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Abstract. Illumination design usually requires the shaping of a specific irradiance distribution from a given light
source. For point-like sources or collimated laser beams various methods exist to construct the shape of the
refractive and/or reflective surfaces within the optical system. However, for extended sources, an additional
feedback or optimization loop is usually required and limitations are not clear. We propose an analysis and
design method that includes the source extension from the very beginning. The method is based on phase
spacemapping of the source radiance distribution onto the target irradiance distribution. We illustrate the method
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1 Introduction
The basic design task in illumination design is the creation of
a specified irradiance profile at a target plane.1 In ideal loss-
less systems, all of the radiant flux of the light source shall be
used; therefore, the source shape and size are of crucial
importance. During the design of illumination systems, it
is quite common to have idealized assumptions about the
light source. Very often, nonphysical light sources, such
as point sources, or perfectly collimated laser beams are
assumed, since this idealization allows for the application
of mathematical construction methods2 for the illumination
elements. For example, point sources quite naturally lead to
conic reflector geometries, since they allow for perfect point-
to-point transfer. Also, elements for more complex irradiance
patterns can be constructed by mathematical equations, map-
ping, or beam-shaping algorithms.3–5 Common examples are
Gauss-to-top-hat beam shapers or freeform illumination
reflectors for various applications.6,7

However, real-world physical light sources exhibit a finite
area–angle product, corresponding to a finite etendue. Light-
emitting diodes in particular exhibit a large etendue due to
their extended emission area and Lambertian intensity pat-
tern, which needs to be considered during illumination
design.8,9 Solar applications, especially concentrators, are
limited by the size of the sun. Lasers, especially poor quality
lasers or lasers with pointing tolerances, have nonvanishing
etendue, which needs to be considered. Currently, the finite
etendue of the light sources is very often considered as a cor-
rection step during illumination design.10 That is, the system
is laid out with a point-like light source and later the effect
of finite source etendue is considered. Such methods have
led to feedback methods in designing collimators.11,12

Unfortunately, this iterative process lacks a deeper under-
standing of the effect of the source extensions, and funda-
mental implications and limitations in particular are not

well defined. Therefore, a deterministic design process for
extended sources is not yet available.

The approach within this paper is to take into account the
etendue of the source from the very beginning. To do so, the
method of phase space in optics is employed, which allows
for a direct visualization of the etendue and radiance
distribution.13–15 There have already been attempts to illus-
trate the behavior of illumination systems in phase space, and
they have proven to be helpful. However, in many references,
this picture is limited to a conceptual or paraxial study.
Within this work, we will try to extend this approach to a
higher engineering level by a more sophisticated analysis
of nonparaxial situations. In particular, we will show that
the nonlinear transformations of phase space reveal basic
limitations and properties of illumination systems. This
analysis also allows for first attempts to design illumination
systems that fully take into account the source etendue
information.

2 Introduction to Phase Space

2.1 Concept of Phase Space

As we are dealing with illumination problems, we need to
understand the basic connection of radiometry16 and phase
space.17,18 Let us consider a differential planar source
element, or generally a radiation field, of a certain area
dA radiating into some solid angle dΩ. The related etendue
element dH of this radiation field is defined as

EQ-TARGET;temp:intralink-;e001;326;190dH ¼ n2 × dA × cos θ × dΩ ¼ dx × dy × du × dv; (1)

where n is the index of refraction, dA is the surface element,
and cosðθÞ dΩ is the differential projected solid angle. If the
radiation field (or source) is located in the x∕y-plane and the
normalized direction vector ðL;M;NÞ represents the direc-
tion of the solid angle element, as illustrated in Fig. 1,
then the etendue is conveniently expressed in terms of differ-
ential area dA ¼ dx × dy and the projected solid angle
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element du × dv, where u ¼ n × L and v ¼ n ×M, as given
in the right-hand side of Eq. (1).

