two-stream network and pro-
posed the temporal segment network. Overall, deep-learned
methods have improved the state-of-the-art performance on
many datasets;25,31,32 however, still some handcrafted fea-
tures [e.g., improved dense trajectory (iDT)7,8] are compa-
rable in performance.18 In fact, the optimal classification
results achieved by deep learning methods are usually
obtained by combining with trajectory features.30,32,33

In this work, we proposed a trajectory feature and con-
structed an efficient action recognition framework that com-
bines multiple trajectory features and pose features.
Although they describe different aspects of human behavior,
the two types of features have potential complementarity. In
Ref. 34, this property has been revealed by analyzing their
combination conducted in both feature level and classifier
level. Nie et al.22 implemented features fusion based on
an ST-AOG model, in which dense trajectories are extracted
to generate the coarse features, and human poses are esti-
mated to construct the fine-level feature. Peng et al.16 proved
that each fusion method has its pros and cons, and the prac-
tical fusion strategy needs to be formulated by analyzing the
correlation of descriptors at different processing levels. Iqbal
et al.27 presented a pictorial structure model to incorporate
high-level activity information and then combined the
pose-based action recognition with FV encoding of iDT
using late fusion. Zhang et al.35 applied an improved
score-level fusion to trajectory features and pose features
based on the bag-of-visual-words (BoVW)16 model and
Dempster–Shafer evidence theory and demonstrated that
score-level fusion is the most effective strategy for the com-
bination of these two types of features. For the trajectory fea-
tures, inspired by the breakthrough in saliency detection,36,37

we propose a foreground trajectory extraction method
according to the characteristics of video frames. An overview
of our method is shown in Fig. 1. Concretely, the MB image
derived from the optical flow is processed to obtain a binary
image, which is used as an initial mask for dense sampling.
Second, the center-bias38 and dark channel39 priors are
exploited to detect the foreground region, which is optimized
by the synchronous updating mechanism based on cellular
automata40 and then treated as a weak saliency map. The
strong saliency map is calculated through a superpixel clas-
sification model, which is constructed via the multiple ker-
nels boosting (MKB)41 method. We apply a collaborative
optimization strategy to the integration of the two saliency
maps and obtain the final foreground detections for each
frame. The multiscale hybrid masks are generated by the
intersection of the initial mask and the generalized fore-
ground region. Finally, we can extract a set of foreground
trajectories that are closely related to human actions by
the compensation schemes.

Moreover, considering the complementarity between
multiple features, we design a hybrid fusion framework to
integrate the foreground trajectory features, iDT features,
and pose features by referring to the correlation between dif-
ferent feature descriptors. The contributions of this paper are
as follows:

• To obtain the trajectories closely related to action sub-
ject and filter out the trajectories derived from the cam-
era motion and inherent movements in the background,
a saliency-based sampling strategy named foreground
trajectories on multiscale hybrid masks (HM-FTs) is
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proposed. Specifically, according to the characteristics
of action videos, a foreground region detection algo-
rithm is presented using the weak saliency map opti-
mized by the synchronous updating mechanism of
cellular automata and the strong saliency map achieved
through the MKB method.

• The collaborative optimization strategy is formulated
to amend the abnormal detection results by exploiting
the cooperation between frames. Furthermore, the
compensation schemes are designed to improve the
robustness of foreground trajectory features.

• A hybrid feature fusion framework, which combines
representation- and score-level fusions, is constructed
based on the BoVW pipelines. The effectiveness of the
HM-FT features and the multifeature fusion method is
demonstrated on the Penn Action42 and sub-JHMDB21

datasets.

The rest of this paper is organized as follows. In Sec. 2,
we describe each extraction step of the proposed HM-FT fea-
ture in detail and introduce the iDT feature and an efficient
pose feature briefly. A hybrid feature fusion framework for
the three types of features is presented in Sec. 3. In Sec. 4, the
performance of the HM-FT feature and the features fusion
framework is evaluated on the public datasets and compared
with state-of-the-art action recognition methods, and this
paper is concluded in Sec. 5.

2 Multifeature Extraction Strategy
In this section, the HM-FT feature is presented based on
Fig. 1. Different from previous works, we use the optical

flow to constrain the sampling points into the MBs to obtain
the initial masks. The saliency detection algorithm is
improved in the applicability and detection performance
based on the characteristics of action videos to generate fore-
ground masks. These masks are integrated to extract trajec-
tory features that are closely related to actions. We also
designed the collaborative optimization strategy and the
compensation schemes to deal with abnormal and failed
detections. Also, we introduce two features that are comple-
mentary to HM-FT briefly, and they will be used for features
fusion to improve the overall recognition performance.

2.1 Foreground Trajectory Feature Extraction Based
on Multiscale Hybrid Masks

2.1.1 Motion boundary detection

Original DT features need to track densely sampled points on
multiple spatial scales of frames, and then generate too many
motion trajectories. Although the sampled points in a smooth
region are removed when the smaller eigenvalue of its auto-
correlation matrix is below a threshold,3 a large number of
points still distribute in the background region. Once there is
any moving nontarget human body in these regions, or the
camera is shaking, potential background trajectories are gen-
erated inevitably, which should significantly reduce the dis-
crimination performance of trajectory features. To solve
these problems, we first focus on making the sampled points
as much as possible distribute in the boundary of the regions
where significant movement occurs in a frame.

The Sobel operator is used to calculate the gradient of
horizontal and vertical components of the optical flow to
obtain the gradient magnitude images. We compute the

Fig. 1 Flowchart of the foreground trajectory extraction based on multiscale hybrid masks.
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maximum values between the two gradient magnitude
images to get a MB image IB.

