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Abstract. Object tracking is considered to be a key technique in
many computer vision applications, such as video surveillance, object
recognition, and robotics. We propose a method that improves the
performance of scale-invariant feature transform (SIFT)-based object
tracking algorithm to track the object in the subsequent video frames.
Recently, many feature-based tracking methods have been pro-
posed. An efficient and improved SIFT feature matching-based
tracking method via neural network is provided and compares the out-
come of this method with other tracking method outcomes. The
tracked object is assigned a distance with the Kinect sensor to deter-
mine the depth of the detected object. The experimental results show
that the proposed method can track the target object under different
situations such as rotation, scaling, and many others with less com-
putation time. Self-organizing map-based improved object tracking
method can also estimate the distance between the tracked object
and the image sensor. The proposed tracking technique will be useful
for the development of many computer vision and robot navigation
applications. © 2013 SPIE and IS&T [DOI: 10.1117/1.JEI.22.3
.033017]

1 Introduction
Vision-based object tracking is an important task in the field
of computer vision, robotics, and multimedia technologies,
particularly in applications such as teleconferencing, surveil-
lance, and human–computer interfaces. The objective of
object tracking is to identify the position of the object in
real-time image sequences and videos.1 The detection and
tracking of moving objects result in the continuous extrac-
tion of information through a sequence of images in many
computer vision, image processing, and object detection
applications.2–5 For robot navigation, there is a need to iden-
tify different obstacles in a path to achieve collision-free nav-
igation that can be used in various applications such as
automated surveillance, traffic monitoring, vehicle naviga-
tion, and human–computer interaction. A variety of algo-
rithms has been developed in the field of computer vision
for object tracking such as global template-based
tracking6–8 and local feature-based tracking methods.9,10

Many of the tracking algorithms employ manually defined
models or models that are trained in the initial stage of
tracking.11,12 These tracking methods have the problem of
complex target transformations or a change in appearance.
Most of the recent approaches have shown that separating
the object from the background overcomes the difficulties
in change in appearance model.7,13,14 It has been shown
that an object model trained via a discriminative classifier
provides a significant improvement in the detection of the
object.

Grabner and Bischof15 proposed an algorithm to select
features for tracking with online boosting. These algorithms
use positive and negative samples when updating the classi-
fier. With the change in appearance, this algorithm suffers
from the tracking drift problem. An online semisupervised
boosting method is proposed by Grabner et al.16 to handle
the drift problem, where labeled examples come from the
first frame only, and subsequent training examples are left
unlabeled. Yu et al.17 proposed a gradient-based feature
selection approach with online boosting with the objective
of both feature selection and weak classifier updating.
Babenko et al.18 presented multiple instance learning into on-
line tracking where samples are considered within positive
and negative bags or sets. Kalal et al.19 proposed a novel
paradigm with semisupervised learning where positive and
negative samples are selected via an online classifier with
structural constraints.

A wide range of feature-based algorithms [e.g., Harris-
Affine,20 scale-invariant feature transform (SIFT),21

SURF,22 BRIEF,23 self-organizing map (SOM)-based match-
ing24,25] has been proposed for keypoint detection to obtain
the features of the objects or scene. Harris and Stephens26 pro-
posed a corner detector to identify interest points that is robust
to changes in rotation and intensity but is very sensitive to
changes in scale. Schmid and Mohr27 used Harris corners
to show invariant local feature matching although they
used a rotationally invariant descriptor of the local image
regions and allowed features to be matched under arbitrary
orientation change between the two images. Mikolajczyk
and Schmid20 proposed the Harris–Laplace detector for the
detection of features by the Laplacian-of-Gaussian and
provided rotation and scale-invariant features. Lowe21
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proposed the SIFT method by a difference-of-Gaussian that
provides features invariant to image scaling and rotation,
and partially invariant to changes in illumination and view.
Ke and Sukthankar28 examined the local image descriptor
used by SIFT and developed principal component analysis
(PCA)-based local descriptors that are more distinctive and
more robust to image deformations compared with Lowe’s
SIFT.21 However, such descriptors can be costly, as matching
is accomplished with nearest-neighbor search, which tends to
be computationally expensive.

