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Abstract. Modern advanced manufacturing and testing technologies allow the application of freeform optical
elements. Compared with traditional spherical surfaces, an optical freeform surface has more degrees of free-
dom in optical design and provides substantially improved imaging performance. In freeform optics, the repre-
sentation technique of a freeform surface has been a fundamental and key research topic in recent years.
Moreover, it has a close relationship with other aspects of the design, manufacturing, testing, and application
of optical freeform surfaces. Improvements in freeform surface representation techniques will make a significant
contribution to the further development of freeform optics. We present a detailed review of the different types of
optical freeform surface representation techniques and their applications and discuss their properties and
differences. Additionally, we analyze the future trends of optical freeform surface representation techniques.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.56.11.110901]

Keywords: freeform optics; freeform optical design; optical freeform surface; representation techniques.

Paper 171071V received Jul. 11, 2017; accepted for publication Oct. 26, 2017; published online Nov. 11, 2017.

1 Introduction
With the advancement of modern precision optical fabrica-
tion and measurement technology, optical components with
different surface types can be gradually realized. Under this
condition, a spherical surface is not the only choice in current
optical design. Owing to their abundant degrees of freedom
and strong ability of aberration correction, optical aspheric
and freeform surfaces are strong candidates. From the geo-
metrical viewpoint,1 an optical freeform surface has nonrota-
tionally symmetric features. From the aspect of fabrication
and design,2 an optical freeform surface is regarded as an
optical surface that leverages a third independent axis during
the fabrication process to form the optical surface with as-
designed nonsymmetric features. Both viewpoints reveal
the basic feature of the nonrotational symmetry of optical
freeform surfaces, which is a challenge for the optical com-
munity. In the last 10 years, the technologies of multiaxis
slow-servo single-point diamond turning and computer-con-
trolled small-lap polishing have been further enhanced, and
the manufacturing capacity and metrology of nonrotationally
symmetric optical surface have been improved. Therefore,
the application fields of nonrotationally symmetric optical
surfaces have increased considerably.

Generally, freeform optics can be categorized into noni-
maging and imaging freeform optics. Applications of optical
freeform surfaces in the nonimaging category include beam
shaping,3 concentrators,4 and illumination,5 where optical
freeform surfaces can control the light direction to improve
energy uniformity and efficiency. Examples of applications
in the imaging category are ultrashort projection lenses,6

head-mounted displays,7 ultraviolet lithographic objectives,8

and off-axis reflective infrared imaging systems,9 where

optical freeform surfaces are used to improve imaging per-
formance and compactness. Hence, freeform optics is
regarded as the next-generation and ground-breaking tech-
nology in modern optics.2,10

However, the question of how to represent or characterize
an optical freeform surface remains. Because the optical free-
form surface representation technique has a close relation-
ship with its design, manufacturing, testing, and final
application, it encompasses all the processes used in free-
form optics. Namely, the freeform surface representation
technique is a fundamental and key research topic, and its
enhancement can further facilitate the development of free-
form optics. Obviously, the optical freeform surface repre-
sentation technique employed in different applications is
not unique, and its selection depends on practical consider-
ations. So far, XY-type, Zernike, Q-type, Chebyshev, and
Legendre polynomials, the radial basis function, the nonuni-
form rational basis spline (NURBS) function, and other
hybrid methods and techniques have been used to represent
the optical freeform surface in each specific application.
Thompson and Rolland2 described the history and the
revolutionary character of optical freeform surfaces. Fang
et al.11 presented a comprehensive review on the manufac-
turing and measurement of freeform optics, which contained
some information on freeform surface representation tech-
niques. Gross et al.12 published an overview of surface rep-
resentations for freeform surfaces particularly from the
aspect of power spectral density in the midspatial frequency
for manufacturing. Fähnle et al.13 presented a special section
on freeform optics to discuss the current developments in all
aspects of freeform optics. We believe that an elaborate
analysis of optical freeform surface representation techniques
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is necessary, as it can provide a large map about the develop-
ment of these methods.

In this paper, we present a comprehensive review of the
different types of freeform surface representation techniques
and their applications. Section 2 describes several typical
applications using different types of optical freeform surfa-
ces. Section 3 discusses various mathematical functions and
techniques that can be applied to characterize optical free-
form surfaces and analyzes methods used to obtain a free-
form surface from discrete data points. In Sec. 4, the
differences between freeform surface representation tech-
niques are discussed and compared in detail. Section 5 con-
cludes with the state of the art in optical freeform surface
representation and its future trends.

2 Applications of Different Types of Optical
Freeform Surface Characterization

An optical freeform surface has the advantages of improving
the imaging performance, reducing the number and weight,
and further increasing the compactness of optical compo-
nents, especially in off-axis imaging optical systems. This
is owing to its multiple degrees of freedom and off-axis aber-
ration correction ability. One of the most typical examples of
a freeform surface was used by Maitenaz14 and Kanolt15 in
progressive multifocal ophthalmic lenses, which date back to
1954. It was applied for the correction of presbyopia and
offered the wearers comfortable, relatively clear vision
with no separation between long and short distances,16 as
shown in Fig. 1. The profile of the progressive lens is obvi-
ously of the nonrotationally symmetric type, which can be
represented by the combination of Zernike polynomials or
the B-spline function.