The binary image of IB, which is obtained by the Otsu
algorithm43 and denoted as mask1, is used as a mask
when an image is densely sampled. The dense sampling
strategy based on MBs can filter out most of the sampled
points in the background, which do not fall in the foreground
region of mask1, so the part of background trajectories gen-
erated by camera motion can be removed, as shown in the
first two rows of Fig. 2. However, for the regions with
rich contours and textures, this method has a poor effect
on filtering out background trajectories, as shown in the
third row of Fig. 2. The MB of a human can be detected com-
pletely, as shown in Fig. 2(b).

2.1.2 Moving foreground detection

By researching and summarizing action videos in many data-
sets, we find that background trajectories are mainly pro-
duced by the camera motion and inherent movements in
the background. Typical inherent movements in the back-
ground include pedestrians passing, vehicles movement,
object shaking caused by wind, and so on. To further elimi-
nate the interference of background trajectories, the center-
bias and dark channel priors37–39 are exploited to achieve
moving foreground detection in each frame.

The process of shooting an action follows the visual atten-
tion mechanism of human eyes, and the purposes of almost
all of the intentional camera motions are to lock the moving
human in the center of a lens. The dark channel prior39 is
proposed for the image haze removal. It is a statistic-
based algorithm summarized by analyzing a large number
of foggy images. The observation result shows that those
regions that do not include the sky have one or more pixels
whose intensity values are approximately equal to zero in
one of the RGB color channels. The dark channel of an
image is mainly generated by shadow regions and the surface

of colored or dark objects, which generally appear in the
foreground regions, see Figs. 3(a)–3(c).

Therefore, the dark channel property is exploited as prior
information in the process of moving foreground detection.
Assuming that the dark channel prior value of pixel p is
SðpÞ, which is calculated as

EQ-TARGET;temp:intralink-;e001;326;686SðpÞ ¼ 1 −min
q∈Q

�
min

C∈fR;G;Bg
½VCðqÞ�

�
; (1)

where Q denotes a 5 × 5 image patch centered on p, and
VCðqÞ denotes the color value of pixel q in channel C.
However, for the images with a brighter foreground or darker
background, the dark channel prior may lead to a failure of
moving foreground detection as shown in Fig. 3(d). To this
end, we calculate the mean value of all SðpeÞ, where pe is a
specific pixel on the borders in a frame. If it is greater than
0.8, the influence of dark channel prior on a frame will be
eliminated, and the value of SðpÞ will be set to zero.

To obtain structure information of the moving foreground,
the simple linear iterative clustering44 algorithm is exploited
to achieve multiscale superpixel segmentation for an input
frame. The numbers of superpixels at different scales are
set to 100, 150, 200, and 250, respectively, to avoid the
incomplete structure information caused by single-scale
superpixel segmentation. Let bi denote a superpixel,
i ¼ 1; : : : ; N, where N is the number of superpixels for a
scale. The saliency value of bi is calculated as

EQ-TARGET;temp:intralink-;e002;326;443mðbiÞ ¼ gðbiÞ × exp½SðbiÞ� ×
X
f∈F

�
1

NB

XNB

j¼1

dfðbi; ejÞ
�
; (2)

where dfðbi; eiÞ represents the Euclidean distance in f fea-
ture space between bi and a border superpixel ej, and NB is
the number of superpixels along a frame border. f is the type
of features. F includes RGB, CIELab, and LBP features,

Fig. 2 Comparison of the original DT and the dense trajectories on MB. (a) Video frame, (b) MB image,
(c) trajectories by DT, and (d) trajectories by MB.
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because there is a complementarity between RGB and
CIELab, and the color and texture features used simultane-
ously are more robust to complex backgrounds. SðbiÞ is the
mean value of all SðpÞ, p ∈ bi. gðbiÞ is the weight of center-
bias prior, and its value is equal to the normalized spatial
distance between the center of bi and the frame center.
The value of mðbiÞ is assigned to all the pixels in the region
bi, and we use Gaussian filtering to generate the moving
foreground map M0.

2.1.3 Foreground region optimization

To obtain a more accurate foreground region, all the super-
pixels at each scale are treated as a set of cells, and the syn-
chronous updating mechanism based on cellular automata40

is exploited to optimize M0. Unlike the original cellular
automata models, the influences of neighbors to a cell are
not fixed. The influence of any pair of cells is closely related
to their similarity in CIELab color space. Accordingly, the
impact factor zij between cell bi and its neighbor bj is
calculated as

EQ-TARGET;temp:intralink-;e003;63;305zij ¼ exp

�
−dðbi; bjÞ

μ

�
i ≠ j; (3)

where dðbi; bjÞ represents the Euclidean distance between bi
and bj. μ is the regulatory factor. We follow Ref. 45 to set the
value of μ to 0.1.

The zij of any pair of adjacent cells is calculated to con-
struct an impact factor matrix Z ¼ ½zij�N×N with the main
diagonal elements of zero. Note that all the cells along a
frame borders are considered to be interconnected because
all of them are regarded as background seeds. Then, each
row of Z is normalized by di ¼

P
jzij, i, j ¼ 1;2; : : : ; N.