Recently, feature-based approaches have been used for
feature matching and three-dimensional (3-D) tracking of
objects for the efficient detection of objects.29,30 Gordon
and Lowe31 presented a system for augmented reality to per-
form object recognition with the use of highly distinctive
SIFT features to provide robust tracking under scene
changes. Lepetit et al.9 proposed an efficient feature-based
tracking approach and presented a lot of appearance changes
for the target object. However, this approach is computation-
ally expensive in the offline-training phase. In recent
research,24 we presented an improved feature matching
method to match features between images with low compu-
tation time and compared with the Lowe’s SIFT.21 This
article is focused on the tracking of stationary object in
the videos using improved feature matching method. In
the previous work, we focused on the feature matching
between different images under variant conditions, whereas
in this work, we worked on the videos for efficient tracking
of object with less computation time. The proposed method
is focused on the object tracking in videos with the use of
improved feature matching with fast computation and to
track the object under varying conditions as compared
with the recent tracking algorithms. The object features
are obtained for the region of interest to be tracked in the
video sequence and the proposed algorithm is based on
matching the features between the objects in different
video frames, and it has the mechanism to reinitialize the
object if it is lost and appears again. The feature matching
is done with the winner calculation method on the reduced
feature set, and corresponding features in different video
frames are matched resulting in the detection of object in
the video frames.

Traditionally, external sensors such as laser rangefinders
and distance or proximity sensors were used to gather infor-
mation about the surrounding environment required by
autonomous navigation applications. Of late, vision sensors
such as cameras, stereo-vision cameras, and infrared cam-
eras32 are being widely applied because of their ever-growing
ability to gather information in comparison with previously
used sensors. Vision sensors have various advantages over
other range-based sensors such as the capability of detecting
obstacles in the navigation path and the capability of ena-
bling navigation in terrain environments. Therefore, vision
sensors are becoming popular in the development of
vision-based applications. Recently, Kinect sensors are
also gaining popularity and importance due to their advan-
tages over existing sensors in the field of vision science.33

Kinect sensors have the ability to provide color and depth
for an image and can recognize human skeletal joints
along with gesture commands.34–36 However, in spite of
the above-mentioned advantages, they do not provide feature
details associated with the objects present in the path of robot

navigation. Thus, we present an efficient neural network–
based algorithm to determine the object feature details to
track objects in a video sequence, and we can handle the
appearance variations with the proposed method.

1.1 Contribution
In this article, we propose a novel object tracking method
based on the SOM feature matching in video sequences.
We capture different sets of video sequences with the Kinect
sensor device and the tracking of object is accomplished by
SOM feature matching. The major research contribution in
this article is proposing an efficient object tracking method in
which the object tracking is done using winner calculation
between the selected region of interest and the subsequent
frame. To overcome the computational time problems of
the object tracking algorithm, we introduced a novel method
to speed up the tracking of the selected object in the videos.
The scale-invariant feature descriptors generated from the
selected object are supplied as an input to the SOM network
and dimension of features is reduced by calculating the win-
ner pixels to save the computational time of the object
tracking.

Our novelty is to develop an efficient object tracking algo-
rithm to track the selected object in the video sequences with
less computational calculation. The tracking of object is done
by matching the features between the reference region of
interest and the subsequent video frames. The SOM network
is used for the feature dimension reduction and to extract the
meaningful information resulting into winning pixels. The
reduced features are then used to track the target object in
the different frames of the video sequence. The proposed
object tracking method is invariant to image scale and rota-
tion, robust to change in illumination or in 3-D viewpoint.
The proposed method can generate stable keypoints and can
efficiently track the object in long video sequences with less
computational time because it stores the stable features dur-
ing the object tracking. In this article, we present the results
of different experiments on four video sequences captured
with the Kinect sensor and compared the results with differ-
ent tracking algorithms to examine the performance of the
proposed method. Distance information is then assigned to
the tracked object with the Kinect sensor with the use of
depth information, thus the proposed method can efficiently
track and estimate the depth of the object.

1.2 Paper Organization
The organization of this paper is as follows. Section 2 intro-
duces a brief overview of the keypoint-based target detec-
tion. Section 3 explains the proposed method for object
tracking with a neural network-based feature matching tech-
nique. Section 4 depicts experimental results and compares
the proposed neural network-based tracking algorithm with
the mean-shift tracking algorithm, the SIFT-based tracking
algorithm, and the multiple instance learning algorithm.
Section 4 also details the effectiveness of the proposed
method. Finally, we conclude our research in Sec. 5.

2 Keypoint-Based Target Detection
SIFT is a feature descriptor proposed by Lowe21 for
extracting distinctive invariant features from images that
can be invariant to image scale and rotation.21 The SIFT
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method consists of four major stages: scale-space extrema
detection, keypoint localization, orientation assignment, and
keypoint descriptor.21 SIFT keypoints are defined as points
of local gray-level maxima and minima that are obtained
from the difference-of-Gaussian images in scale space.
The SIFT detector extracts a collection of keypoints from an
image. The first stage is implemented efficiently using a dif-
ference-of-Gaussian in scale-space to identify potential inter-
est points that are invariant to scale and orientation. Notation
to determine the keypoints is given below:

Dðx; y; σÞ ¼ ½Gðx; y; kσÞ − Gðx; y; σÞ� � Iðx; yÞ
¼ Lðx; y; kσÞ − Lðx; y; σÞ; (1)

where Lðx; y; σÞ denotes the scale-space of an image result-
ing from the convolution of a variable-scale Gaussian,
Gðx; y; σÞ, with an input image, Iðx; yÞ. Dðx; y; σÞ is the dif-
ference of Gaussians and k denotes the constant multiplica-
tive factor. The value of Gðx; y; σÞ in Eq. (1) is given by the
following equation:

Gðx; y; σÞ ¼ 1

2
Q

σ2
e−ðx2þy2Þ∕2σ2 : (2)

In the second stage of keypoint localization, the stable
keypoints are selected and the low-contrast keypoints are
rejected. An orientation histogram was formed based on
local image gradient directions within a region around the
keypoint to assign an orientation to each keypoint location.
A 4 × 4 array of histograms with eight orientation bins in
each is obtained, thus the size of the descriptor of SIFT is 4 ×
4 × 8 ¼ 128 dimensions. It is found that an image size of
640 × 480 contains from 200 to 1500 SIFT descriptors
and keypoints in the video frames of the video sequence.
The 128-dimensional SIFT descriptor value is stored with
the double data type, and thus each image requires
500 kB (128 × 8 × 500∕1024) of memory. In order to reduce
the descriptor size, we introduced a dimensional reduction
method with the use of a neural network to save memory
space and to enhance computation. Figure 1 shows an over-
view of our proposed method in our recent research.24 The
feature similarity between the two keypoints can be mea-
sured by the winner calculation method with the neural net-
work, which is used to track objects and will be discussed in
the next section. The keypoint matching proposed by Lowe21

in a high-dimensional feature space is time consuming, thus
the dimension of the keypoints is reduced with the winner
selection method in the different video frames.

Now, we give an overview of our proposed method to
track the target object in video sequences with keypoint
matching between different frames of the video sequences.
In this article, we have used the matched keypoints in differ-
ent frames for tracking the target objects. A patch of the pro-
posed tracking method results is presented in Fig. 2, showing
the tracking of objects in different video frames under vary-
ing conditions such as rotated, scaled, blurred, and noisy
conditions. Section 3 presents a detailed description of our
proposed tracking method with improved feature matching
between the video frames of the video sequences.

3 Proposed Method for Target Tracking with Neural
Network-Based Keypoint Matching

In this section, we explain the proposed method for tracking
objects in video sequences. The tracking of object in the
video sequences is accomplished by the proposed tracking
technique by estimation of the object features. To better
understand the proposed tracking approach, we will first
explain the SOM-based competitive learning method to
reduce the dimension of the target object feature vectors
and then discuss the tracking method to track the object
with the improved feature matching process.

The SOM is an artificial neural network used for the visu-
alization and abstraction of complex data that provides a pro-
jection of multidimensional data onto a two-dimensional
(2-D) map while preserving the topology of the input data
space. A SOM consists of units called neurons that are
organized on a regular grid, usually a 2-D rectangular, cir-
cular, or hexagonal topological grid. The SOM is applicable
to a variety of image processing fields such as data mining,
classification, and feature reduction in terms of nonlinear
projection of multivariate data into lower dimensions.37

The SOM is an unsupervised neural network that typically
has two layers of nodes, the input layer and the output layer
(see Fig. 3). The input layer consists of a set of nodes or
neurons, and the output layer consists of output grid map
units connected via weights with n input feature vectors
obtained with the SIFT scale-space method.21 The neurons
in the SOM network are represented by a weight or prototype
vector which consists of the number of components similar
to the number of input variables, i.e., the dimensions of the
input space. In order to preserve the topology of the input
data, the input data are mapped on the grid so that close
points in the input space are mapped on close points in
the output space according to the defined neighborhood
relationship.

Fig. 1 Keypoint matching: the two sets of images in (a) and (b) show the keypoint matching (a) results obtained with scale-invariant feature trans-
form (SIFT)-based keypoint matching, and in (b) the results obtained with the self-organizing map (SOM)-based improved feature matching tech-
nique (Ref. 24). The line in the two images indicates the matched points in the different frames of the video sequence.
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The feature vector is supplied as an input to the SOM net-
work to reduce the dimension of the features. The training
algorithm was used in order to train the SOM network.37

Competitive learning procedure is used for the learning proc-
ess in the SOM network and the weights are modified that
have random values during the initialization. During train-
ing, the Euclidean distance between each vector and all of
the weight vectors for a predetermined number of cycles is
calculated and compared. After the Euclidean distance is
determined, the neuron whose weight vector has the best
match and minimum distance is chosen and is called the
best matching unit (BMU). For each training step, the new
weight vectors are obtained using the weighted averages of
the input feature vectors. The values are then updated,
respectively. The similar winning pixels in the different
video frames are found in order to track the presence of
the object in the video sequence.