The amount of flux, or optical power, dϕ contained
inside this differential etendue element defines the local radi-
ance L as

EQ-TARGET;temp:intralink-;e002;63;501Lðx; y; u; vÞ ¼ dφðx; y; u; vÞ
dx × dy × du × dv

: (2)

Therefore, in general, the radiance distribution is a four-
dimensional function of the variables ðx; y; u; vÞ. These
four variables can be associated with the position and direc-
tion of a reference ray at a corresponding plane, as illustrated
in Fig. 1.

Since four dimensions are very hard to visualize, we will
restrict ourselves to two dimensions (as do most books on
phase space). In other words, we will only consider light dis-
tributions or ray patterns in the xz-plane, such that any ray r
corresponds to a pair of xu-values, where the angular vari-
able u is associated with the angle u ¼ n × sin θ of a ray
relative to optical axis.

An illustration of several reference rays, or areas, in a
xu-diagram is called a phase space diagram and defines
the concept of phase space in optics. Following from
Eq. (2), the radiance in the two-dimensional case is associ-
ated with an area in phase space

EQ-TARGET;temp:intralink-;e003;63;273Lðx; uÞ ¼ dφðx; uÞ
dx × du

≈
Δφðx; yÞ
Δx × Δu

: (3)

From the radiance distribution, all other radiometric quan-
tities, such as irradiance EðxÞ and radiant intensity IðuÞ,
can be calculated from a simple projection of the radiance
distribution, as illustrated in Fig. 2. Moreover, for paraxial
angles, the transformation properties of the rays and the radi-
ance distribution are closely related to the ABCD-matrix for-
malism, which corresponds to a linear transformation within
phase space, since

EQ-TARGET;temp:intralink-;e004;63;145r 0 ¼
�
x 0

u 0

�
¼

�
A B
C D

�
·

�
x
u

�
¼ M · r: (4)

Any linear matrix operationM in phase space corresponds to
a general shear (or rotation) of the radiance distribution, as
also illustrated in Fig. 2.

2.2 Quantization of Phase Space and Reference
Rays

For a general extended light source, the radiance distribution
can be separated into phase space areas/elements Ai. The flux
contained in each element is simply related to the radiance
distribution as

EQ-TARGET;temp:intralink-;e005;326;449φi ¼
Z
Ai

Lðx; uÞ × dx × du: (5)

For further visualization and optimization within this paper,
it is advantageous to split the phase space into small elements
Ai of either equal size or equal flux. In the special case of a
Lambertian source (L ¼ const:), a particular simple case
appears, since then the area is directly proportional to the
flux

EQ-TARGET;temp:intralink-;e006;326;339φLambert
i ¼ L0 ·

Z
Ai

dx × du: (6)

In this case, we can simply split the phase space into equal
areas, and each element will carry the same amount of flux.
Moreover, we can associate a reference ray ri with each
phase space/flux element. Following this picture, we may
now study the propagation of the phase space distribution.
Throughout this paper, we will consider the transformation
properties of these reference rays and the corresponding
reference grid through an optical system. For a single point
in phase space, this basically corresponds to a ray tracing
from the source to the target. However, to predict radiance
distributions, we also need to consider the transformation of
the associated etendue area, i.e., the transformation of the
phase space grid. As a simple example, we consider the
free propagation of a Lambertian light source with large
divergence, as illustrated in Fig. 3.

2.3 Local Linear Transformation Properties of Phase
Space

As illustrated in Fig. 3 already, free-space propagation under
nonparaxial angles obviously leads to nonlinear transformations

