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Skin image segmentation based on energy transformation

Liangen Zhu Abstract. In this paper, a new method on extraction of human skin
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1 Introduction form closed regions are discussed in Sec. 4. In Sec. 5, an
it is very fresh experimental result is presented, followed by the discussion

about the efficiency and the advantages of the method. In Sec.
6, main conclusions are drawn at the end the paper.

Human skin gradually changes as time flies by,
and elastic in the young days. The tension of skin is lost as
one grows older. Use of cosmetics that is suitable for the
human skin surface condition of a respective human is effec-
tive to prevent skin aging. Recently, there are many choices of 2 Feature Space Transformation
cosmetic products. Itis very desirable to develop an automatic Thjs operation is to map the original image from grayscale
eVaantion SyStem fOI’ the human Skin Surface Condition to Space to energy Space_ F|gur(@_)]_shows one origina| image
show the effect of cosmetics. of human skin, Fig. () illustrates the grayscale distribution
The human skin surface has the pattern called grid texture. curve of a typical row in Fig. (), with the x coordinate
This pattern is composed of the valleys that spread vertically, denoting the pixels in a row, and tlyecoordinate denoting the
horizontally, and obliquely and the hills are separated by val- corresponding gray values. Note from FigbJLthat the skin
leys. Changes of the grid are closely linked to the condition of grids are of triangle shape, like the shape of the roof-edge.
the human skin surface. They can serve as a good indicatorThis makes it impossible to use any traditional step-edge de-
for the skin condition. By measuring the skin grid using digi- tection methods to extract the roof-edged grids in human skin.
tal image processing technologies, we can evaluate the humarFrom these two images, we can also observe that the values
skin surface about its aging, its health, and its alimentary sta- are not of a uniform type. They include convex ridgsisown
tus. in Fig. 2(@)] concave valley$shown in Fig. 2b)], and saddle
Besides the grid, there are also a lot of pits and bulges shapeshown in Fig. 2c)]. It is the effect of human vision to
textured among the lines and some impurities like the sebum contrastness that combines these mussy valleys and ridges
scattered on the skin surface. This complexity of dermal struc- into a network. This feature is typical in the clinical images,
ture makes it difficult to extract the centerline. What is more, which is in fact more like a texture image than a grid one.
some external disadvantages caused in the acquisition of theNevertheless, whatever they might be, they do form a grid in
skin image by clinical photographing, such as i||uminating relatiVEly constant width and they do own the same feature—
conditions, noise level, spherical effect, etc., make it more the graylevels of grid pixels change more abruptly than that of
difficult. To our knowledge, no published work has done well Nnongrid pixels, and the curvatures at the grid pixels are greater
in the extraction. than that in nongrid pixels. Therefore, a scheme is needed to
In this paper, the centerlines is detected first and a subse-Ifim the original images before extraction.
quent postprocessing is performed to form connected, closed First of all, we define pixel energy as follows:
regions. Through measuring and analyzing some parameters
of the grid. the condition of the skin can be monitored. The Enpixet= @Exinetict BEpotential- @
paper is arranged as follows. In Sec. 2, we start with some It is a linear compounding of two components, The first
characters of human skin. and on this basis, feature spaceerm denotes kinetic energy, and the second term potential
transformation is described. In Sec. 3, an edge detectionenergy. The kinetic energ¥yineiic reflects local gradient infor-
scheme is introduced. It is based on some features of maximal
surface principal curvature. The postprocessing steps used t01083-3668/2004/$15.00 © 2004 SPIE
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Fig. 1 The grayscale distribution curve (b) corresponding to the pixels in the 40th row of the skin image (a).

mation. That is,Eineic is directly proportional to the gray- According to the definitions earlier, the feature image
scale change in a certain domain of the pixel. The more rap- Epixel(X,y) corresponding to the original imagéx,y) can be
idly the graylevel changes, the greater the valu€gfue is. calculated by
The potential energy¥ poenias indicates the global spatial
distribution of the gradient. It is directly proportional to the  Epixei(X,Y) = 3(X,Y) Ekineticd X, ¥) + B(X,Y) E potential X, ¥ ) -
grayscale variation of the pixels in the whole image. (4)
In Eq. (1), the coefficientsx and g give, respectively, the When digitized, Eqs(2) and (3) yield, respectively, the
strength of kinetic and potential forces. The choice of those following forms:
two coefficients is very important. A tradeoff is needed to get

a rather brilliant result. Usually, we choose parameté¢o be E _1p2
; I~ ’ g inetic X, Y) = 3 Viad (X,Y), 5
proportional to the kinetic energ¥yinetic, this is to guarantee wnetclX,Y) = 2 Vimad (%,Y) ©
a good ridge in energy space. In the meantime, we select _ .
parameteB to be proportional to the curvature at this point to where  Viaf (X,y) = max [1f0xy0)
: . . L . (Y1), (xjyj)ed
avoid the influence caused by illumination fluctuations on
transformation result, because the potential en&igysnia IS — (X ,yj)l]. (6)
salient at the places where there is a big illumination fluctua- It denotes the maximal magnitude of the grayscale varia-