A coherence matrix T ¼ diagfc1; c2; : : : ; cNg is established
to make the moving foreground more complete and avoid
losing fine structures on a human body, where the calculation
equation for ci is written as

EQ-TARGET;temp:intralink-;e004;63;117ci ¼
1

maxðzijÞ
: (4)

If there is a significant difference between a cell and its
neighbors, the state of the next moment of the cell will be

determined primarily by itself. On the contrary, if the cell
is more similar to a neighbor, it is likely to be assimilated
by the neighbor. Considering that the evolution of a cell will
produce extreme results when ci is too high or too low, we
follow Ref. 46 to convert the value of ci to ½γ; γ þ η� by

EQ-TARGET;temp:intralink-;e005;326;475ci ¼ γ þ η ·
ci −minðcjÞ

maxðcjÞ −minðcjÞ
; (5)

where j ¼ 1; : : : ; N. The synchronous updating mechanism
for cellular automata is formulated based on the impact
factor matrix and the coherence matrix as follows:

EQ-TARGET;temp:intralink-;e006;326;399Mtþ1 ¼ T · Mt þ ðI − TÞ · Z · Mt; (6)

where I is the identity matrix. When t ¼ 0, the initial Mt is
the moving foreground mapM0. The optimized saliency map
MC is achieved by iteratively executing the updating mecha-
nism. Note that we use the saliency value of each superpixel
as its state, which can describe the relationship between the
cells more comprehensively and reasonably. In the iterative
process, since the influences of neighbors are changed, cel-
lular automata based on the broader definition of neighbor-
hoods can enhance saliency consistency among similar
regions and form a clear boundary between the action subject
and the background naturally. Besides, when salient super-
pixels are selected as the background by mistake, they will
automatically increase their saliency values under the influ-
ence of the local environment.

The Otsu algorithm is used to calculate the binary image
Mi

B of saliency mapMi
C at the i’th superpixel scale. We con-

sider both Mi
B and Mi

C to construct the weak saliency map
MW by Eq. (7), which is written as

EQ-TARGET;temp:intralink-;e007;326;173MW ¼ 1

n

Xn
i

ðMi
C þMi

BÞ
2

; (7)

where n is the number of superpixel scales.

2.1.4 Multiscale superpixels classification

We select training samples from every Mi
W, where

Mi
W ¼ Mi

CþMi
B

2
, and then construct a superpixels classification

Fig. 3 Examples of the dark channel prior for the frames of action videos. (a)–(c) show the dark channel
generated by foreground regions and (d) shows the dark channel generated by the image with a brighter
foreground or darker background.
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model based on the MKB41 method to obtain the strong
saliency map under each superpixel scale. Specifically, if
Vj >¼ λmax × VM, the j’th superpixel will be regarded as
a positive sample. Otherwise, if Vj < λmin, the j’th superpixel
will be considered as a negative sample. VM represents the
average saliency value ofMi

W , and Vj represents the average
saliency value of the j’th superpixel. To control the number
of training samples, shorten the training time, and ensure the
balance of positive and negative samples, λmax and λmin are
set to 1.5 and 0.05, respectively.

The RGB, CIELab, and LBP features extracted from
training samples are utilized to train the strong classifier
by MKB. The discriminant function of MKB is constructed
based on the traditional multiple kernel learning method and
shown as follows:

EQ-TARGET;temp:intralink-;e008;63;584fðxÞ ¼
XR
r¼1

βr

�XH
h¼1

αhyhkrðxh; xÞ þ br

�
; (8)

where H is the number of training samples, R is the number
of weak classifiers, xh denotes a training sample, and yh ∈
f−1;1g denotes the label corresponding to xh. Moreover, βr
is the weight of the kernel function krðxh; xÞ, αh is the
Lagrange multiplier, and br is a constant term. αh and br
of each weak classifier can be obtained by solving the
corresponding quadratic programming problem.

We can achieve 3 × K basic classifiers based on the three
feature sets and K types of kernel functions. The AdaBoost
algorithm is used to solve the weight βr of each weak clas-
sifier iteratively and output weak classifier models. All the
superpixels at n superpixel scales derived from a frame
are considered as the testing samples. Equation (8) can be
used to output the decision values of every superpixel,
which will be assigned to all the pixels in the region and then
normalized to achieve the strong saliency map at each scale.
The Gaussian filtering is used to generate a smoother
saliency map Mi

S. M
i
H denotes the binary image of Mi

S.
The strong saliency map MS for a frame is constructed as

EQ-TARGET;temp:intralink-;e009;63;324MS ¼
1

n

Xn
i

ðMi
S þMi

HÞ
2

: (9)

Considering that the guided filter has the properties of
preserving strong edges and blurring weak edges, we use
it to optimize MS. The resulting saliency map is represented
as MS.

2.1.5 Multiscale hybrid masks acquisition

The weak saliency map is easier to capture the local structure
information of the moving foreground. However, the strong
saliency map achieved by the MKB41 method, which trans-
forms the task of foreground detection into solving a binary
classification problem for superpixels, tends to describe the
global information of objects. The two saliency maps are
integrated by a weighted fusion method to obtain the final
result of foreground detection (which is represented as
ME), where the ratio factors are ωS ¼ 0.7 and ωW ¼ 0.3.

The action scenes and appearance of a moving human in
all frames of the same video are usually highly consistent, so
the detections for these frames are similar, especially for the
adjacent frames. Although the subtle local changes occur in

the foreground region due to the lens movement and human-
pose adjustment, there is strong cooperation between the
detections of frames. The collaborative optimization strategy
is proposed to amend the abnormal detections based on the
above analysis. The specific steps are as follows.