Fig. 1 Illustration of the general radiance propagation in between par-
allel reference planes. Fig. 2 Illustration of the general properties and relations in phase

space: (a) illustrates a one-dimensional light source of angular and
spatial extension ΔuΔx , (b) is the corresponding radiance distribution
in phase space, and (c) is the irradiance distribution resulting from
integration along the angles.
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of the phase space radiance distribution. In general, the trans-
formation corresponding to any irradiance-shaping illumina-
tion system will be nonlinear. However, if we employ a
reasonably fine sampling of phase space, the phase space
region around any reference ray [e.g., the two areas illus-
trated in Fig. 3(b)] will be small. As a consequence, the local
transformation property of the surrounding small phase
space element is linear. In other words, we can still locally
attach an ABCD-transformation associated with this refer-
ence ray. Within this linear region, the rays are transformed
according Eq. (4). However, the ABCD-matrix M will
change, depending on the reference ray position in phase
space. In consequence, we can reconstruct the final radiance
distribution at the target, by tracing the reference rays and
applying the corresponding local ABCD-matrixes and
finally summing up all phase space elements.

For the simple example of free-space propagation, as
illustrated in Fig. 2, we can analytically calculate the local
linear matrix, since it is only dependent on the angle θ
and u of the reference ray, respectively. If we consider a
reference ray under some angle θ, then the local propagation
matrix around this reference from the source to a detector at
the axial distance Z0 is simply given as

EQ-TARGET;temp:intralink-;e007;63;105MðuÞ ¼
�
1 z0∕ cos θ
0 1

�
¼

�
1 z0∕

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
0 1

�
: (7)

If we consider the corresponding local linear transformation
matrixes and sketch their phase space transformations, we
find that for larger angles θ (corresponding to larger u), the
effective distance to the target plane to be increased. As a con-
sequence, the local shear of the phase space element is larger,
leading to a more spatially extended radiance distribution, as
compared to the axis. Integration along the angular (u) direc-
tion yields the resulting irradiance distribution, as illustrated in
Fig. 3(d), which exhibits a drop toward the edges. This drop
can be explained by the increased shear of the radiance dis-
tribution. In the limit of large distance and small light source
extend, this finally leads to the well-known cos4 θ law.

In a general system, especially in a system with tilted and
complex surfaces, the local ABCD-matrix cannot be easily
calculated but needs to be found numerically by differential
ray tracing around the reference ray. Conveniently, in the
commercial optical design software CodeV from Synopsis,
the ABCD-matrix for any ray is available by a function, even
for tilted and decentered systems. So within a ray tracer, we
can use exact ray tracing to follow the reference ray and we
can determine the local ABCD-matrix associated with this
reference ray by differential ray tracing.

3 Application Examples
We will now illustrate more complex examples of the phase
space transformation for various optical systems. The local

Fig. 3 Illustration of the free nonparaxial radiance propagation: (a) ray tracing illustration from source to
detector, (b) and (c) radiance of the source and on the target plane, and (d) irradiance distribution at the
source and target plane.
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ABCD-matrixes can be calculated numerically; however, we
will report and employ the approximate analytical shape of
the matrix for better interpretation of the result.

3.1 Parabolic Reflector

Let us consider a parabolic reflector in combination with an
extended source. Figure 4 shows a situation where a source
of 1-mm diameter is placed at the focus of the parabolic mir-
ror (vertex-radius R ¼ 20 mm and conic constant k ¼ −1).
The figure illustrates the transformation properties of this
system form the source plane to an output plane at 17-
mm distance to the mirror vertex. As the source is located
in the front focal plane of the system and the image plane
is (approximately) in the back focal plane, the basic phase
space transformation corresponds to a 2f-system, resulting
in a 90-deg rotation in phase space (position is transformed
to angles and vice versa). However, for large source angles,
this transformation is nonuniform, meaning that the focal
length varies across the parabola. For small angles (rays
close to the vertex), the focal length is f0 ¼ 10, whereas
for larger angles (e.g., 60 deg), we find, due to trigonometric
relations, a larger focal length f1. Therefore, the local phase
space transformation corresponds to different scaling and
focal length, respectively, at the edge of the parabolic as
compared to the center. In consequence, the radiance distri-
bution is rotated and “compressed” in the center.