The input vector vi is defined as vi ¼ fvi1; vi2; : : : ; vingT
and the weight vector wi at the unit i is given as
wi ¼ fwi

1; w
i
2; : : : ; w

i
ngT . In order to minimize the norm,

the best match is selected by taking the Euclidean distance
kvi − wik as a norm. The BMU cðviÞ can be defined as

cðviÞ ¼ arg minfkvi − wikg. When cðviÞ is determined,
the weight vector is updated using the following equation:

wiðtþ 1Þ ¼ wiðtÞ þ hciðtÞfviðtÞ − wiðtÞg; (3)

where t is the discretized time; t ¼ 0; 1; 2; : : : and the neigh-
borhood function hciðtÞ is defined as

hciðtÞ ¼ αs exp

�
−
krc − rik2
2σ2ðtÞ

�
; (4)

where ri and rc denote the position vectors of the unit i and
the BMU, respectively. αs is the coefficient which is defined
as a monotonically decreasing constant within the range
0 < αs < 1. Function σðtÞ is defined as σðtÞ ¼
σðt − 1Þ − R

TS
; here, σð0Þ ¼ R and σðTSÞ ¼ 0. TS and R

Fig. 2 Detection of a car object with the proposed tracking method under varying conditions in a video sequence: as shown by the green line, the
toy car is detected under different poses such as rotated, scaled, blurred, and noisy conditions.

Fig. 3 The basic structure of the SOM feature map. (In this schematic
image n inputs and m ×m output units arranged in a grid topology. It
consists of input vector v i ¼ fvi

1; v
i
2; : : : ; v

i
ngT with weight vectorwi ¼

fwi
1; w

i
2; : : : ; w

i
ngT with output of m ×m grid size).

Fig. 4 Stepwise procedure of the proposed method for object
tracking. Video captured with Kinect sensor and the object features
is passed to feature-reduction and feature-matching stages. The out-
put stage resulted in an effectively tracked object with the proposed
method.
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are the parameters that denote the number of training steps
and the initial radius, respectively.

We now define the tracking procedure in order to deter-
mine the tracked object with the use of matched features. The
stepwise procedure of the proposed method for object
tracking is depicted in Fig. 4. The complete pseudocode
of the proposed algorithm for object tracking is given in
Fig. 5. The captured video sequence is fragmented into
video frames. To track the region of interest for the target
object in the video sequence, the features were obtained
from the SIFT method. It is necessary to extract keypoints
in the region of interest with the SIFT method. The above
mentioned keypoint features are used for the tracking process
and as an input to the SOM network. It has been found that
the SOM is modified to deal with the matching process
between the reference region of interest and the subsequent
frames in the video sequence. SI and SJ represent the set of
pixels in the reference region of interest and the set of pixels
in the next video frame, respectively. Sx ¼ fxx; yxg is the set
of position vectors of the pixels. The proposed algorithm per-
forms tracking of object between the reference target object

and the object in the subsequent frame (Fig. 5). The proposed
algorithm also tracks similar winning pixels, which are deter-
mined in subsequent video frames.

The modified SOM algorithm can provide optimized
tracked object using the neural network-based method.
Lowe21 defined a threshold value between the Euclidean dis-
tances to the nearest and the second-nearest neighbors in
order to determine the correct and false matches. The defined
constrained condition makes sure that the object does not
contain repeating patterns and one suitable match is
expected. Also because of the defined constraint, the
Euclidean distance to the nearest neighbor is significantly
smaller than the Euclidean distance to the second-nearest
neighbor. The correct or false matches can be obtained
from the positive and negative matches based on the distance
to the nearest and the second nearest neighbor. Lowe21

claims that a match is selected as positive if the distance
to the nearest neighbor is 0.8 times larger than that to the
second nearest one.

Our proposed algorithm provides an improvement over
the SIFT algorithm in terms of correct matches and

Fig. 5 Pseudocode of the proposed algorithm for object tracking. The objects in the video sequence are tracked with feature matching between
different video frames.
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computation time. In order to determine the correct matches,
the differences between the corresponding matched key-
points are computed for the reference target object and
the subsequent frames in the video sequence. The matched
pair is selected as the stable keypoint if the computed differ-
ence is less than or equal to the threshold value. In accor-
dance with the nearest neighborhood procedure in the
SOM network, for each feature in the reference target object,
the corresponding feature is determined using the matching
method. Based on the minimum distance, the winner neuron
is selected and the matched winning feature set is selected as
a set of location-matched keypoints. To search for an appro-
priate similarity region, launch the distance estimation
method between the detected locations and determine the
location-matched keypoints by estimating the minimum dis-
tance, respectively. The location-matched keypoints are then
obtained from the following equation:

MðU;VÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxU − xVÞ2 þ ðyU − yVÞ2

q
: (5)

If the MðU;VÞ is less than the Euclidean distance, it is
considered to be the tracked point and is accepted.
Otherwise the matched keypoints is rejected. ðxU; yUÞ is the
location of the reference region of interest, and ðxV; yVÞ is the
location of the subsequent video frames in the video
sequence. Thus, only the stable keypoints are obtained with
the proposed object tracking method (Fig. 5).

