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Skin image segmentation based on energy transformation
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Abstract. In this paper, a new method on extraction of human skin
grid centerlines is proposed. The method introduces the physics con-
cepts of kinetic and potential energy into image processing. Regional
energy is calculated. Energy transformation is performed to map the
pixels from the grayscale space into energy space. Then, the energy
image undergoes a morphological filter to remove noises and spurious
minima. The amount of filtering can be manually tuned to get a dif-
ferent result. Subsequently, normal curvature of the energy surface is
utilized to identify the principal direction and principal curvatures.
The ridge centerlines can be detected at the image locations where
the principal direction is perpendicular to the normal vector. The ex-
periment shows that this method is an effective one for the purpose of
extracting human skin grid. © 2004 Society of Photo-Optical Instrumentation Engi-
neers. [DOI: 10.1117/1.1646412]
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transformation.
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1 Introduction
Human skin gradually changes as time flies by, it is very fresh
and elastic in the young days. The tension of skin is lost a
one grows older. Use of cosmetics that is suitable for the
human skin surface condition of a respective human is effec
tive to prevent skin aging. Recently, there are many choices o
cosmetic products. It is very desirable to develop an automati
evaluation system for the human skin surface condition to
show the effect of cosmetics.

The human skin surface has the pattern called grid texture
This pattern is composed of the valleys that spread vertically
horizontally, and obliquely and the hills are separated by val
leys. Changes of the grid are closely linked to the condition o
the human skin surface. They can serve as a good indicato
for the skin condition. By measuring the skin grid using digi-
tal image processing technologies, we can evaluate the huma
skin surface about its aging, its health, and its alimentary sta
tus.

Besides the grid, there are also a lot of pits and bulge
textured among the lines and some impurities like the sebum
scattered on the skin surface. This complexity of dermal struc
ture makes it difficult to extract the centerline. What is more,
some external disadvantages caused in the acquisition of th
skin image by clinical photographing, such as illuminating
conditions, noise level, spherical effect, etc., make it more
difficult. To our knowledge, no published work has done well
in the extraction.

In this paper, the centerlines is detected first and a subse
quent postprocessing is performed to form connected, close
regions. Through measuring and analyzing some paramete
of the grid. the condition of the skin can be monitored. The
paper is arranged as follows. In Sec. 2, we start with som
characters of human skin. and on this basis, feature spac
transformation is described. In Sec. 3, an edge detectio
scheme is introduced. It is based on some features of maxim
surface principal curvature. The postprocessing steps used
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form closed regions are discussed in Sec. 4. In Sec. 5
experimental result is presented, followed by the discuss
about the efficiency and the advantages of the method. In
6, main conclusions are drawn at the end the paper.

2 Feature Space Transformation
This operation is to map the original image from graysc
space to energy space. Figure 1~a! shows one original image
of human skin, Fig. 1~b! illustrates the grayscale distributio
curve of a typical row in Fig. 1~a!, with the x coordinate
denoting the pixels in a row, and they coordinate denoting the
corresponding gray values. Note from Fig. 1~b! that the skin
grids are of triangle shape, like the shape of the roof-ed
This makes it impossible to use any traditional step-edge
tection methods to extract the roof-edged grids in human s
From these two images, we can also observe that the va
are not of a uniform type. They include convex ridges@shown
in Fig. 2~a!# concave valleys@shown in Fig. 2~b!#, and saddle
shape@shown in Fig. 2~c!#. It is the effect of human vision to
contrastness that combines these mussy valleys and ri
into a network. This feature is typical in the clinical image
which is in fact more like a texture image than a grid on
Nevertheless, whatever they might be, they do form a grid
relatively constant width and they do own the same featur
the graylevels of grid pixels change more abruptly than tha
nongrid pixels, and the curvatures at the grid pixels are gre
than that in nongrid pixels. Therefore, a scheme is neede
trim the original images before extraction.

First of all, we define pixel energy as follows:

Epixel5aEkinetic1bEpotential. ~1!