Since irradiance again corresponds to the projection of
radiance distribution, and since we assumed a Lambertian
source, the irradiance just corresponds to the diameter of

the radiance distribution along the spatial dimension. This
leads to an increased irradiance at the center of the output
beam, as well-known for this type of illumination compo-
nent, and illustrated in Fig. 4(d).

3.2 Total Internal Reflection Reflectors

Another more complex example, resulting from combining
the elements of a parabolic mirror and a lens, is a typical total
internal reflection (TIR) collimator as illustrated in Fig. 5.
The transformation again approximately corresponds to a
rotation in phase space, if the source is at the focal spot
of the lens or parabolic reflecting surface and if we consider
a target plane approximately at the focal distance. In phase
space, the central part (low angles) resembles the almost par-
axial transformation of a lens, whereas the higher angles are
reflected from the parabolic reflector part, leading to a sim-
ilar distortion effect as for the parabola in Fig. 4. The full
radiance distribution is separated in two distinct parts. The
center part resembles the action of the lens, whereas the
outer part corresponds to the nonlinear reflection at the para-
bolic. Since the local focal length near the center is shorter
than at the edges, again a different scaling applies, leading to
a smaller irradiance at the outside of the TIR-lens.

3.3 Gauss-to-Top-Hat Shaper

Let us now consider the well-known problem of shaping
a Gaussian collimated laser beam into a top-hat from the per-
spective of phase space. Figure 6 illustrates a standard

Fig. 4 Illustration of phase space mapping for a parabolic mirror: (a) ray tracing illustration, (b) and
(c) radiance of the source and of the target plane, and (d) irradiance distribution at the source and target
plane.
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Fig. 5 Illustration of phase spacemapping for a TIR-collimator: (a) ray tracing illustration and (b) radiance
at the target plane for a 0.5-mm source.

Fig. 6 Illustration of phase space mapping for a beam shaper: (a) ray tracing illustration, (b) and (c) eten-
due mapping of the source and of the target plane, and (d) irradiance distribution at the source and target
plane, the dashed line represents a laser tilted by 50 mrad.
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aspheric beam shaper, shaping a Gaussian input beam (full
beam width 10 mm at 1∕e2) to a top-hat beam (beam diam-
eter 40 mm). For better visibility of the phase space trans-
formation, we have added a paraxial lens at the target plane
(only corresponding to a shear in angular direction).
The resulting transformation of phase space is shown in
Figs. 6(b) and 6(c). The input phase space grid in Fig. 6(b)
corresponds to a 16 mm × 0.1 rad (�3 deg) section of the
input phase space in front of the aspheric lens. However,
in this example, the radiance is not equally distributed in
that area, as in the examples before, but the beam has a
Gaussian distribution, as illustrated in Fig. 6(d). So the
flux in the phase space segments will be much larger in
the middle. However, the equal phase space grid allows a
visualization of the underlying transformation toward the tar-
get plan, as illustrated in Fig. 6(c). Obviously, the beam shap-
ing is achieved by an approximate telescopic expansion at
the center of the beam, distributing the flux into a larger
area. At the edges of the beam, the input beam is almost
focused, leading to a rotation and spatial compression of
the input beam segment. In total, the phase space transfor-
mation is highly nonlinear. Only this nonlinearity across

the beam (corresponding to a large variation of the local
matrix M) allows a local beam expansion combined with
a local beam focusing at the edge and thus the creation of
the top-hat distribution.

4 Illumination Design in Phase Space
Following up along the above analysis, we can transfer
these findings into the design of illumination systems.
Traditionally, the design of illumination systems is based
either on strict mathematical construction methods or opti-
mization based on statistical ray tracing, which requires a
lot of computer time.

In contrast, we propose an alternate approach based on
phase space. As discussed above, an illumination system
can be analyzed quite accurately by a very limited number
of reference rays and associated phase space patches. Tracing
the reference rays results in the exact location of the radiance
(irradiance) patches, whereas the surrounding local ABCD-
transformation defines the shape of the radiance patch in
phase space and the projection defines the irradiance contri-
bution, respectively.

