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Abstract. We report a theoretical study on the determination of three optical properties from spatially resolved
reflectance calculations. In particular, the reduced scattering coefficient μ 0

s, the absorption coefficient μa, and the
recently defined phase function parameter σ are identified. The solution of the inverse problem is based on the
principal component analysis of a large set of reflectance profiles that were calculated using an analytical sol-
ution of the radiative transfer equation. Different phase function types were studied to test the method in the
range of 0.63 mm−1 ≤ μ 0

s ≤ 4.2 mm−1 and 0.002 mm−1 ≤ μa ≤ 0.1 mm−1. For curves impaired with noise, we
were able to reconstruct μ 0

s and μa with relative median errors of 2.5% and 12%, respectively, and σ with an
absolute median error of 0.04. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.7.075003]
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1 Introduction
Optical light is a powerful diagnostic tool for medicine and
material analysis. Spatially resolved reflectance measurements
are a common method to investigate light propagation in scat-
tering media. The analysis can often be summarized statistically
in terms of optical properties such as the reduced scattering coef-
ficient μ 0

s , the absorption coefficient μa, the refractive index n,
and the scattering phase function pðθÞ. Although it has long
been known that the phase function has significant influence
on light propagation,1–3 it has often been neglected, in particular,
for reflectance experiments. In most studies, either the underly-
ing phase function was known and taken into account appropri-
ately or an arbitrary phase function was assumed. Only in a
few cases was a determination of a phase function parameter
performed.2,4,5 In principle, the phase function can be deter-
mined by measuring the angular distribution of the scattered
light in a goniometer.6 For this end, the diffusive sample is
diluted such that single scattering events can be traced.
However, in many cases, this straightforward approach is not
possible. An important example is given by most biological tis-
sues. Their phase function is determined by the spatial hetero-
geneities of the refractive index and thus depends among others
on the cell contact surfaces that cannot be diluted without being
destroyed. Typically, analyzed phase functions are characterized
by the anisotropy value g. If light propagation is modeled, often,
a Henyey–Greenstein phase function (HGpf)7 with a specific
anisotropy value is assumed. However, this procedure can give
rise to errors up to 60% in the spatially resolved reflectance1 for
small source-detector separations. The anisotropy value does not
describe the influence of the phase function on the reflectance
properly. In order to resolve this issue, two parameters have been
proposed to better describe the reflectance: Bevilacqua and
Depeursinge8 proposed the principle of equivalence relations

and its most prominent parameter γ ¼ ð1 − g2Þ∕ð1 − g1Þ with gi
representing the i’th Legendre moment of the scattering phase
function and thus g1 ¼ g the anisotropy value. This parameter is
well suited to describe the reflectance in the spatial domain,
however, not in the spatial frequency domain. To overcome
this drawback, we recently introduced a new parameter

EQ-TARGET;temp:intralink-;e001;326;401σ ¼
X∞
i¼0

ð−0.5Þi 1 − giþ2

1 − g1
; (1)

for both the spatial and the spatial frequency domain.9 When the
underlying phase function is not known in an experiment and
a theory is fit to the data, a phase function parameter (e.g., g,
γ, or σ) can be adjusted in addition to μ 0

s and μa. The result
can be best expressed in terms of γ or σ, since the latter param-
eters are little-dependent on the choice of phase function used in
the theory as long as it covers the relevant range of γ or σ. The
commonly used HGpf is not sufficient since it does not cover all
the values γ or σ can reach. Chamot et al.10 stated a physiological
range of 1.3 ≤ γ ≤ 2.4 corresponding to 0.74 ≤ σ ≤ 1.28
whereas the HGpf does not exceed γ ¼ 2 or σ ≈ 1.12. Other
models such as the Gegenbauer kernel phase function (GKpf)
proposed by Reynolds and McCormick11 with its parameters
α and g 0 are better suited in this regard. Kienle et al.2 used a
linear combination of two phase functions and fitted their ratios
to retrieve γ. Turzhitsky et al.12 applied a two parameter phase
function derived from theWhittle-Matern correlation function to
predict the subdiffusive reflectance. Kanick et al.4 provided a
γ-map of a human hand via spatial frequency domain measure-
ments. Very recently, Bravo et al.13 applied an inversion using a
Monte Carlo (MC) lookup table and Naglic et al.14 proposed an
inverse MC model based on μ 0

s , μa, γ, and the next order sim-
ilarity parameter δ for describing the reflectance at very short
source-detector separations. Despite these studies, the main
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reason not to regard the phase function in reflectance measure-
ments remained the lack of an appropriate theory to describe the
light propagation precisely and fast. The diffusion theory can be
calculated very fast but does not take into account any phase
function information. MC simulations can be applied to solve
the radiative transfer equation (RTE); however, they need exces-
sive computational time and are thus not applicable for real-
time evaluations. Existing analytical solutions of the RTE15