It is a linear compounding of two components, The fi
term denotes kinetic energy, and the second term pote
energy. The kinetic energyEkinetic reflects local gradient infor-
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Skin image segmentation . . .
Fig. 1 The grayscale distribution curve (b) corresponding to the pixels in the 40th row of the skin image (a).
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mation. That is,Ekinetic is directly proportional to the gray-
scale change in a certain domain of the pixel. The more rap
idly the graylevel changes, the greater the value ofEkinetic is.

The potential energyEpotential indicates the global spatial
distribution of the gradient. It is directly proportional to the
grayscale variation of the pixels in the whole image.

In Eq. ~1!, the coefficientsa andb give, respectively, the
strength of kinetic and potential forces. The choice of those
two coefficients is very important. A tradeoff is needed to get
a rather brilliant result. Usually, we choose parametera to be
proportional to the kinetic energyEkinetic, this is to guarantee
a good ridge in energy space. In the meantime, we selec
parameterb to be proportional to the curvature at this point to
avoid the influence caused by illumination fluctuations on
transformation result, because the potential energyEpotential is
salient at the places where there is a big illumination fluctua
tion, and the import of curvature to the transformation can be
used to correct this error.

The kinetic energyEkinetic and the potential energyEpotential
are defined, respectively, by the following forms.

Let I (s)5 f (x,y), s(x,y)PD be one curved surface of

image grayscale defined on the domainD, Ī be the average
grayscale of the whole surface, for each points(x,y)PD, its
energy components can be defined as follows:

Ekinetic5
1
2 max
s1 ,s2Pd

@ uI ~s1!2I ~s2!u2#, ~2!

Epotential5E E
d

1

2A
@ I ~s!2 Ī #2ds, ~3!

whered is a subdomain which is centered at the points(x,y),
A is the area of the domaind. S1 , S2 , SPd.
Jou
t

According to the definitions earlier, the feature ima
Epixel(x,y) corresponding to the original imagef (x,y) can be
calculated by

Epixel~x,y!5]~x,y!Ekinetic~x,y!1b~x,y!Epotential~x,y!.
~4!

When digitized, Eqs.~2! and ~3! yield, respectively, the
following forms:

Ekinetic~x,y!5 1
2 ¹max

2 f ~x,y!, ~5!

where ¹maxf ~x,y!5 max
(xi ,yi ),(xj ,yj )Pd

@ u f ~xi ,yi !

2 f ~xj ,yj !u#. ~6!

It denotes the maximal magnitude of the grayscale va
tion of the pixels in the windowd:

Epotential~x,y!5
1

2N2 (
xi50

N21

(
yi50

N21

u f ~xi ,yi !2 Ī u2, ~7!

where f (xi ,yi) is the gray value for the pixel at coordinat
(xi ,yi), (xi ,yi)Pd, d is a N3N window centered at the

pixel with coordinate(x,y), Ī is the average of the gray val
ues for the whole image. the sizeN of window d can be
determined by the width of the values in the human skin i
ages.

3 Edge Detection
After feature space transformation, the original image is tra
formed into an energy imagef @Fig. 3~a!#, and the grid in
Fig. 2 The one-dimensional roof-edge signals occur in the human skin image: (a) ridge edge, (b) valley edge, (c) saddle edge.
rnal of Biomedical Optics d March/April 2004 d Vol. 9 No. 2 363
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Fig. 3 A sequence of extraction (a) Energy image f of original image
[Fig. 1(a)]. After feature space transformation and erosion-
reconstruction morphological filtering. The net of ridge appears. (b)
Edge detection using the normal curvature method.
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original image is turned into ridges with textures among it. To
avoid overconnection, a filtering is mandatory to smooth the
inside texture while preserving the ridges. Here, we use
morphological filter based on reconstructions. The amount o
filtering is an important parameter which determines the ex
periment results. The amount of filtering can be manually
tuned to extract different lines. A severe filtering may produce
a net of deep lines, and a slight filtering can produce a net o
shallow lines, for more information about this filter, refer to
Refs. 1–6.