First, we concatenate the saliency values of all pixels in
the normalizedME to generate a feature vector fi. Assuming
that there is an action video with m frames, the Euclidean
distance between any two saliency feature vectors is
dðfi; fjÞ, where i, j ¼ 1;2; : : : ; m, and i ≠ j. The sum of
dðfi; fiþ1Þ and dðfi; fi−1Þ is denoted as φi. Then, abnormal
frames are selected out as

EQ-TARGET;temp:intralink-;e010;326;620ξ ¼ σ ·

P
m−1
i¼2 φi

m − 2
; (10)

where the scale factor σ is set as 1.5. If φi >¼ ξ, the i’th
frame will be regarded as an abnormal frame. Otherwise,
it will be defined as a keyframe. Finally, the saliency values
of abnormal frames, which are not adjacent to each other, are
reset to the average of saliency values of the previous and
subsequent keyframes. If the abnormal frames are continu-
ous, we calculate the abnormity degree for each of them byP

m
j¼1;j≠i dðfi; fjÞ and regard the frame with minimum

abnormity degree as a relative keyframe ψ . Let ψc be the
nearest keyframe of ψ , the saliency values of the frames
between ψ and ψc are reset to the average of ψ and ψc.

We use two iterations of the morphological dilation on the
binary image of ME to generate a robust foreground mask
denoted as mask2. To make a human body covered by
mask2 more complete and overcome the problem that the
extremities and head are lost in detection due to the low
image resolution, mask2 is generalized as follows: if the
area of the foreground region in mask2 is less than or
equal to 0.08 of the image area, the bounding box of fore-
ground will be constructed using the maximum and mini-
mum values of its pixel coordinates in the horizontal and
vertical directions. The distances between the center of a
bounding box and its four borders are respectively increased
by 3 pixels, which decrease as the spatial scales of a frame
decrease progressively, to obtain a generalized mask2.

We calculate the intersection of mask1 and mask2 on each
spatial scale of a frame separately to achieve the multiscale
hybrid masks for the moving foreground.

2.1.6 Foreground trajectory features extraction

Two-dimensional grids are constructed for each frame with a
sampling step size of 5 pixels on eight spatial scales spaced
by a factor of 1∕

ffiffiffi
2

p
to extract foreground trajectories. The

multiscale hybrid masks are used to refine the sampled
points. Specifically, when the sampled points do not fall
in the foreground region of the mask, it will be removed.
Foreground trajectories are generated by tracking the remain-
ing points on multiple spatial scales of a frame. To fully mine
the motion information from foreground trajectories, multi-
ple descriptors [i.e., trajectory shape, HOG, HOF, and
motion boundary histogram (MBH)12] within a space-time
volume around trajectory are computed. We use the identical
settings to Ref. 3, so the final dimensions of the descriptors
are 30 for TS, 96 for HOG, 108 for HOF, and 192 for MBH.

When the variations between adjacent frames are too
subtle to generate a large number of MBs, sampled points
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extracted by the proposed method are relatively few.
However, when hybrid masks of each frame can completely
cover the moving foreground, the frames with fewer sampled
points are only a small part of a video. In extreme cases,
since the colors of background and foreground are highly
consistent, or there are some objects in the background
that are more salient than the moving foreground, the detec-
tion will deviate from the foreground region. These devia-
tions cause too few foreground trajectories related to the
human motion to describe actions adequately, thereby reduc-
ing the discrimination power of the trajectory features. To
solve the above problems, we have formulated two compen-
sation schemes:

• Sampled points are extracted from each frame using
the hybrid masks, and the number of frames in
which the number of points in the first layer of the
image pyramid is not larger than τ1 is counted as
mf. If mf∕ðm − 1Þ ≥ 0.5, the hybrid mask will be
replaced by mask1, and the trajectory features for
the video will be re-extracted. Since the number of
sampled points is proportional to image resolution,
τ1 is adjusted by τ1 ¼ p · τ2 adaptively, where p is

the baseline number of points and τ2 is the scaling fac-
tor for resolution.

• When only mask1 is employed, the real background
trajectories are sparser than the real foreground trajec-
tories, so failed foreground detection will lead to a
decrease in the number of trajectories. We denote
the number of trajectories for a video as Nts. If
Nts∕m ≤ τ3, where τ3 ¼ d · τ2, d is the baseline num-
ber of trajectories, then we will re-extract the original
DT features for the video.

Note that the first scheme is given priority. Trajectory fea-
tures processed by the first scheme will be judged and cor-
rected again by the second scheme. In the end, the HM-FTs
can be obtained. Figure 4 shows the visualization of different
stages of foreground trajectory extraction, including the tra-
jectories by DT, MB image, trajectories by MB, foreground
detection results, and our proposed HM-FTs. From Fig. 4,
we find that the MBs can filter out most of the trajectories
in the smooth region of background. However, for the back-
ground regions with rich contours and textures, the method
cannot remove background trajectories generated by camera
motion, as shown in the first-, third-, and sixth-rows of

Fig. 4 Visualizations of trajectories in different stages of the proposed method. (a) Video frame, (b) tra-
jectories by DT, (c) MB image, (d) trajectories by MB, (e) foreground detection results, and (f) trajectories
by HM-FT.
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Fig. 4(d). For the trajectories generated by inherent move-
ments in the background (e.g., pedestrians passing, nontarget
object movement, water surface fluctuations, etc.), the
method does not have any effective removal mechanism,
as shown in the second-, fourth-, and fifth-rows of Fig. 4(d).
The hybrid masks achieved by exploiting MB detection and
foreground detection are utilized to refine the densely
sampled points. The resulting foreground trajectories not
only suppress the influence of background trajectories on
the discrimination power of features but also contain abun-
dant information for human action, which makes the trajec-
tory features more expressive, as shown in Fig. 4(f).