tion, and the import of curvature to the transformation can be tion of the pixels in the window
used to correct this error.
The kinetic energ¥ineic and the potential energy,oential 1 N-1 N-1
are defined, respectively, by the following forms. E (X.V)= F(x v)—112 7
Let I(s)=f(x,y), s(x,y)eD be one curved surface of potenial X.Y) 2N2xi2:o yiE:o 1oy =115 @
image grayscale defined on the dom@in | be the average  \heref(x;,y;) is the gray value for the pixel at coordinate

grayscale of the whole surface,_for each paifit,y) e D, its (xi V), (Xi,y))ed, 8is aNxN window centered at the
energy components can be defined as follows: pixel with coordinatg(x,y), 1 is the average of the gray val-
Erneie= 2 max [[1(s,)—1(s,)|] @) ues for the whole image. the si2é¢ of window & can be
Kinetic 25 ces L 271 A determined by the width of the values in the human skin im-
1 ages.
1 1712
Epotentialzf fﬂ[l(s)_l] ds, 3 .
o 3 Edge Detection
whered§is a subdomain which is centered at the paify,y), After feature space transformation, the original image is trans-
A is the area of the domaif. S;, S,, Se 6. formed into an energy image [Fig. 3@)], and the grid in
” ™ AR
100 /’, ; é.uzu 4 00 'I \\i {
[ S ——— ,4’/ 50 ‘ ™ '// ‘=\~_ R
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Fig. 2 The one-dimensional roof-edge signals occur in the human skin image: (a) ridge edge, (b) valley edge, (c) saddle edge.
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Fig. 3 A sequence of extraction (a) Energy image f of original image
[Fig. 1(a)]. After feature space transformation and erosion-
reconstruction morphological filtering. The net of ridge appears. (b)
Edge detection using the normal curvature method.

original image is turned into ridges with textures among it. To
avoid overconnection, a filtering is mandatory to smooth the
inside texture while preserving the ridges. Here, we use a
morphological filter based on reconstructions. The amount of
filtering is an important parameter which determines the ex-
periment results. The amount of filtering can be manually
tuned to extract different lines. A severe filtering may produce
a net of deep lines, and a slight filtering can produce a net of
shallow lines, for more information about this filter, refer to
Refs. 1-6.

The filtered imagef can be considered as a gray-level
surfaceS. The points located on the ridge centerline have a
maximum normal curvature on the perpendicular direction of
the ridge and a minimum normal curvature along the ridge, so
the centerline can be identified by analyzing the normal cur-
vatures of the surfacg.

Now we put the surfac& into a fixed coordinate system
O,y this surface has continuous third order partial deriva-
tives. The function of the surface is=r(u,v). Let P be one
point on the surfac§, thatis,P e S. dr/du, dr/dv andn are,
respectively, tangent vectors and unit normal vectoSadt
point P. From the theorem of the Weingarten map, we know
that, at pointP, there exist two orthonormal eigenvectors of
the Weingarten mape, ,e,} called principal directions a®,

Fig. 4 The effect of postprocessing: (a) before and (b) after.
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Tangent vectorsir/du, dr/dv span a planénamed tan-
gent plan ofS at P, denoted byT,(S)] which comprises all
tangent vectors o§ at the pointP. For each of the tangent
directions at pointP, there exists a curvature named normal
curvature which represents the curvaturé&af this direction.

The directions to which the normal curvature take an extre-

mum are named the principal directions, and the values of
these extrema are named the principal curvatures. They are
the roots of the following equations:

L-AE M-\F

M—AF N-AG| (10
Ldu+Mdv Edu+Fdov
Mdu+Ndv Fdu+Gdo =0. (D

Equation (10) defines the two extrema of normal curvature
N1=Kki,No=Ks,(k;=k;), and Eq.(11) gives the directions
to which the extrema of normal curvature are attained.
Let H=1/2. (EN—2FM+GL)/(EG—F?) and K= (LN
—M?)/(EG—F?), so the two principal curvaturds ,k, can

and two eigenvalues corresponding to these directions calledbe expressed in terms &f,K as follows:

the principal curvatures which is the extremum of the normal
curvature atP, denoted byk; (the maximum normal curva-
ture) andk, (the minimum normal curvatuye

PointP falls on ridge centerline, if it satisfies the following
conditions,k;# 0, ande;-z=0, that is, the principal direction
e, corresponding to the maximum normal curvatlgieis al-
ways perpendicular to thé axis. So we can detect the ridge
centerline by finding; andey.

From the theories of differential geometry, we can indi-
vidually define the two fundamental forms of surfageat P
as

the first fundamental form:

I=Edu’+2Fdudy + Gdv?, (8)
the second fundamental form:
Il =Ldu?+2Mdudy +Ndv?, 9)

here
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ki, k,=H=*H?—K. (12

From Eg.(11), we can get the two principal directions
corresponding respectively to the principal curvatukgs
=Ky 2!

du_ M =k F B N—Kk; .G

a__ L_kl'zE T M_kl'zF ’

After the principal curvaturek; and the corresponding
principal directione; are calculated, if it satisfiels; =0 and

e;-z=0, we think it is on the centerline. Figur€l8 shows the
centerlines superimposed on the original image.