The filtered imagef can be considered as a gray-level
surfaceS. The points located on the ridge centerline have a
maximum normal curvature on the perpendicular direction o
the ridge and a minimum normal curvature along the ridge, so
the centerline can be identified by analyzing the normal cur
vatures of the surfaceS.

Now we put the surfaceS into a fixed coordinate system
Oxyz, this surface has continuous third order partial deriva-
tives. The function of the surface is:r5r (u,v). Let P be one
point on the surfaceS, that is,PPS. ]r /]u , ]r /]v andn are,
respectively, tangent vectors and unit normal vector ofS at
point P. From the theorem of the Weingarten map, we know
that, at pointP, there exist two orthonormal eigenvectors of
the Weingarten map$e1 ,e2% called principal directions atP,
and two eigenvalues corresponding to these directions calle
the principal curvatures which is the extremum of the norma
curvature atP, denoted byk1 ~the maximum normal curva-
ture! andk2 ~the minimum normal curvature!.

PointP falls on ridge centerline, if it satisfies the following
conditions,k1Þ0, ande1"z50, that is, the principal direction
e1 corresponding to the maximum normal curvaturek1 is al-
ways perpendicular to theZ axis. So we can detect the ridge
centerline by findingk1 ande1 .

From the theories of differential geometry, we can indi-
vidually define the two fundamental forms of surfaceS at P
as

the first fundamental form:

I5Edu212Fdudv1Gdv2, ~8!

the second fundamental form:

II 5Ldu212Mdudv1Ndv2, ~9!

here
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Tangent vectors]r /]u , ]r /]v span a plane@named tan-
gent plan ofS at P, denoted byTp(S)] which comprises all
tangent vectors ofS at the pointP. For each of the tangen
directions at pointP, there exists a curvature named norm
curvature which represents the curvature ofS in this direction.
The directions to which the normal curvature take an ext
mum are named the principal directions, and the values
these extrema are named the principal curvatures. They
the roots of the following equations:

U L2lE M2lF

M2lF N2lG
U50, ~10!

ULdu1Mdv Edu1Fdv

Mdu1Ndv Fdu1Gdv
U50. ~11!

Equation ~10! defines the two extrema of normal curvatu
l15k1 ,l25k2 ,(k1>k2), and Eq.~11! gives the directions
to which the extrema of normal curvature are attain
Let H51/2• (EN22FM1GL)/(EG2F2) and K5 (LN
2M 2)/(EG2F2) , so the two principal curvaturesk1 ,k2 can
be expressed in terms ofH,K as follows:

k1 ,k25H6AH22K. ~12!

From Eq. ~11!, we can get the two principal direction
corresponding respectively to the principal curvaturesl1,2
5k1,2:

du

dv
52

M2k1,2F

L2k1,2E
52

N2k1,2G

M2k1,2F
, ~13!

After the principal curvaturek1 and the corresponding
principal directione1 are calculated, if it satisfiesk1Þ0 and
e1"z50, we think it is on the centerline. Figure 3~b! shows the
centerlines superimposed on the original image.

4 Postprocessing
Figure 3~b! is the result of edge detection. To show the effe
more clearly, the background is eliminated in Fig. 4~a!. Many
fragmentary lines appear in this image, and there exist m
discontinuous centerlines. Postprocessing is needed to rem
those fragmentary lines and connect discontinuous lines in

Fig. 4 The effect of postprocessing: (a) before and (b) after.
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Fig. 5 The results obtained, respectively, by using (a) Sobel operator, (b) zerocrossing method, (c) watershed transformation, (d) drainage pattern,
and (e) the method proposed in this paper.
k
e
i

o

n

-

h
p

e
e

, and
ati-

e-
ick
n
ight

he
. In
ign
ich
is

tis-
ned

-
of

tion.
for-
n-

es
oni-

tion,
mu-
in
kin
ure
ing

per,

le
ay.
closed grid. The cleaning process can be thought of as a trac
ing process. In the tracking process, the length of the lines ar
recorded, so that we can remove those lines whose length
shorter than a threshold.