2.2 Improved Dense Trajectory Feature Extraction
Although the above method can effectively filter out back-
ground trajectories, the offset of foreground trajectory caused
by camera motion lacks necessary amendments. Therefore,
we combine the foreground trajectory features with the iDT
features to make up for the deficiency. iDT feature is an
improved version from DT, which makes reasonable estima-
tion and effective utilization for the information of camera
motion so that the trajectory feature is more focused on
describing the subject of an action. Specifically, iDTassumes
that there is a homography transformation between adjacent
frames because the changes between them are relatively
slight. Then, camera motion estimation can be solved by cal-
culating a homography matrix between adjacent frames. The
SURF and dense optical flow are used to achieve frames
matching and obtain the matching point pairs. The global
homography matrix is calculated by the random sample con-
sensus algorithm47 based on these point pairs. The original
DT will be amended by the camera motion information.

2.3 Pose-Based Feature Extraction
Trajectory features are used to describe the apparent structure
and motion state around trajectories. However, pose features
focus on describing the distribution and coupling relation-
ship of human joints. These two types of features are highly
complementary.35

The popular methods20,22 for pose estimation usually
describe human joints as a tree-structured graph and use
the dynamic programming algorithm to deduce the positions
of every joint. Considering that the framework mentioned in
Ref. 20 is representative, it is employed to achieve pose

estimation. Some pose estimation results for the full body
with 26 human joints are shown in Fig. 5. The pose descrip-
tors are designed from both time- and space-level based on
the results of pose estimation. To remove redundant joints,
we follow Ref. 21 to retain 15 joints for describing a
full body. When the frame step is set to s, if the joint coor-
dinate is ðx; yÞ, the coordinate displacements are dx and dy,
and the angle of the space-time displacement vector is
arctanðdx∕dyÞ.

To improve the pose features, a weakening factor R is
used to attenuate the effect of joints information in the initial
and last frames, because the motion amplitude in middle
frames is usually more apparent. For a video with m frames,
the multiple sets of descriptors at time-level can be obtained
by constructing the coordinate displacement matrix Ptr and
vectorial angle matrix Pan, which are shown as

EQ-TARGET;temp:intralink-;e011;326;576Ptr ¼

2
664

f1 − f1þs · · · fm−Rs − fm−ðR−1Þs
..
. . .

. ..
.

f1þðR−1Þs − f1þRs · · · fm−s − fm

3
775;

(11)

EQ-TARGET;temp:intralink-;e012;326;494Ptr ¼

2
664

ðf1; f1þsÞ · · · ðfm−Rs; fm−ðR−1ÞsÞ
..
. . .

. ..
.

ðf1þðR−1Þs; f1þRsÞ · · · ðfm−s; fmÞ

3
775;

(12)

where f represents all the joint coordinate data for a frame,
and its subscript indicates the frame number. ðf1; f1þsÞ is a
column vector consisting of 15 angles of space-time dis-
placement vectors. Each type of time-level descriptors for
a video is composed of the data in the same dimension of
all elements in Ptr or Pan. Therefore, we can obtain 75
types of descriptors derived from human joints.

3 Features Fusion and Classification
In this work, different pipelines of BoVW are employed to
construct the video-level representation from a set of descrip-
tors. The trajectory features focus on describing the appear-
ance structures, motion states, and MBs of a video. The pose
features focus on describing the changes for the position and

Fig. 5 Some pose estimation results for the full body with 26 human joints on datasets.
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movement of joints at both temporal and spatial hierarchies.
To make full use of the complementarity between these two
features and exert their respective advantages, we designed a
simple and effective features fusion method.

For the trajectory features, we extract two sets of trajec-
tories from a given video, namely, HM-FTs and iDTs. For
iDTs, we follow the framework of Ref. 7 to compute multiple
descriptors under the default settings. For each set of trajec-
tories, four types of descriptors are encoded separately to
obtain the video-level representations. The global represen-
tation derived from a specific type of descriptors can be
obtained by concatenating the same type of video-level rep-
resentations. Due to the strong correlation between different
descriptors, representation-level fusion is exploited, which
has been proved to be the best choice in Ref. 16. Generally
speaking, different global representations are concatenated
as a final representation for a video. The principal component
analysis (PCA) is employed to reduce the dimension of
descriptors to half of the original dimension. The whitening
technique is combined with PCA to ensure that each dimen-
sion of the dimensionality-reduced vector has the same vari-
ance. We randomly select 256,000 descriptors from each
descriptor set to train a Gaussian mixture model with 256
components respectively. FV is utilized to encode the
processed descriptors by the implementation of VLFeat
Toolbox48 and then normalized by the L2 and power nor-
malization. A linear SVM with fixed C ¼ 100 is used for
classification because it has been proven to be more efficient
in combination with FV.7 The decision matrix Mtr of the
combination of HM-FT and iDT for all testing samples is
calculated by the one-against-rest approach.

For the various descriptors of pose features, we employ
the representation-level fusion to obtain a global representa-
tion for a video. All the training samples of a particular
descriptor type are exploited to generate a codebook of
size 20 by the k-means49 algorithm. We use the vector quan-
tization to encode these descriptors, which are then normal-
ized and concatenated to generate a 1500-dimensional pose
feature for a video. An SVM with RBF kernel is selected for
classification, where the fivefold cross-validation is used to
calculate the optimal parameters. The one-against-rest
approach is utilized to calculate the decision matrix Mpo

for testing samples.
Since trajectory features and pose features are indepen-

dent of each other, the score-level fusion35 is chosen to
achieve their integration. Let the final decision matrix be
Zf ¼ Mtr þMpo, the prediction with the highest score of
each row in Zf is selected as the classification result.