3.1 Distance Assignment to the Tracked Object
We assign a distance to the tracked objects with the Kinect
technology after obtaining the tracked object with the

proposed object tracking method. The Kinect depth sensing
system is composed of an infrared (IR) emitter projecting
structured light, which is captured by the CMOS image sen-
sor and decoded to produce the depth image of the scene. Its
range is specified between 0.7 and 6 m although the best
results are obtained from 1.2 to 3.5 m. The color image res-
olution is 640 × 480 pixels, and depth image resolution is
320 × 240 pixels with a rate of 30 Hz. The field of view
is 57 deg horizontal, 43 deg vertical and has a tilt range
of �27 deg.34–36

Each pixel in the depth image is labeled according to the
distance and the tracked object is assigned a distance with the
depth image technology. The depth information is obtained
by initializing the depth stream. The depth stream data are
converted to the byte array format, which is an array in
row order, and the depth stream data are packed in the
32-bit RGBA pixel format. Each pixel in the depth image
represents the distance in millimeters and stores the data val-
ues using the RGB data format. The depth data are obtained
and converted into a distance to display the color map of the
depth image. If an object is closer than 850 mm or farther
than 4000 mm, the result will be 0. We used the Kinect
SDK to extract the depth map and performed coding to iden-
tify the near and far objects based on the color map. We use
the BGR format to assign the color to different distances
(Table 1). For example, the areas in red indicate objects
that are placed at a distance between 2 and 3 m.
Similarly, various distances are assigned based on the colors.
This technology worked well for the objects at distance in the
range of 1.2 to 3.5 m. The Kinect for Windows SDK defines
a constant on the DepthImageFrame class, which specifies
the number of bits to shift right to obtain the depth values.

Table 1 Table for pseudocode for Kinect technology to assign color values to the tracked objects and assign distance based on the color code.
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The byte array holds the color pixels of the object features.
The image uses four bytes: blue, green, red, and alpha. The
alpha bits are used to determine the transparency of
each pixel.

4 Experimental Results and Discussion
In this section, we demonstrate and discuss the experiments
conducted for tracking objects, verifying the effectiveness of
the proposed method by comparing it with the mean-shift
tracking algorithm, the SIFT-based tracking algorithm and
the multiple instance learning algorithm, and discuss the
improvement of the object tracking methodology in terms
of computation time. The different tracking algorithms
have been implemented in MATLAB and tested on a 2.5-
GHz Intel® Core™ 2 Quad CPU Q8300. We have used
the Kinect sensor device designed by Microsoft for the
acquisition of the video sequence. To demonstrate the
tracking ability, four video sequences have been acquired
and used for the experiments. The first video sequence is
a sequence of three toy cars, the second video sequence is

a sequence of an indoor lab environment, the third video
sequence is a sequence of boxes, and the fourth video
sequence is a sequence of steel rack (see Fig. 6). The reso-
lutions of the images for the four video sequences were
640 × 480 pixels, and the video sequence was captured at
a frame rate of 30 fps.

Generally, motion detection, which is initially used to
determine moving objects, is necessary for automatic
tracking of unidentified objects in video sequences. Motion
detection algorithms, such as frame differencing, back-
ground modeling/subtracting and optical flow,38 are robust
to identify unknown moving objects which will be regarded
as tracked target in the coming image sequences. On the
other hand, as tracked targets with prior knowledge or pre-
defined model, these tracked objects at first frame can be
extracted easily by information such as shape, texture, and
color or correlation result regardless of whether these targets
are moving or stationary. For example, the motionless car
shown in Fig. 7 at first frame is successfully recognized
with its prior knowledge of color (yellow and red). In this

Fig. 6 Test sequences used in experiments. (a) Toy car sequence. (b) Indoor environment of the lab. (c) Box sequence. (d) Rack sequence.

Fig. 7 Object detection with prior knowledge (color here). (a) Tracked car at first frame. (b) Identified car with color information.
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article, all of the tracking algorithms are illustrated with sta-
tionary objects which means that there are no real moving
objects and the image sequences are acquired by moving
the Kinect camera only (motion detection is unnecessary
in this case). We focus on the tracking method in terms
of computational time. Consequently, any stationary objects
in image sequence can be used as tracked target and we can
extract specific object for tracking at first frame when the
prior knowledge or predefined model about the target is
given. In this experiment, some of the tracked targets at
first frame are automatically determined with prior informa-
tion or predefined object model while others are manually
selected.