can be used to fit a spatial reflectance curve. However, due
to the additional phase function parameter, a tight incident
beam compared to 1∕μ 0

s and thus, high orders of the series
expansion, coming with the need of calculations with quad dou-
ble numbers, render the most difficult conditions for the analyti-
cal solution. As a result, fitting a single curve exceeds 30 min of
single CPU core time. Thus, a faster method is required.
Multivariate approaches are useful for this acceleration. In liter-
ature, artificial neural networks have been reported16,17 to solve
the inverse problem. Dam et al.18 reported minimal prediction
errors using a principal component analysis (PCA), determining
μ 0
s and μa in a small range of the possible optical parameters.

Yaqin et al.19 improved their neural network using a PCA for
preprocessing relative data. An interpolation from a lookup
table with a large set of theoretical reflectance data is also pos-
sible but would require large capacity on a hard drive for three
parameters to be varied. The reduction of this reflectance data
can be performed by a PCA. This study presents a fast algorithm
for the determination of μ 0

s , μa, and σ using an analytical solution
of the RTE for the light propagation and a PCA for reducing the
necessary data for a fast identification of the curve. This
approach based on a three-parameter approximation improves
the analysis of reflectance data for small source-detector sepa-
rations and provides useful insights into the limits of the predic-
tion and the modeling of the phase function, when realistic
conditions are applied. When errors are given, they represent
the median of the unsigned errors. For all the results in this
study, the corresponding root mean square errors are, in average,
2.8 times (ranging from 1.4 to 8.4 for the individual examina-
tions) larger than the median errors.

At first, the modeling and calculation of the light propagation
according to the RTE are explained. In the next section, the prin-
ciple of the evaluation is shown for only two parameters μ 0

s and
μa, which is not only useful when the phase function is known
but also much more demonstrative than the three parameter case.
The method is then expanded to a three-parameter analysis.
Section 3.2 is the main part of the report. It shows the capability
for the determination of μa, μ 0

s , and the phase function parameter
σ in a very fast and robust way. The results from this new evalu-
ation method are compared to those obtained by a fit.

2 Light Propagation Model
In this study, the light propagation is described by the nonpo-
larized RTE. We use the analytical derivation of the spatially
resolved reflectance by Liemert and Kienle15 to exactly solve
the PN-equations. We apply a Gaussian beam that illuminates
the sample perpendicularly as shown in Fig. 1. The PN-equa-
tions are the result of the decomposition of the radiance into
spherical harmonics. The decomposition into a high order N
is important in proximity to the source, where the radiance is
a steep function in the angular space. However, both the
high-order expansion and the small beam width come at the
cost of increased computational time. Here, we mainly use
N ¼ 11. Whenever we perform a fit that involves numerous

calculations to find the minimum of the cost function, we reduce
the order to N ¼ 7. Furthermore, one data set with N ¼ 17 is
calculated for comparison and to estimate the truncation
error. The geometry of the sample is assumed to be the half
space, and the boundary conditions are included exactly accord-
ing to Fresnel’s law assuming a constant refractive index of
nM ¼ 1.40 and n ¼ 1.00 in- and outside the medium, respec-
tively. In the analytical solution algorithm, also the phase func-
tion is projected onto spherical harmonics. These projection
values are called “Legendre moments” gi. The GKpf11 and
its special case for α ¼ 0.5, the HGpf, are applied for most cal-
culations in this study. In general, the corresponding Legendre
moments are calculated numerically. For the HGpf, they can be
calculated analytically using gi ¼ gi. Furthermore, we use a set
of different types of phase functions described by Bodenschatz
et al.9 For verification, we carry out MC simulations to solve the
RTE using the same geometry except for the incident beam that
is Dirac-shaped in the MC. This numerical solution is convolved
with the same Gaussian beam profile assumed in the analytical
calculations. After the convolution, the noise of the MC reflec-
tance curves is negligible compared to the simulated measure-
ment noise described below. This Gaussian beam decreases to
e−2 at 0.25 mm corresponding to a full width half maximum of
≈0.3 mm. This tight beam profile enables a detailed investiga-
tion of the strong influence of the phase function close to the
source but necessitates octuple-precision in the calculation of
the analytical solution, which renders the calculation slow.