4 Experiments

4.1 Datasets
Our method is compared and analyzed on two benchmark
action datasets including Penn Action42 and sub-JHMDB.21

These two datasets are utilized to evaluate the algorithms for
pose estimation and action recognition, and the research
object is full body. The Penn Action dataset contains
2326 video clips that belong to 15 action categories. They
are “baseball pitch,” “baseball swing,” “bench press,” “bowl-
ing,” “clean and jerk,” “golf swing,” “jump rope,” “jumping
jacks,” “pull up,” “push up,” “sit up,” “squats,” “strumming
guitar,” “tennis forehand,” and “tennis serve.” To achieve
the extraction of pose features, we remove the action

“strumming guitar” and several samples according to
Ref. 22 because most of the human body in those data is
invisible. The pruned dataset contains 1206 training samples
and 1017 testing samples, and its average accuracy is
reported by utilizing the train/test split provided in Ref. 42.

As a subset of HMDB51, the sub-JHMDB dataset21 con-
tains 316 video clips that belong to 12 action categories.
They are “catching,” “climbing stairs,” “golfing,” “jumping,”
“kicking ball,” “picking,” “pulling up,” “pushing,” “run-
ning,” “shooting ball,” “swinging baseball,” and “walking.”
We test the sub-JHMDB dataset by using the threefold cross-
validation presented in Ref. 21 and report the average accu-
racy of three splits.

We have considered using the complete HMDB51 data-
set, but we found that the dataset is not suitable as a bench-
mark for the performance evaluation of our method. The
pose features cannot be extracted from a large number of
samples in the HMDB51 dataset, because they do not con-
tain any fully visible person. Some actions only contain head
and shoulder, such as “smile,” “chew,” “laugh,” “talk,”
“drink,” “kiss,” “eat,” and “smoke.” Moreover, the pose esti-
mation algorithm presented in this paper also cannot be
applied to the actions where more than 1/2 or even 2/3 of
a person is invisible, such as “shake hands,” “sit down,”
“brush hair,” “pour,” “hug,” and “clap hands.” To this end,
all the performance evaluations and comparisons are
achieved on the sub-JHMDB dataset.21 Some sample frames
from Penn Action, sub-JHMDB, and HMDB51 are shown
in Fig. 6.

4.2 Experimental Results and Discussions
4.2.1 Basic performance evaluation for HM-FT

feature

The effectiveness of HM-FT feature is demonstrated by
testing it on the two public datasets for human action recog-
nition. All the experiments are conducted on a lab computer
running Windows 10 with 3.50 GHz Intel Core i7-5930K
CPU and 64 GB of RAM. We have used Matlab R2015a
and Visual Studio 2013 for implementation purposes.

For the HM-FT feature, the range of ci in the coherence
matrix during the process of foreground detection is set to
[0.2,0.8]. If η is fixed to 0.6, the results are virtually
unchanged when γ varies from 0.1 to 0.3. In the stage of
superpixels classification, three kinds of kernel functions,
including linear kernel function, polynomial kernel function,
and RBF kernel function, are utilized to train basic classi-
fiers. Moreover, considering that the image size for all videos
in sub-JHMDB is 320 × 240 pixels, it is set as the baseline
resolution. The influence of different parameters p and d on
recognition results will be discussed in Sec. 4.2.4. Here, we
report the best performance of HM-FT feature with p ¼ 8

and d ¼ 5. With the HM-FT feature, the average recognition
rates on Penn Action and sub-JHMDB are 88.91% and
63.19%, respectively. Note that although the average accu-
racy is reported both for the two datasets, we follow Ref. 21
to calculate the per-video accuracy for sub-JHMDB, which
does differ from the per-class accuracy employed in Penn
Action.42 The confusion matrices on the two datasets are
shown in Fig. 7.

Figure 7(a) shows that on Penn Action dataset, we achieve
high accuracies on most of the actions, such as “clean and
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jerk,” “jump rope,” and “bowling.” However, “bench press”
has the lowest recognition accuracy with 0.71. In most
cases, its testing samples are incorrectly recognized as
“push up” because both of the actions only include the
up-and-down motion of arms, and their movement ranges
are similar.

As for sub-JHMDB in Figs. 7(b)–7(d), although the num-
bers of testing samples for the same action are different in
three splits, the proposed HM-FT feature performs well
on the actions such as “golf” and “shoot ball” in general.
Moreover, we find that “climb stairs” and “walk” are easily
confused with each other. Compared to the latter, there is an
upward trend in the trajectory of “climb stairs,” but the cam-
era always adjusts objects to the center of the visual field,
which make this difference insignificant.

From the four confusion matrices, we can infer that even
though the extracted HM-FT features have effectively sup-
pressed the interference of background trajectories to action
recognition, it is not entirely robust to the action classes with
highly similar motion patterns. The future work will focus on
identifying motion-related objects in the scene to provide
necessary semantic information for different actions,
which is considered as an auxiliary discrimination basis to
improve the discrimination power of HM-FT features.