The proposed tracking algorithm has been used to track
the object in the above-mentioned video sequences, and the
results obtained have been compared with the mean-shift
tracking algorithm,11 the SIFT tracking algorithm, and the
multiple instance learning algorithm.18 Experimental results
show the effectiveness of the proposed method in terms of
computation time. The tracking results based on the mean-
shift tracking algorithm, the SIFT tracking algorithm, the
multiple instance learning algorithm, and the proposed algo-
rithm for the four video sequences are shown in this section.
Figure 8 shows the results obtained from tracking the red
object in the toy car video sequence using the mean-shift
tracking algorithm, SIFT tracking algorithm, multiple in-
stance learning algorithm, and the proposed tracking algo-
rithm. The tracked object (red car) at first frame is chosen
from the determination result shown in Fig. 7 which is iden-
tified with prior color information. Figure 9 shows the results
for tracking the chair object in an indoor lab environment
sequence using the mean-shift tracking algorithm, SIFT
tracking algorithm, multiple instance learning algorithm,

and the proposed tracking algorithm. The chair object at
first frame is initialized with correlation result by using
the predefined color model and parts of them are selected
for tracking. It can be observed in Fig. 9(a) that the selected
target object in the mean-shift tracking algorithm has been
lost by the tracking process. As the mean-shift tracking algo-
rithm is based on comparing the histogram, this algorithm
cannot track the object if it is lost and reappears after
some time. The SIFT tracking algorithm21 has the capability
to generate local features robust to changes in image scale,
noise, illumination, and local geometric distortion. However,
the SIFT algorithm has high computational complexity. The
multiple instance learning algorithms can track the target
object but require high computational time. Thus, the pro-
posed tracking method overcomes the difficulties of the
above-mentioned algorithms.

Here, tracking objects at first frame in Figs. 10 and 11 are
manually selected and are automatically tracked in the com-
ing image sequences. Definitely, if the models of tracked
objects are given, they can be automatically identified at
first frame. Figure 10 shows the results for tracking the
box object in the box sequence using the mean-shift tracking
algorithm, SIFT tracking algorithm, multiple instance learn-
ing algorithm, and the proposed tracking algorithm.
Figure 11 shows the results for tracking the rack object in
the rack sequence using the mean-shift tracking algorithm,
SIFT tracking algorithm, multiple instance learning algo-
rithm, and the proposed tracking algorithm.

The proposed tracking approach is invariant to object loss,
scaling, rotation, noise, and blurring (Fig. 2). The proposed
algorithm is robust to these changes and can efficiently per-
form tracking under various situations. In this article, we
have focused on single-object tracking and also on reducing

Fig. 8 (a) Mean-shift algorithm-based object tracking with toy car sequence: tracking the red object for frame nos. 1, 14, 22, 30, 40, 44, 51, 66, and
102. (b) SIFT-based object tracking with toy car sequence: tracking the red object for frame nos. 1, 14, 22, 30, 40, 44, 51, 66, and 102. (c) Multiple
instance learning-based object tracking with toy car sequence: tracking the red object for frame nos. 1, 14, 22, 30, 40, 44, 51, 66, and 102.
(d) Proposed method-based object tracking with toy car sequence: tracking the red object for frame nos. 1, 14, 22, 30, 40, 44, 51, 66, and 102.
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Fig. 9 (a) Mean-shift algorithm-based object tracking with indoor environment of the lab sequence: tracking the chair object for frame nos. 1, 18, 30,
44, 56, 102, 125, 134, and 147. (b) SIFT-based object tracking with indoor environment of the lab sequence: tracking the chair object for frame
nos. 1, 18, 30, 44, 56, 102, 125, 134, and 147. (c) Multiple instance learning-based object tracking with indoor environment of the lab sequence:
tracking the chair object for frame nos. 1, 18, 30, 44, 56, 102, 125, 134, and 147. (d) Proposed method-based object tracking with indoor envi-
ronment of the lab sequence: tracking the chair object for frame nos. 1, 18, 30, 44, 56, 102, 125, 134, and 147.