Fig. 7 Optimized version of a beam shaper: (a) ray tracing illustration, (b) and (c) corresponding phase
space transformation of the source and at the target, illustrating the reference rays used for optimization,
and (d) irradiance profile at the target, where the dashed line corresponds to a 50 mrad tilted laser beam.
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In consequence, we can optimize the position of the refer-
ence rays within the optical design to control the position
where the flux patch will be deposited. And we can optimize
the local ABCD-transformation, to control the shape of the
phase space patch, and thus the local contribution to the
irradiance.

Therefore, the general proposed design procedure is the
following: first, we need to define an adequate number of
reference rays and corresponding phase space patches.
During design, we need to control the position of the refer-
ence rays and the ABDC-transformation properties, if we
fully want to control the final radiance distribution. Controll-
ing the ABCD-behavior can, for example, be achieved by
controlling corner rays of a radiance patch. So the optimiza-
tion can be done in any commercial design software.

As an example, let us again consider the Gauss-to-top-hat
shaper mentioned previously. The single lens solution pre-
sented in Fig. 6 will produce a top-hat irradiance for a perfect
collimated input beam. However, for a realistic “extended
source” input beam (e.g., a low-quality laser beam or a
laser with pointing errors), this design will create problems.
If we, for example, simulate a pointing error of 0.05 rad, we
find a distorted and shifted output beam profile, as illustrated
in Fig. 6(d).

To optimize the design for such an extended source, we
can now apply our method. Since we want to control radi-
ance patches, reference rays for different angles and posi-
tions must be controlled. To achieve this, additional degrees
of freedom are necessary. Therefore, we need to introduce an
additional second aspheric lens, as shown in Fig. 7(a). Next,
we need to define appropriate reference rays. For this exam-
ple, we chose equidistant reference rays, marked by dots in
Figs. 7(b) and 7(c). If we redistribute these reference rays at
the target to have a deliberately distorted separation, we will
obtain a top-hat distribution. In fact, this is the standard
“mapping” design procedure for a shaper for an ideal colli-
mated beam and will lead to a design similar to Fig. 6(a).
However, if we now additionally control the local ABCD-
transformation at the edges of the beam by aligning the
reference rays corresponding to different input angles
(here �0.05 rad) to the same output position, as shown in
Fig. 7(c), we find the optimized design shown in Fig. 7(a).

The advantages of this optimization are visible in Fig. 7(d),
where we show the irradiance pattern at the target, for a col-
limated Gaussian input beam (solid lines) and for a tilted
Gaussian input beam (dashed lines, for 0.05 rad tilt).
Obviously, the optimized system preserves the shape and
position of the top-hat profile also for the tilted beam.
The main element to achieve this optimized system perfor-
mance is the second highly aspheric lens, which images the
stop onto the target at the edge of the beam and thus stabil-
izes the profile.

In summary, the phase space transformation in the new
design is well controlled, to first spatially distort the radiance
profile to form a top-hat and second to image the stop at the
edge of the beam to stabilize it. Thus, the system is now opti-
mized for an extended phase space region (corresponding to
an extended source) and is therefore able to accept tilted laser
beams or laser beams with large divergence.

5 Conclusions
We have presented an alternate method to analyze illumina-
tion systems, which includes the etendue of a realistic
extended source from the very beginning. An illustration of
the radiance transformation properties in phase space allows
intuitive and quantitative insight into the radiance and irra-
diance distribution at the exit of the system. The method
allows a semianalytical analysis of the system behavior by
determining the real ray tracing of reference rays in combi-
nation with an analysis of the local linear ABCD-properties.
In consequence, the method allows considering the source
extensions, source tolerances, and limitations in a very sim-
ple way. Moving forward, this also leads to design methods
that are based on controlling reference rays and the transfor-
mation matrix.
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