4.2.2 Overall recognition performance

For comparison, the recognition performance of different
features, including trajectory features, pose features, and
their combinations, are evaluated on the two public datasets.
To ensure the objectivity of results, we apply the same
BoVW pipeline to different types of trajectory features.
The specific settings of each step of BoVW (i.e., feature pre-
processing, codebook generation, feature encoding, and nor-
malization) and the selection of classifiers are determined by
referencing to Sec. 3.

For the pose features, we set both the frame step s and the
weakening factor R to 3. Unlike the 3225 types of descriptors
shown in Ref. 21, the optimized pose features only contain
75 types of descriptors, but they can significantly reduce run-
ning time and preserve discriminative power (note that the
accuracy achieved by the combination of 3225 descriptor
types and DT on the sub-JHMDB dataset is 52.9%).21 For
example, when the video contains 42 frames with a resolu-
tion of 320 × 240 pixels, the running time of the optimized
pose features is about 0.0058 s, which is far less than 6.17 s
consumed by the 3225 descriptor types.

Table 1 presents the comparison of the average accuracies
achieved by different methods, where Comb. 1 is the combi-
nation of HM-FT and iDT, and Comb. 2 is the combination

Fig. 6 Sample frames from Penn Action, sub-JHMDB, and HMDB51. The frames in the first four rows are
from Penn Action and sub-JHMDB, and the last row shows the frames with failure pose estimations form
HMDB51.
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of HM-FT, iDT, and pose. We observe that the iDT feature
demonstrates higher accuracies than other trajectory features
on both sub-JHMDB and Penn Action datasets, which out-
performs HM-FT by 2.3% and 3.4%, respectively. As an
improved version of DT, the accuracies of HM-FT on the
two datasets are improved by 10.1% and 6.2%, which
shows that the discrimination performance of original DT
has been significantly enhanced after filtering out back-
ground trajectories. We also use two state-of-the-art saliency
detection methods presented in Refs. 36 and 37 to generate
masks individually and test the recognition performance on
the two datasets. However, their recognition accuracies are
significantly inferior to that of HM-FT, where the multiscale

hybrid masks are exploited. It could be attributed to the failed
saliency detections. Actually, due to the inherent challenges
of saliency detection and the characteristics of action videos,
where a frame does not necessarily contain a salient motion
subject, saliency detection methods are not sufficient to pro-
vide reliable prior information for trajectory features without
any auxiliary strategy.

Furthermore, the combination of HM-FT and iDT always
performs better than each set of trajectories, but worse than
the combination of trajectory features and pose features,
which has achieved the best accuracies of 72.4% and
95.2%. Thus, we conclude that the proposed feature fusion
framework can effectively exploit the complementarity

Fig. 7 The confusion matrices on the two datasets: (a) for Penn Action dataset; (b), (c), and (d) for three
splits of the sub-JHMDB dataset.
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among the two types of features, thereby boosting the overall
recognition performance.

4.2.3 Comparison of the performance of different tra-
jectory features

The recognition results of each class based on different tra-
jectory features are computed on the two datasets. For the
sub-JHMDB dataset, to show comparison results intuitively,
the recognition accuracy for a class is defined as the quotient
of the number of samples that have been correctly classified
and the total number of testing samples in all three splits.

As shown in Fig. 8, HM-FTachieves higher accuracies for
7 out of 12 classes on sub-JHMDB compared to DT, while
the same results are obtained on “pick” and “run.” In particu-
lar, the accuracy of “shoot ball” achieved by HM-FT is
100%, which outperforms DT by 75%. Moreover, HM-FT
+iDT is better than HM-FT alone by 13.51% on average
for seven classes of actions and only worse than it on
“kick ball” and “swing baseball.”

From Fig. 9, HM-FT+iDT achieves the highest recogni-
tion accuracies for almost all classes on Penn Action dataset,

especially on the easily confusing “bench press,” “tennis
forehand,” and “tennis serve.” In addition, HM-FT is greater
than or equal to DT on 10 classes, but gets much lower accu-
racy than DT on “bench press.” By comparing the different
trajectory features, we conclude that although the detections
deviate from the foreground region in a few cases and lead to
a decline in accuracy, HM-FT is more efficient than DT for
most actions. In the vast majority of cases, the combination
of HM-FT and iDT can always improve the classification
power of HM-FT.

To visualize the computational cost of the proposed HM-
FT, we compare its performance with three trajectory feature
extraction methods in different aspects, including the time
taken to process a video frame, the average number of tra-
jectories per video clip, and the recognition accuracy. We
randomly select 12 video clips from the sub-JHMDB dataset
with a resolution of 320 × 240. There are 14 videos selected
from the Penn Action dataset with a minimum resolution of
480 × 270 and a maximum resolution of 480 × 393.

From Table 2, since the computational cost of tracking
sampled points decreases significantly by using DT-MB,14

its time taken to process a video frame is the lowest.
However, its recognition accuracy has not improved com-
pared to DT. iDT-RCB50 is an improved strategy based on
DT, where the warped optical flow is exploited to adjust
the interest points sampling to remove subtle motions.
Although the recognition accuracy of DT is enhanced, its
computational cost is higher than DT, which should be attrib-
uted to the calculation of optical flow and saliency detection.
The proposed HM-FT further filters out invalid points by the
multiscale hybrid masks to produce a minimum number of
trajectories, which further reduces the computational cost of
tracking points compared to DT-MB. However, since the
moving foreground detection in the proposed scheme
requires additional computational cost, the final computa-
tional cost of HM-FT is more than DT on the two datasets.
This disadvantage will be decreased with the increasing of
image resolution because more invalid points are removed,
as we can see from Table 2. HM-FT has significantly
improved the recognition accuracy of DT. Indeed, a limited
reduction and efficient selection tend to improve the accu-
racy with minor computational cost. Taking into account
the subsequent recognition procedure, fewer trajectories
also lead to faster video encoding process.