Fig. 10 (a) Mean-shift algorithm-based object tracking with the box sequence: tracking the box object for frame nos. 1, 123, 189, 229, 260, 296,
314, 378, and 420. (b) SIFT-based object tracking with the box sequence: tracking the box object for frame nos. 1, 123, 189, 229, 260, 296, 314,
378, and 420. (c) Multiple instance learning-based object tracking with the box sequence: tracking the box object for frame nos. 1, 123, 189, 229,
260, 296, 314, 378, and 420. (d) Proposed method-based object tracking with the box sequence: tracking the box object for frame nos. 1, 123, 189,
229, 260, 296, 314, 378, and 420.
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the computation time with the use of the proposed tracking
technique. With the use of neural network-based tracking,
the method presented in this article reduces the searching
time of tracking objects in the video sequence, thus greatly
reducing the time complexity compared with the mean-shift
tracking algorithm, the SIFT tracking algorithm, and the
multiple instance learning algorithm.

We have evaluated the effectiveness of the proposed sys-
tem on four video sequences, and the results clearly show the
advantages of the proposed method in terms of computation
time. Table 2 compares the computation time for the four
sequences with the mean-shift tracking algorithm, the
SIFT tracking algorithm, the multiple instance learning

algorithm, and the proposed tracking algorithm. As can be
clearly noticed, the results show that the proposed tracking
algorithm tracks the object efficiently using less computa-
tional time. In Fig. 9(a), it should be noted that the target
object is not tracked with the mean-shift algorithm in
frame no. 102 because the target object is lost after frame
no. 60 in the indoor lab environment video sequence. The
mean-shift algorithm cannot track the object when it is
lost, regardless of whether or not it reappears in the sub-
sequent frames of the video sequence. The object can be
tracked with the SIFT tracking algorithm, Fig. 9(b), but
requires more time to track the object. However, the multiple
instance learning algorithm can track the object but requires

Fig. 11 (a) Mean-shift algorithm-based object tracking with the rack sequence: tracking the rack object for frame nos. 1, 104, 172, 207, 235, 269,
291, 312, and 325. (b) SIFT-based object tracking with the rack sequence: tracking the rack object for frame nos. 1, 104, 172, 207, 235, 269, 291,
312, and 325. (c) Multiple instance learning-based object tracking with the rack sequence: tracking the rack object for frame nos. 1, 104, 172, 207,
235, 269, 291, 312, and 325. (d) Proposedmethod-based object tracking with the rack sequence: tracking the rack object for frame nos. 1, 104, 172,
207, 235, 269, 291, 312, and 325.

Table 2 Performance comparison of computation time for the toy car sequence, indoor lab sequence, box sequence, and rack sequence with
mean-shift tracking algorithm, SIFT tracking algorithm, multiple instance learning tracker, and proposed SOM-based tracking algorithm.

Video sequence

Average CPU computational time (s) for the whole video sequence

Mean-shift tracking
algorithm

SIFT-based tracking
algorithm

Multiple instance learning
tracker (Ref. 18)

Proposed SOM based
tracking algorithm

Toy car sequence 0.092615 0.121075 0.221472 0.024968

Indoor environment
of the lab

0.098679 0.097452 0.225215 0.020568

Box sequence 0.100903 0.110437 0.229496 0.027079

Rack sequence 0.085536 0.081522 0.226072 0.022334

Journal of Electronic Imaging 033017-10 Jul–Sep 2013/Vol. 22(3)

Sharma and Moon: Improved scale-invariant feature transform feature-matching technique-based object tracking. . .



high computational load [Fig. 9(c)]. On the other hand, the
proposed tracking method can efficiently track the object
even though the object is lost once and subsequently reap-
pears, as shown in Fig. 9(d) for frame no. 102 with less time.
The proposed approach is based on neural network–based
tracking of objects in the subsequent video frames and
can efficiently track objects with less computation time
under varying situations (Fig. 2).

In order to reduce the computational time, this article has
proposed an improvement over the mean-shift tracking algo-
rithm, the SIFT-based tracking algorithm, and the multiple
instance learning algorithm with the use of Kohonen’s
SOM neural network methodology. The descriptor vector
was computed using the SIFT method for the selected region
of interest to be tracked, and the dimensions of the extracted
features were down-sampled by a factor of 2. The optimum
features were selected using the SOM method based on the
winner calculation method. In order to determine the amount
of reduced processing time, it was assumed that the number
of extracted features in the lower octave with respect to the
higher octave is decreased by four times due to the down-
sampling by a factor of 2 in both image directions. The
size of the descriptor vectors was reduced and passed to
the SOM network in order to output the winner neurons
in the region of interest and the subsequent video frames.
Hence, the matching cost was reduced by 1.5 times as com-
pared with the mean-shift algorithm, the SIFT-based tracking
algorithm, and the multiple instance learning algorithm. The
proposed algorithm was able to locate the object accurately
and consistently in all the areas, whereas the mean shift algo-
rithm produced unsatisfactory results, and the SIFT tracking
algorithm and the multiple instance learning algorithm
require more computational calculations. The tracking accu-
racy can be seen by Fig. 9 in the lab sequence which shows
that the proposed tracking method consistently produced sta-
ble and satisfactory tracking results. Similarly, the proposed
method tracking accuracy can be evaluated by the results of
Figs. 8(d), 9(d), 10(d), and 11(d). The object is accurately
tracked with the proposed SOM-based tracking method
resulting into stable and satisfactory tracking results.