In the study, we use sets of forward calculations of reflec-
tance data that are described in Table 1. For the calculation
of data set PCA1, used as data base for the 2D-PCA, we
kept the phase function constant and calculated the spatially
resolved reflectance for a grid of linearly spaced values of μ 0

s

and logarithmically spaced values of μa in ranges indicated in
the table. For the data base of the 3D-PCA (PCA2), for each
point on the said μ 0

s -μa-grid, the reflectance was calculated
for 54 equally spaced values of σ assuming a GKpf with
α ¼ 1.8. The spacing of σ was ensured using adequate values
of the second GKpf parameter g 0. The underlying optical co-
efficients of the test sets (TS A, TS B, TS C, TS D, and TS
MC) were chosen randomly: for the given number of combina-
tions, μ 0

s was chosen as an equally distributed number in the
range indicated in Table 1. The absorption value μa is given

Fig. 1 Schematic of the experimental setup that corresponds to the
calculated model.
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by a random exponent in the presented range. The test sets
differ in their choice of phase functions: in TS A, the constant
phase function used for PCA 1 was used. In TS B, a GKpf was
assumed with randomly chosen parameters 0 < α < 3 and
−0.5 < g 0 < 1. If the corresponding σ was not in the range
0.31 < σ < 1.29, the procedure was repeated. For TS C, the
set of 1000 phase functions used in a former study of
Bodenschatz et al.9 was used. For this purpose, for each combi-
nation of μ 0

s and μa, a random integer ranging from 1 to 1000
was chosen to indicate the phase function. In TS D, the phase
function was chosen similar to TS B; however, α was fixed to be
1.8. For TS MC, we assumed an HGpf and chose the anisotropy
value g in the range from 0.01 to 0.99. All data sets were calcu-
lated on a server machine with 16 cores except for the test set TS
MC. The underlying MC simulations were calculated on the
CPU of a desktop PC.

We observe that it is very difficult to rely only on the form of
the spatially resolved reflectance curve for the determination of
the three optical properties μ 0

s , μa, and σ. An absolute factor K to
scale the reflectance data R has to be determined to compare the
experimental and theoretical data. When this factor is known,
we call the reflectance data “absolute,” otherwise, it is called
“relative data.” In an experiment, the factor K can be determined
by calibrating the system using an optical phantom with known
optical properties. Furthermore, curves called “ideal” have a fac-
tor K that is exactly known. However, it is difficult to determine
this factor precisely in an experiment. To evaluate the error in the
determination of the optical properties caused by an error of K,
for curves called “realistic,” we multiply K with a random factor
between 0.95 and 1.05, so an error of up to 5% is assumed.
Furthermore, for the “realistic” reflectance data Rl (at points
ρ̃l ¼ lΔx, Δx ¼ 12.5 μm representing the pixel separation in
the sample plane), we assume normally distributed measurement
noise with the standard deviation

EQ-TARGET;temp:intralink-;e002;63;177Δl ¼
R0

Ne

ffiffiffiffiffiffiffi
2πl

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne

Rl

R0

þ � ffiffiffi
2

p
ΔRON

�
2

s
; (2)

that is added to the reflectance data Rl for each distance index l,
which is at first a digital number given by the camera. Here, Ne
represents the well capacity and ΔRON the readout noise per
pixel. R0 represents the digital number of the brightest pixel
of the camera. The sum in the root consists of the shot noise
and twice the readout noise, due to the necessity of taking a

dark image. The dark current was neglected since it is much
smaller than the readout noise for typical integration times
less than 1s when using a cooled silicon-based camera. The frac-
tion R0∕Ne scales the noise amplitude in electrons into the unit
of Rl. It is divided by

ffiffiffiffiffiffiffi
2πl

p
since most camera-based spatially

resolved reflectance setups integrate the signal over all pixels
having the same distance to the center of the incident beam,
thus, the number of pixels increases with the distance to the
source. For the calculation, we set Ne ¼ 15;000 that represents
50% of the full well capacity and ΔRON ¼ 1.2. These values are
given in the data sheet of the Zyla 5.5 (Andor, Belfast, Northern
Ireland) to represent a typical scientific CMOS camera.

3 Inverse Problem Algorithms

3.1 2D-PCA

In this section, the principle of the determination of μ 0
s and μa by

use of a PCA (2D-PCA) is explained. A full tutorial on PCA can
be found in Ref. 20. Briefly, PCA extracts the main data from a
matrix in terms of orthogonal vectors. These vectors can be seen
as the best-suited indexed family and thus concentrate the infor-
mation of the matrix. In this study, only the main vectors are
regarded, since for solving the inverse problem, the number
of principal components should be at least equal to the number
of parameters that are to be determined. To create the data
matrix, the spatially resolved reflectance is binned such that
it is given on a set of distances