Finally, disconnected centerlines are connected to form
closed contours. The basic strategy for connecting is summa
rized as follows.

• For each open contour, the unconnected end of the con
tour is identified, and the direction of the contour is re-
corded.

• Centered at the unconnected end, a searching area is l
cated along the direction,

• If the nearest boundary element is found, a smooth
boundary segment is generated to connect the open co
tour to the nearest boundary element.

The result of this postprocessing is shown in Fig. 4~b!. A
connected, closed grid of skin is obtained. This grid can be
used to measure skin parameters.

5 Experimental Results
To illustrate the validity of the method proposed in this paper,
we use, respectively, traditional step-edge detectors and ridg
detectors to extract central lines of the human skin grid, and
make a comparison with the result of the proposed method
The example image is taken by a skin microscope from hu
man arms by magnifying 30 times of the real skin, which is
digitized to 256 gray-levels,3203240 pixels.The compari-
son indicates that this method is more suitable for the skin
analysis purpose.

There are a lot of methods on step-edge detection. Most o
them are based on the idea that the grayscale gradient on t
edge is more greater than that anywhere else. The Sobel o
erator is a representative one. Figure 5~a! shows the result of
the Sobel operator performed on the human skin image. Not
that this method can only get some discontinuous lines of th
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grid. These lines are not the centerlines of human creases
cannot be used to characterize the human skin mathem
cally.

Ridge detection is of high interest in image analysis. R
searchers have tried to describe it in various ways. Haral7

and Koenderink8 identified ridges as loci of extremal height i
two-dimensions, and is extended to d-D in Ref. 9 as the he
condition. Gauch10 and Thirion11 identified ridges as positive
maxima of the curvature of the relief’s level curves. T
height and vertex of ridges are of local characterizations
implementation, ridges can be obtained by looking for s
changes in zerocrossing functions, and labeling pixels wh
have a change of sign, afterwards, a thinning algorithm
needed to get 1-pixel wide line. Figure 5~b! shows the effect
of the zerocrossing method. Notice that the result is unsa
factory, it yields many spurious branches, and the obtai
centerline has many discontinuities.

More recent works12–14 have brought global characteriza
tions of ridges. These works think of ridges as a separatrix
objects. Watershed in Refs. 2 and 15 absorbed more atten
Figure 5~c! shows the performance of the Watershed trans
mation method. Although this method can yield closed, co
tinuous regions, the result is not exciting yet. Arbitrary lin
appear, and some ridges disappear. When used in skin m
toring they will cause a measure error.

There are also many other approaches on ridge detec
for example, Refs. 16–18 extract drainage patterns by si
lating the flow of water over the Earth’s surface. Used
human skin segmentation, this method cannot divide the s
into closed regions, and yields many fine branches, Fig
5~d! shows the result. It is also unsatisfactory in measur
skin parameters.

In the experiment using the method proposed in this pa
we choose the parameters as follows:N55 and a constant
a51, b5k1 . Another parameter required in filtering is sca
h which denotes the texture magnitude being filtered aw
Different values ofh will cause a different result. Figure 5~e!
rnal of Biomedical Optics d March/April 2004 d Vol. 9 No. 2 365
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shows the result whenh57, and after postprocessing such as
cleaning, connection to form some closed regions. We notic
that this method can divide the skin surface into closed re
gions, and the centerlines are continuous, very little overde
tection and underdetection appear, but some centerlines d
not run through the center of the creases. This needs improv
ing in the following work. Compared with other step-edge and
ridge-edge approaches, this approach is effective in extractin
human grid centerlines.