13

4 Postprocessing

Figure 3b) is the result of edge detection. To show the effect
more clearly, the background is eliminated in Figa)4Many
fragmentary lines appear in this image, and there exist many
discontinuous centerlines. Postprocessing is needed to remove
those fragmentary lines and connect discontinuous lines into a



Skin image segmentation . . .

(e)

Fig. 5 The results obtained, respectively, by using (a) Sobel operator, (b) zerocrossing method, (c) watershed transformation, (d) drainage pattern,
and (e) the method proposed in this paper.

closed grid. The cleaning process can be thought of as a track-grid. These lines are not the centerlines of human creases, and
ing process. In the tracking process, the length of the lines arecannot be used to characterize the human skin mathemati-
recorded, so that we can remove those lines whose length iscally.
shorter than a threshold. Ridge detection is of high interest in image analysis. Re-
Finally, disconnected centerlines are connected to form searchers have tried to describe it in various ways. Haralick
closed contours. The basic strategy for connecting is summa-and Koenderinkidentified ridges as loci of extremal height in
rized as follows. two-dimensions, and is extended to d-D in Ref. 9 as the height
condition. Gauct and Thiriort! identified ridges as positive
maxima of the curvature of the relief's level curves. The
height and vertex of ridges are of local characterizations. In
implementation, ridges can be obtained by looking for sign
* Centered at the unconnected end, a searching area is lothanges in zerocrossing functions, and labeling pixels which
cated along the direction, have a change of sign, afterwards, a thinning algorithm is
 If the nearest boundary element is found, a smooth needed to get 1-pixel wide line. Figurébb shows the effect
boundary segment is generated to connect the open con-of the zerocrossing method. Notice that the result is unsatis-

e For each open contour, the unconnected end of the con-
tour is identified, and the direction of the contour is re-
corded.

tour to the nearest boundary element. factory, it yields many spurious branches, and the obtained
centerline has many discontinuities.

The result of this postprocessing is shown in Figh)4A More recent work€'* have brought global characteriza-
connected, closed grid of skin is obtained. This grid can be tjons of ridges. These works think of ridges as a separatrix of
used to measure skin parameters. objects. Watershed in Refs. 2 and 15 absorbed more attention.

Figure 5c) shows the performance of the Watershed transfor-
5 Experimental Results mation method. Although this method can yield closed, con-

To illustrate the validity of the method proposed in this paper, tinuous regions, the_ result i_s not exciting yet. Arb_itrary lines _
we use, respectively, traditional step-edge detectors and ridge2PPear, and some ridges disappear. When used in skin moni-
detectors to extract central lines of the human skin grid, and toring they will cause a measure error.

make a comparison with the result of the proposed method. ~ There are also many other approaches on ridge detection,
The example image is taken by a skin microscope from hu- for example, Refs. 1618 extract drainage patterns by simu-
man arms by magnifying 30 times of the real skin, which is Iating the flow of water over the Earth's surface. Used in

digitized to 256 gray-levels320x 240 pixels. The compari- human skin segmentation, this method cannot divide the skin
son indicates that this method is more suitable for the skin into closed regions, and yields many fine branches, Figure
analysis purpose. 5(d) shows the result. It is also unsatisfactory in measuring

There are a lot of methods on step-edge detection. Most of Skin parameters.
them are based on the idea that the grayscale gradient on the In the experiment using the method proposed in this paper,
edge is more greater than that anywhere else. The Sobel opwe choose the parameters as follows=5 and a constant
erator is a representative one. Figut@)Shows the result of  a=1, B8=k;. Another parameter required in filtering is scale
the Sobel operator performed on the human skin image. Noteh which denotes the texture magnitude being filtered away.
that this method can only get some discontinuous lines of the Different values ot will cause a different result. Figurgé
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shows the result wheh=7, and after postprocessing such as
cleaning, connection to form some closed regions. We notice
that this method can divide the skin surface into closed re-
gions, and the centerlines are continuous, very little overde- 4
tection and underdetection appear, but some centerlines did 5.
not run through the center of the creases. This needs improv-
ing in the following work. Compared with other step-edge and &
ridge-edge approaches, this approach is effective in extracting 7
human grid centerlines. ’
8.

6 Conclusions

In this paper, we have proposed a method for preprocessing g.
the sophisticated human skin image. The characteristics of the
original image have been described, and on the basis of thesdl0.
features, Feature space transformation is presented. The aim
of the feature space transformation is to map the disordered
grids into a neat net of ridges which will facilitate the subse-
quent operations. The morphological filter can remove the
texture and spurious minima of the image to avoid overcon- 12.
nection. the amount of filtering is manually tuned for each
application. Normal curvatures are calculated, and the center-,
lines are detected by analyzing the normal curvatures.

Some advantages and drawbacks have been reachedas.

through analyzing the experimental results. The method can

divide the skin into continuous, closed regions, and the lines 1°:

have a good localization, but sometimes it will yield arbitrary

lines and lose genuine lines. Nevertheless, compared with g

other methods, this one is much suitable for the purpose of
human skin monitoring.

17.
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