EQ-TARGET;temp:intralink-;e003;326;251ρl ¼ βt2l þ ðρmax − ρmin − βÞtl þ ρmin; (3)

with ρmin ¼ 0.4 mm, ρmax ¼ 6.0 mm, β ¼ 5 mm using
tl ¼ l∕NL, l ¼ 1; : : : NL and the number of distances NL ¼ 50.
This uncommon formalism of using not equally spaced posi-
tions increases the sensitivity to the phase function parameter,
since there is a higher density of data points for smaller distan-
ces. In the result section, a comparison of this formalism with an
equally spaced model is presented. Reflectance data for every
combination j of the optical properties of the data set PCA 1
in Table 1 are calculated. To construct the matrix, on which
PCA will be performed, we first define the matrix element
f̃jl with the reflectances Rweighted with a power of the distance
to counter the decrease of the reflectance signal

Table 1 Computational data overview. PN -curves represent analytical solutions of the RTE, MC simulation were used to solve the RTE numeri-
cally. x: : : y represents either a linear spacing (N steps) or the choice of a number from an equally distributed probability from x to y (random).

Name Method Curves μ 0
s · mm μa · mm Phase function

PCA 1 P11 987 0.5: : : 5.1 (47 steps) 10−2.8: : :−0.8 (21 steps) HGpf, g ¼ 0.7

PCA 2 P11 12,960 0.5: : : 5.1 (24 steps) 10−2.7: : :−0.9 (10 steps) GKpf, α ¼ 1.8, σ ¼ 0.27: : :1.33 (54 steps)

TS A P11 15,000 0.63: : : 4.2 (random) 10−2.6: : :−1.0 (random) HGpf, g ¼ 0.7

TS B P11 8000 0.63: : : 4.2 (random) 10−2.6: : :−1.0 (random) GKpf: 0 < α < 3 and g 0 random with σ ¼ 0.31: : :1.29

TS C P11 15,000 0.63: : : 4.2 (random) 10−2.6: : :−1.0 (random) 1000 phase functions, randomly chosen from Ref. 9

TS D P17 800 0.63: : : 4.2 (random) 10−2.6: : :−1.0 (random) GKpf: α ¼ 1.8, g 0 random with σ ¼ 0.31: : : 1.29

TS MC MC 800 0.63: : : 4.2 (random) 10−2.6: : :−1.0 (random) HGpf, g ¼ 0.01: : :0.99 (random)
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EQ-TARGET;temp:intralink-;e004;63;752

f̃jl ¼ ρ1.75l · R½μa;j; μ 0
s;j; pðθÞ; ρl�;

l ¼ 1; : : : ; NL and j ¼ 1; : : : ; 987: (4)

The 1.75th power of ρl is a trade-off between the accuracies
of the optical properties to be determined with a focus on σ. A
comparison of different weighting functions is shown below. For
centralization and standardization of each row vector in this
matrix, a mean absolute value q0;j ¼

P
lf̃jl∕NL called zeroth

projection is extracted for the reflectance vector of each combi-
nation j of optical properties. In order to get a variable that only
depends on the shape of the reflectance curve, we extract the
standard normal variate21 for each reflectance vector

EQ-TARGET;temp:intralink-;e005;63;612fjl ¼
f̃jl − q0;j

sj
; (5)

with sj representing the standard deviation of the weighted
reflectance vector f̃jl. Using this matrix ðXÞjl ¼ fjl, we deter-
mine eigenvectors ~um and the corresponding eigenvalues λm of
its covariance matrix XTX. The eigenvalues (together with their
corresponding eigenvectors) are sorted by its values such that
λ1 ≥ λ2 ≥ λ3 ≥ : : : . The two eigenvectors ~u1 and ~u2 represent
the relevant principal components. In the next step, the projec-
tion vectors ~qm ¼ X~um are calculated for m ¼ 1;2 and normal-
ized such that h~qm; ~qmi ¼ 1 with m ¼ 0;1; 2. Please note that
the vector ~q0 was not obtained by the application of an eigen-
vector, but by calculating the mean absolute value. Nonetheless,
it is very useful to align it with the projection values. Since every
element of a projection vector ~qm represents a single combina-
tion of μa and μ 0

s , these vectors (m ¼ 0;1; 2) are expanded onto a
μa-μ

0
s-grid to become matrices Qm with m ¼ 0;1; 2. Using an

analytical model, no noise impairs the data. This allows the
smooth matrices Qm to be interpolated using a finer grid to
increase the resolution by a factor of two in both dimensions.
An exemplary matrix Q0 is represented by the curved surface
in Fig. 2(a). In summary, we have introduced the PCA algorithm
to process the theoretical reflectance data. Now, a single

reflectance data vector ~̌R given at positions ρl can be analyzed

efficiently: processing ~̌R analogously, we get the mean absolute

value Q̌0 [horizontal plane in Fig. 2(a)] and the vector ~̌f. The
projection values are given by the scalar product
Q̌m ¼ hf̌; ~umi with m ¼ 1;2. The optimal solution for μ 0

s and
μa should minimize the differences of Q̌m and Qm with
m ¼ 0;1; 2 [see Figs. 2(b) and 2(c)]. We define the matrix of
differences Φ ¼ P

2
m¼0 ðQm − Q̌mÞ2 [displayed in Fig. 2(d)].