We have presented the comparison graph for the four
video sequences, which indicates that the proposed method
reduces the object tracking time compared with the mean-

shift tracking algorithm, the SIFT tracking algorithm, and
the multiple instance learning algorithm. The mean-shift
tracking algorithm is based on a color-histogram and a win-
dow approach, without the mechanism to redefine the initial
window. With the SIFT tracking algorithm and the multiple
instance learning algorithm, the object tracking calculation
was reduced to the selected region of interest but requires
more computation to track objects under different situations.
To overcome these difficulties, the proposed tracking
approach efficiently tracked objects by reducing the time
required for searching and the computational complexity.
Figure 12 shows the performance comparison of computa-
tion time of the first 150 video frames for the toy car
sequence consisting of three objects for the mean-shift
tracking algorithm, the SIFT tracking algorithm, multiple in-
stance learning algorithm, and the proposed tracking algo-
rithm. Figure 13 shows the performance comparison of
computation time for the indoor environment of the lab
sequence with the mean-shift tracking algorithm, the SIFT
tracking algorithm, the multiple instance learning algorithm,
and the proposed tracking algorithm for the first 150 video
frames. Figure 14 shows the performance comparison of
computation time for the box sequence for the 420 video
frames with the mean-shift tracking algorithm, the SIFT
tracking algorithm, the multiple instance learning algorithm,
and the proposed tracking algorithm. Figure 15 shows the
performance comparison of computation time for the rack
sequence for the 325 video frames with the mean-shift
tracking algorithm, the SIFT tracking algorithm, the multiple
instance learning algorithm, and the proposed tracking
algorithm.

The average time taken by the mean shift tracking algo-
rithm, the SIFT tracking algorithm, and the multiple instance
learning algorithm was 0.0926, 0.1210, and 0.2214 s, while
the average tracking time was significantly reduced to
0.0249 s when the proposed method was used. The average
time of the proposed tracking algorithm was reduced because
of the reduction in features with the neural network–based
method. The search was conducted on the reduced set of fea-
tures and provides tracking output in less computation time
compared with the mean-shift tracking, SIFT tracking algo-
rithm, and multiple instance learning algorithm. The depth is
assigned to the tracked objects and the pseudocode to assign

Fig. 12 Performance comparison of computation time for the toy car sequence with mean-shift tracking algorithm, SIFT tracking algorithm, multiple
instance learning algorithm, and the proposed SOM-based tracking algorithm.
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Fig. 14 Performance comparison of computation time for the box sequence with the mean-shift tracking algorithm, SIFT tracking algorithm, multi-
ple instance learning algorithm, and the proposed SOM-based tracking algorithm.

Fig. 13 Performance comparison of computation time for the indoor environment of the lab sequence with the mean-shift tracking algorithm, SIFT
tracking algorithm, multiple instance learning algorithm, and the proposed SOM-based tracking algorithm.

Fig. 15 Performance comparison of computation time for the rack sequence with the mean-shift tracking algorithm, SIFT tracking algorithm, multi-
ple instance learning algorithm, and the proposed SOM-based tracking algorithm.
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distance values is given in Table 1. Figure 16 shows the
results for the depth assignment to the objects corresponding
to the nine video frames of the video sequences. We con-
ducted four object tracking experiments with the four differ-
ent methods, and we conducted distance estimation
experiments for the second video sequence. The depth esti-
mation technique worked well for distances of >1 m. The
object in the second video sequence is >1 m, and the above-
mentioned method worked well to estimate the distance of
the object.

5 Conclusion
In this article, we have addressed a neural network–based
object tracking algorithm to detect the selected object across
a video sequence in the context of developing real-time
vision-based applications. In order to improve the perfor-
mance of object detection and tracking based on SIFT feature
matching algorithm, SOM network was applied and feature
matching between the different frames was done using a win-
ner calculation method which highly reduces computational
cost. The Kinect depth technology is then employed in order
to calculate the distance between the extracted target objects
and the image sensor. Extensive experiments demonstrate
that the proposed approach can provide efficient, reliable
object tracking with less computation time. Also, the pre-
sented results prove the feasibility and usefulness of the pro-
posed method. As future work, we will focus on detecting

multiple objects using a real-time tracking methodology
and will focus on the tracking of moving objects in the
video sequence. The proposed method will be useful for
the development of many real-time autonomous navigation
and computer vision applications.
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