6 Conclusions
In this paper, we have proposed a method for preprocessin
the sophisticated human skin image. The characteristics of th
original image have been described, and on the basis of the
features, Feature space transformation is presented. The a
of the feature space transformation is to map the disordere
grids into a neat net of ridges which will facilitate the subse-
quent operations. The morphological filter can remove the
texture and spurious minima of the image to avoid overcon
nection. the amount of filtering is manually tuned for each
application. Normal curvatures are calculated, and the cente
lines are detected by analyzing the normal curvatures.

Some advantages and drawbacks have been reach
through analyzing the experimental results. The method ca
divide the skin into continuous, closed regions, and the line
have a good localization, but sometimes it will yield arbitrary
lines and lose genuine lines. Nevertheless, compared wit
other methods, this one is much suitable for the purpose o
human skin monitoring.

References
1. J. Serra,Image Analysis and Mathematical Morphology, Part 2, Aca-

demic, London~1988!.
2. S. Beucher and F. Meyer, ‘‘The Morphological Approach to Segmen-
366 Journal of Biomedical Optics d March/April 2004 d Vol. 9 No. 2
d
-

g
e
e
m

-

d

f

tation: The Watershed Transform,’’ inMathematical Morphology in
Image Processing, Marcel Dekker, New York~1993!.

3. J. Serra and L. Vincent, ‘‘An overview of morphology filtering,
Circuits Syst. Signal Process.11~1!, ~1992!.

4. L. A. Cordeo,Differential Geometry, Pitman, New York~1985!.
5. Chuan-chih Hsing,A First Course in Differential Geometry, Wiley,

New York ~1981!.
6. M. P. do Carmo,Differential Geometry of Curves and Surface,

Prentice-Hall, Englewood Cliffs, NJ~1976!.
7. R. Haralick, ‘‘Ridges and valleys on digital images,’’Comput. Vis.

Graph. Image Process.22~10!, 28–38~1983!.
8. J. Koenderink and A. Doorn, ‘‘Local features of smooth shap

Ridges and courses,’’ inGeometric Methods in Computer Vision I,
Proc. SPIE2031, 2–13~1993!.

9. D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach, ‘‘Rid
for image analysis,’’J. Math. Imaging Vision4~4!, 353–373~1994!.

10. J. Gauch and S. Pizer, ‘‘Multi-resolution analysis of ridges and v
leys in grey-scale images,’’IEEE Trans. Pattern Anal. Mach. Intell.
15~6!, 635–646~1993!.

11. J. P. Thirion and A. Gourdon, ‘‘Computing the differential charact
istics of isointensity surfaces,’’Comput. Vis. Graph. Image Process
61~2!, 190–202~1995!.

12. L. Griffin, A. Colchedter, and G. Robinson, ‘‘Scale and segmentat
of grey-level images using maximum gradient paths,’’Image Vis.
Comput.10~6!, 389–402~1992!.

13. L. Nackman, ‘‘2-D critical point configuration graphs,’’IEEE Trans.
Pattern Anal. Mach. Intell.6~4!, 442–450~1984!.

14. P. Rosin, ‘‘Early image representation by slope districts,’’J. Visual
Commun. Image Represent.6~3!, 228–243~1995!.

15. L. Vincent and P. Soille, ‘‘Watersheds in digital spaces: an effici
algorithm based on immersion simulations,’’IEEE Trans. Pattern
Anal. Mach. Intell.13~6!, 583–598~1991!.

16. F. Desmet and G. Govers, ‘‘Comparison of routing algorithms
digital elevation models and their implications for predicting ephe
eral gullies,’’ Int. J. Geograph. Inf. Systems10~3!, 311–331~1996!.

17. J. O’Callaghan and D. Mark, ‘‘The extraction of drainage netwo
from digital elevation data,’’Comput. Vis. Graph. Image Process
28~3!, 323–344~1984!.

18. P. Soille and C. Gratin, ‘‘An efficient algorithm for drainage netwo
extraction on DEMs,’’J. Visual Commun. Image Represent.5~2!,
181–189~1994!.