The discrete position ~x0 in the grid yielding the minimal
value of Φ is analyzed. The true minimal position is assumed
to be near ~x0 and is determined by optimizing a quadric surface
in the neighborhood of this value. This can be done very effi-
ciently by calculating the Moore–Penrose pseudoinverse, which
does not depend on the specific curve and thus only needs to be
calculated once. The extremum of the quadric corresponds to
the true minimal position that provides the optical properties.
If the extremum is further away than the nearest neighbors
on the grid, ~x0 is assumed to represent the optical properties.
The functions for solving the inverse problem by use of the
PCA are implemented in Matlab2013b (The MathWorks Inc.,
Natick, Massachusetts).

3.2 3D-PCA

For the determination of the three parameters μ 0
s , μa, and the

phase function parameter σ (3D-PCA), the procedures explained
above are analogously applied. However, the transition of the
vectors ~qm to third-order tensors (μa-μ 0

s -σ-grid) instead of matri-
ces (μa-μ 0

s-grid) renders a graphical demonstration difficult. The
data set for finding the principal components consists of all com-
binations of optical properties described in PCA 1 in Table 1.
Using a GKpf with α ¼ 1.8, the variation of g 0 corresponds to σ
ranging between 0.27 and 1.33. The projection values were
interpolated on a grid with 72, 40, and 27 steps for μ 0

s, μa,
and σ, respectively. The resolution of the latter was reduced,
since results with grids of higher resolution showed no relevant

Fig. 2 Principle of the determination of the two optical properties μa and μ 0
s. (a) The projection value of the

curve to be analyzed (horizontal plane) is compared to that of curves of different optical properties. The
square of the difference is taken [logarithmically displayed in (b) and for another projection value in (c)].
(d) These matrices are summed up. In the neighborhood of the lowest point, a quadric is used to find the
optimal value to represent the determined optical properties (cross), compared to the optical properties of
the forward calculation (circle).
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enhancement. Since three optical parameters are to be evaluated,
the index m in the calculation of Φ is extended to 3, the corre-
sponding eigenvectors are presented in Fig. 3. Also, the result of
the nonlinear spacing of ρ can be found in the figure: since the
eigenvectors are orthogonal, their oscillations have the highest
frequency in the subdiffuse regime, where the influence of σ is
crucial.

3.3 Fit Routine

A nonlinear least squares optimization method22 is used
to adjust the parameters μ 0

s , μa, g 0 as well as the scaling
factor K for relative data to minimize

P
l½Řl − K ·

Rðμ 0
s ; μa; g 0; ρlÞ�2∕Δl with evenly spaced distances from the

source ρl. The high precision and corresponding slow compu-
tation render the use of the P11-solution for curve fitting difficult.
We therefore make use of the P7-solution that allows us to per-
form computations of a large and statistically meaningful data
set. A GKpf with α ¼ 1.8 is assumed, motivated by the large
range of σ possible by varying g 0.

4 Results

4.1 2D-PCA

In this section, a large number of reflectance curves are ana-
lyzed. This number is given in the corresponding rows in
Table 1. At first, test set A (TS A) is analyzed by the 2D-PCA.
The analysis of a single curve runs on one CPU core in less than
1 ms after initial loading of the prepared data. The determined
optical properties μ 0

s and μa for ideal and realistic curves (see
Sec. 2) are shown in Figs. 4(a) and 4(b), respectively. It can
be found that the predicted optical properties of the ideal curves
match the expected values almost perfectly. The deviations of
the obtained optical properties for the realistic curves give an
impression on how distorted the information is. Please note
that in this step the phase function is assumed to be known
and thus used in the forward calculations of PCA 1. To sta-
tistically demonstrate the quality of the optical property deter-
mination for the ideal curves, boxplots are shown in Fig. 5
featuring the 25% and the 75% quartiles as well as the median
values of the relative error of each optical property. The whiskers
usually displayed to represent the 5% and the 95% quantiles are
not shown since they are mostly two to six times the distance to
the median compared to that of the corresponding quartiles and
thus confirm the conclusions drawn from the quartiles. Only for
the small errors, this factor is exceeded for six whiskers. In the
visualization using the boxplots, the perfect match for the ideal
curves of TS A can be found too. The sensitivity of the 2D-PCA
algorithm to an unknown phase function is shown in Fig. 6,
where the 2D-PCA of TS B is presented. This additional degree
of freedom makes it more difficult to determine μ 0

s and μa. The
errors in μ 0

s and μa caused by a phase function difference exceed
those caused by the realistic noise assumptions and distortion of
K by far. Thus, for the two parameter determination of μ 0

s and μa,
we show the analysis of ideal curves by the 2D-PCA in Figs. 5
and 6 and do not show the similar results of the realistic curves.
Since σ was not determined in that case, in the right column, no
corresponding box is shown for the 2D-PCA.