Fig. 8 Accuracy comparison of each class by DT, HM-FT, and HM-FT
+iDT on sub-JHMDB.

Table 1 Overall recognition performance of different methods for the
sub-JHMDB and Penn Action datasets.

Methods

Sub-JHMDB (%)
Penn

Action (%)Split 1 Split 2 Split 3 Average

HM-FT 58.4 63.8 67.4 63.2 88.9

iDT 59.6 67.5 69.6 65.5 92.3

Pose 49.4 52.5 56.5 52.8 71.4

DT 52.8 48.8 57.6 53.1 82.7

Cheng et al.36 49.4 43.8 48.9 47.4 74.1

Lu et al.37 53.4 53.8 61.2 56.1 83.5

Comb. 1 66.3 70.0 68.5 68.3 93.3

Comb. 2 69.7 72.5 75.0 72.4 95.2

Fig. 9 Accuracy comparison of each class by DT, HM-FT, and HM-FT
+iDT on Penn Action.
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4.2.4 Evaluation of the parameters for compensation
schemes

We evaluate the impact of the compensation scheme param-
eters on recognition performance. The relationships between
the performance of HM-FT and the two parameters of the
compensation schemes (p and d) are respectively shown
in Fig. 10. Overall, increasing the baseline number of trajec-
tories from 0 to 5 on both datasets can improve performance.
Instancing the baseline number of trajectories (from 5 to 10)
yields significant performance degradation. In the cases of
p ≤ 8 and d ≤ 5, increasing the baseline number of sampled
points improves performance, likely because the samples
with foreground detection deviation are corrected. We find
that p ¼ 8 with d ¼ 5 provides a good tradeoff of perfor-
mance versus computation.

4.2.5 Comparison with the state-of-the-art

The recognition accuracies achieved by our method are com-
pared with the state-of-the-art methods on Penn Action and
sub-JHMDB datasets, as shown in Table 3, where F-level
indicates feature level fusion, and S-level indicates score
level fusion. For Penn Action, the average accuracy achieved

by this work is 95.2%, which has improved the state-of-the-
art methods. For sub-JHMDB, only the work in Ref. 27,
which combines iDT and a pose feature based on CNN, pro-
duces a better result than ours. However, if we replace the
pose estimation results with the ground truth (GT) provided
by the datasets, the recognition rate of “Comb. 2 (Pose-GT)”
is 81.3%, which means that the insufficient of pose estima-
tion does not affect our contributions in improving trajectory
features and designing the hybrid multifeature fusion
framework.

We find that the multifeature fusion strategies in Refs. 16,
21, 22, 27, 34, and 35 can always improve the recognition
performance of single feature by integrating more abundant
human motion information. Our method that benefits from
the proposed HM-FT features and the appropriate fusion
strategy has improved upon most of the similar algorithms.
Moreover, although deep-learned methods have improved
the state-of-the-art performance on many datasets based
on the massive video data and large-scale training, they
have no significant advantage over the handcrafted methods
when the two datasets have less training data. The compar-
isons of deep-learned methods (i.e., P-CNN,26 Pose,27 iDT
+Pose,27 ARRNET,28 and Deep Moving Poselets29) have
confirmed this conclusion. From Ref. 27, we find that the

Table 2 Comparison of HM-FT with other trajectory feature extraction methods.

Methods

Penn action sub-JHMDB

Trajectories/clip ms/frame Accuracy Trajectories/clip ms/frame Accuracy

DT3 12,198 378.79 82.7 6,487 278.74 53.1

DT-MB14 4601 290.70 83.0 1,584 210.08 52.4

iDT-RCB50 10,727 424.02 87.5 2,931 329.40 59.7

HM-FT 3071 389.64 88.9 1,249 306.71 63.2

Fig. 10 Performance of HM-FT as a function of p and d on (a) sub-JHMDB and (b) Penn Action.
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fusion strategy for the deep-learned features and handcrafted
features at different levels is a promising research direction to
improve recognition performance.

5 Conclusion
In this paper, a saliency-based sampling strategy (i.e., HM-
FTs) and a hybrid multifeature fusion framework are pro-
posed to improve the action recognition rate in realistic
scenes efficiently. To obtain the trajectories closely related
to action subject and filter out the trajectories derived
from camera motion and inherent movements in the back-
ground, multiscale hybrid masks, which are generated by
the weak saliency map optimized by the synchronous updat-
ing mechanism of cellular automata and the strong saliency
map achieved through the MKB method, are utilized to
refine the original dense sampling points. The collaborative
optimization strategy is used to ensure that the foreground
detection results are more reasonable and effective. The com-
pensation schemes are employed to improve the fault toler-
ance of the proposed features. The experimental results show
that the HM-FT feature has effectively improved the recog-
nition performance of the original DT. Furthermore, the dis-
criminative power of the overall recognition framework can
be enhanced significantly using the hybrid feature fusion
strategy.

However, during the experiments, we found that when the
motion patterns and amplitudes of two types of actions are

highly similar, neither trajectory features nor pose features
can satisfactorily solve the confusion between their testing
samples. In the future, we will focus on identifying critical
objects in the scene that provide auxiliary discrimination
information for action classification and trying to incorporate
deep learning methods into the proposed framework to
improve the recognition accuracy in realistic scenes.
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