0 1 2 3 4 5 6
−0.3

−0.2

−0.1

0
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0.3
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P
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l c
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ne
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Fig. 3 Four principal components ui , i ¼ 1;2;3;4 used in the 3D-PCA.
The nonlinear spacing of ρ can be seen in the increasing distance of
the data points.

Fig. 4 Optical properties (a) μ 0
s and (b) μa of TS A determined by the use of 2D-PCA. Each point rep-

resents the solution of one forward curve of TS A.

Journal of Biomedical Optics 075003-5 July 2017 • Vol. 22(7)

Krauter et al.: Determination of three optical properties from subdiffusive spatially. . .



For the other test sets, similar results can be found in Fig. 5.
Analyzing TS C, different kinds of phase functions produce
large deviations in μ 0

s and μa. Interestingly, in the analysis of
TS MC, the range of deviations is smaller compared to the
other test sets with varying phase functions. This is probably due
to the fact that only HGpf is used for the MC test set as in the
forward calculation of PCA 1. It underlines the limited variabil-
ity of HGpf even if g is varied in a physically reasonable range.

4.2 3D-PCA

Next, the 3D-PCA is applied on the test sets. Because of the
additional dimension, the computational effort is increased by
about one order of magnitude. The determination of the optical

properties for a single curve takes around 10 ms of CPU time on
a single core. When TS B is analyzed by the 3D-PCA [see
Figs. 7(a)–7(c)], the prediction of μ 0

s and μa is improved for
both ideal and realistic curves compared to the 2D-PCA. The
results for the ideal curves represent the errors of the 3D-
PCA algorithm. Those of the realistic curves show the influence
of the noise assumption. The study of Fig. 7 reveals some hori-
zontal and vertical clustering of data points. They correspond to
solutions that could not be optimized using the quadric fitting
(see Sec. 3.1) and thus lay on the grid points of the forward cal-
culations. The determined values of the phase function param-
eter σ are in good agreement with the expected values for ideal
curves. For realistic curves, however, its determination error
increases rapidly. This is not due to the added noise that has
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Fig. 5 Boxplots quantifying errors in the determination of the optical properties using 2D- and 3D-PCA.
The 25%, 50% (median), and 75% quantiles are shown. Three boxes are drawn together that represent
the analysis of the ideal curves by 3D-PCA (top), the realistic curves by 3D-PCA (center), and the ideal
curves by 2D-PCA (bottom) for the parameters (a) μ 0

s, (b) μa, and (c) σ. The 5% and the 95% quantiles (not
shown) are two to four times the distance to the median than the corresponding quartile (one exception).

Fig. 6 Optical properties of TS B determined by the use of 2D-PCA. The results for the realistic curves
are not shown because of their similarity to the results of the ideal curves.
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only a small effect on the determination of the optical properties,
but mainly due to the imprecisely known absolute value K. The
increase of the errors of the realistic case compared to the
ideal one is visualized more clearly in Fig. 5. For realistic
curves, 50% of the predicted values of σ are less than 0.027
from the expected value corresponding to 3% of the full
range of σ (0.31 ≤ σ ≤ 1.29) and 5% of the physiologically rel-
evant values (0.74 ≤ σ ≤ 1.28). The latter values are obtained
by plotting σ over γ for the 1000 phase functions used in TS C
and extracting the “physiological range” of 1.3 ≤ γ ≤ 2.4.10 An
important and most difficult challenge is the determination of
the optical properties in TS C by 3D-PCA [see Figs. 7(d)–
7(f)], since the underlying phase function is not known at all.
In the corresponding boxplots in Fig. 5(a), a small systematic
underestimation of about 1% can be found for μ 0

s. The uncertain-
ties of μa are comparable to those of TS B. In the phase function
parameter determination, the large variation of the phase func-
tions used for TS C results in the largest median errors of σ rep-
resented by the boxes. For ideal curves, the influence of this
variation can be seen most clearly. The median is shifted by
about 0.015 and the quartiles extend to ∼0.03 and are thus
most distant to the median compared to any other test set
used in the study. For realistic curves, the determination is
only slightly worse compared to TS B. The analysis of TS D
(P17) illustrates the effect of the limited order N ¼ 11 in the cal-
culation of PCA 2. Compared to TS B, no significant difference
in the determination of μ 0

s and μa can be found. In the determi-
nation of σ, a small drift of the median of less than 0.01 can be
found for the analysis of realistic curves. Since TS D uses the
same type of phase functions as PCA 2, this drift can only be
explained with their different orders N. Since both σ and the
calculation order N have an increased influence on the reflec-
tance at small distances from the source, the more precise
description of the reflectance from P17 is falsely interpreted
as a change in σ. However, the observed deviation in σ is smaller
than the typical errors even for ideal curves. That means, a cal-
culation order of N ¼ 11 is sufficient. Finally, the 3D-PCA is
applied on reflectance curves from MC simulations. The results
for μ 0

s and μa are comparable to the results from the TS B

analysis, only the deviation in σ is larger. This is probably
due to the difference in the phase function type in TS MC
(GKpf with α ¼ 0.5) and in PCA 2 (GKpf with α ¼ 1.8).

4.3 Configurations

The parameters that are used in the evaluations are not unique. In
the following, we present results of the analysis when parame-
ters are changed. The analysis of TS C using the 2D-PCA and
the 3D-PCA is performed as a metric. Although the 2D-PCA
could easily produce better results by choosing other parame-
ters, it is the aim of this study to present the 3D-PCA and
for simplicity, we choose to keep the parameters identical for
both methods. In Fig. 8, the results of μa and σ are shown
for different variations of the underlying parameters. At first,
we demonstrate the inability of the determination of σ using
a linear spacing of ρ compared to the nonlinear binning pre-
sented in Eq. (3). Using the linear representation of ρ, the deter-
mination of σ is strongly biased and shows larger errors than in
the nonlinear case. Furthermore, the accuracy of the determina-
tion of μa using the 3D-PCA is significantly improved using the
nonlinear representation, whereas the results of μa using the 2D-
PCA are comparable. The results of μ 0

s are less than 10% for
both spacings and all examined weightings and allow similar
conclusions as the discussed results of μa and are thus not
shown. The best weighting (reference) was chosen to be
ρ1.75. It allows a determination of σ with a high accuracy without
increasing the error of the 2D-PCA too much. Please remark that
the chosen parameters are to be optimized for the 3D-PCA;
however, very large errors in the 2D-PCA indicate a nonrobust
analysis. The commonly used linear spacing and weighting of
log½RðρÞ� shows the smallest errors for μa combined with good
results for μ 0

s in the 2D-PCA. It is, however, not suited for the
3D-PCA as it produces large errors in μa and σ. In this study, the
number of used projection values is one larger than the number
of optical properties to be determined. Using more projection
values, the determination of σ gets slightly more accurate at
the cost of a strong deterioration of μa and additionally in
the 2D-PCA of μ 0

s . To use one projection value less works
equally precise in the 2D-PCA but deteriorates the results in

Fig. 7 Optical properties of (a–c) TS B and (d–f) TS C determined by the use of 3D-PCA.
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the 3D-PCA for all three parameters. The number of data point
was varied between 20 and 100. This modification, however, is
not shown since it did not produce any difference. Lower num-
bers of data points are interesting for fiber probes that are not
examined in this study.

4.4 Least Square Fit

At last, we compare the presented methods to a fit algorithm.
1000 curves out of TS C were fit by the analytical P7-solution
via variation of μ 0

s , μa, K, and g 0. A GKpf was assumed using
α ¼ 1.8. Three different modalities were examined: in the first
(a), the start parameters for the fit were μ 0

s ¼ 2 mm−1,
μa ¼ 0.01 mm−1, K ¼ 1, g 0 ¼ 0.5, in the second (b), the start
parameters were given by the result of the 3D-PCA. In both
(a) and (b), the theory was fit to ideal curves, whereas in the

third (c), realistic curves were fit with the 3D-PCA start param-
eters as used in (b). The results of these fits are presented as
boxplots in Fig. 9. The 5%- and 95%-whiskers are not
shown; however, this time because they are too large and exceed
the axes’ limits by far.

It can clearly be seen that the fit algorithm enhances the pre-
diction results compared to the 3D-PCA, most noticeably for the
parameter μa, where the limits of the graph were copied from
Fig. 5. Interestingly, modality (c) shows no deterioration even
though realistic curves were analyzed instead of ideal ones.
In the relative fit, the scattered absolute intensity can be com-
pensated for by variation of K, so only the effect of noise
remains. Summarized, the prediction of μ 0

s and μa is enhanced,
the prediction of σ is slightly worse compared to the 3D-PCA of
TS C with ideal curves and gives better results for the realistic
ones. The main difference and the reason for the enhancement of
μ 0
s and μa is the weighting in the fit that uses the noise applied

to achieve realistic curves. That measure shifts the focus from σ
to μa. In the 3D-PCA, the weighting is done by choosing non-
equidistant values of ρ, which is justified but arbitrary and by
multiplication of the reflectance with ρ2 in Eq. (4). Concerning
σ, the systematic deviation in the fit is partly due to the choice of
phase function in TS C (in 3D-PCA there is also a drift, but
smaller) and partly due to the lower calculation order of
N ¼ 7 in the fit. The choice of a lower order is unfortunate
but necessary. The computational effort for the fit is immense,
even using N ¼ 7. An average total CPU time of 34.0, 14.7, and
14.2 min was needed per curve using the modalities (a) to (c),
respectively. Please note that the fit algorithm can severely miss
the expected optical properties, these values cannot be seen in
the quartiles. Hence, only the best 50% of the results of each
algorithm are compared.

In order to evaluate the validity of geometrical approxima-
tions, MC simulations were performed regarding an obliquely
incident beam tilted by 5 deg and a numerical aperture angle

Fig. 8 Comparison of variations in the analysis: the result of 2D-PCA is shown in terms of the error of
prediction of the absorption coefficient of TS C. The 3D-PCA is represented by the errors in the deter-
mination of μa and σ of TS C. The configuration “reference” is used for all other results presented in this
study and is chosen as a trade-off with focus on the determination of σ.
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of 5 deg of the detection. These variations were included both
separately and at the same time. The optical properties were
μ 0
s ¼ 1 mm−1, μa ¼ 0.01 mm−1, n ¼ 1.40, and g ¼ 0.7 using

an HGpf. The resulting curves were fit by the analytical P11 sol-
ution assuming perpendicular incidence and full numerical aper-
ture of the detection system. An error of 2%, 10%, and 0.01 was
not exceeded for any of these cases in μ 0

s , μa, and σ, respectively.

5 Conclusion
We presented a fast and robust method based on PCA to deter-
mine the reduced scattering coefficient μ 0

s , the absorption coef-
ficient μa, and the recently introduced phase function parameter
σ from spatially resolved reflectance data. When these param-
eters and the underlying type of phase functions are not known
and the reflectance data is not impaired with noise, we found
the median errors of these parameters to be Δμ 0

s ¼ 1.4%,
Δμa ¼ 5%, and Δσ ¼ 0.025. The assumption of realistic meas-
urement uncertainties increases these errors to Δμ 0

s ¼ 2.5%,
Δμa ¼ 12%, and Δσ ¼ 0.04. After preparation of the principal
components, the calculation time is about 10 ms for the analysis
of a single curve using MATLAB® on a single core on a PC built
in 2011. Absolute reflectance data are needed for successful
determination of the optical properties, the influence of errors
up to 5% in this absolute value was examined. If the phase func-
tion is known, the determination of μ 0

s and μa is highly accurate,
takes only 1 ms per curve, and can even be achieved using rel-
ative data. Compared to a fit algorithm, the computational effort
is decreased by orders of magnitude; however, the speedup
comes at the price of a lower accuracy. If very high accuracy
is needed, a further application of our method is the use of
the 3D-PCA to find the start values for the fit to reduce its com-
putational time by a factor of 2 to 4 while maintaining the high
prediction quality of the fit routine and even increasing its
robustness. If the phase function is kept constant in the deter-
mination of μ 0

s and μa from a set of ideal reflectance curves cal-
culated for multiple phase functions, median errors of 5% in μ 0

s

and 22% in μa occur. Hence, even for cases, where information
about the phase function is not of interest or relevance, the pre-
sented method improves the determination of μ 0

s and μa by giv-
ing the possibility to adjust the phase function. Neither the
presented algorithm nor the fit routine was able to determine
σ better than Δσ ¼ 0.04. These uncertainties in σ relate to
the limits of describing phase function influence on spatially
resolved reflectance by a single parameter. The calculation of
the data set for the analysis (PCA 2) can thus be accelerated
by assuming only 10 to 15 different values for σ without reduc-
ing the determination accuracy. Please note that γ could also be
used as a reproducible phase function parameter in the spatial
domain. However, in view of the more universal applicability of
σ also to the spatial frequency domain, σ allows for enhanced
comparability.

Future work includes the analysis of the experimental data
and the implementation of the PCA into the automated meas-
urement software to allow for real-time extraction of optical
properties from spatially resolved reflectance measurements.
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