Another example of freeform surfaces used in an off-axis
catadioptric Polaroid SX-70 camera was introduced by
Plummer;17 this might be the first commercial product
employing optical freeform surfaces characterized by XY
polynomials to improve its imaging performance, as dis-
played in Fig. 2. Owing to the optical path configuration
of off-axis refractive and reflective types, it had more com-
pactness. However, off-axis aberrations aggravated its imag-
ing quality. Thus, two freeform optical components were
used to correct the off-axis aberration. A freeform corrector
(D) with a fourth-order XY polynomial profile was located at
the system stop, which could reduce the astigmatism, coma,
and spherical aberration. Another freeform eyepiece lens (G)

with a sixth-order XY polynomial profile was positioned at
the viewfinder to control the astigmatism and field curvature.

In the last decade, with the development of advanced fab-
rication equipment, as well as commercial optical design
tools and optical testing technology, the advantages of opti-
cal freeform surfaces have been extensively utilized in differ-
ent applications such as projection optical systems, head-
worn displays, and off-axis reflective optical systems. In
these applications, the used freeform surface is generally a
continuous and smooth surface characterized by different
analytical functions. Additionally, a microfreeform-prism-
based lens array is employed in the artificial compound
eye18–20 and can realize a large field of view using multiple
imaging channels with lower distortion. Each imaging chan-
nel is a microfreeform-prism lens represented by XY poly-
nomials or Zernike polynomials to correct the aberration in
the corresponding channel. This type of freeform surface is
stepped and noncontinuous globally. From the perspective of
the overall continuity of surface, the optical freeform surface
can be categorized into two types, as described above.
Continuous and smooth freeform surfaces are much more
common in the design and application of freeform optical
systems. Therefore, in the following, we discuss applications
that use different types of optical freeform surfaces by focus-
ing on continuous and smooth freeform surfaces.

A traditional projection system always has a relatively
long throw distance, which involves large unused spaces.
On the other hand, if the presenter stands between the screen
and the projector, his shadow is shown on the screen. As the
accessory of the traditional projection system, freeform opti-
cal elements can obtain an ultrashort throw distance, a large
screen, and high performance projection, as shown in Fig. 3.
Hitachi21 reported that a projector (HCP-A8) using a free-
form reflective mirror could realize a 60-in. projection screen
at a throw distance of only 47 cm; however, the detailed func-
tion type of its profile was not revealed. The simultaneous
multiple surface (SMS) method22 was applied by Miñano
and Benítez in the design of a freeform accessory optical sys-
tem for ultrashort throw distance projection. The discrete
data point cloud characterizing the freeform surface was
obtained by the SMS method and could be reconstructed

Fig. 1 Progressive lens with nonrotationally symmetric freeform
surfaces.

Fig. 2 Schematic diagram of the optical path of the Polaroid SX-70
camera with freeform corrector D located at the stop and freeform eye-
piece lens G positioned at the viewfinder.
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accurately by analytical polynomials or functions. Yang
et al.23 used XY polynomials to obtain a miniaturized and
short projector. Zhuang et al.6 applied odd XY polynomials
representing the freeform reflector together with a field cur-
vature correction method to design an ultrashort projector.
The introduction of optical freeform surfaces to projection
optical systems could further enhance projection display
technology to achieve an ultrashort throw distance, larger
display screen, higher imaging projection performance,
miniaturization, and low weight.

Head-worn displays, which can interact with the virtual
digital world and connect with the real world, are widely
used in modern education, medical treatment, entertainment,
and military training. The use of a freeform prism as the eye-
piece lens for head-worn displays, as shown in Fig. 4, was
reported by Okuyama24 and Takahashi.25 Each profile of the
freeform prism can be represented by XY polynomials or
Zernike polynomials. Cakmakci and Rolland26 designed a
dual-element off-axis near-eye optical magnifier by combin-
ing a freeform reflector represented by XY polynomials and
a diffractive lens. Furthermore, Cakmakci et al.27 applied the
radial basis function, instead of XY polynomials, to charac-
terize the freeform reflector, which could increase the exit
pupil diameter from 8 to 12 mm. Cheng et al.7 reported

a freeform prism-based head-worn display characterized
by XY polynomials, which had the advantages of a fast
focal ratio, large field of view, and see-through properties.
Zheng et al.28 designed and analyzed an off-axis see-through
head-worn display with XY polynomials that had a large eye
relief of over 60 mm. Pan et al.29 demonstrated an off-axis
two-freeform reflector described by XY polynomials with an
8-mm exit pupil diameter, which was used to enhance the
visual sensing of slightly visually impaired patient. The
development of optical freeform surfaces advances head-
worn displays in the direction of a large exit pupil diameter,
long eye relief, large field of view, high-resolution display,
more comfort, and miniaturization.

Optical freeform surfaces are frequently used in off-axis
reflective optical systems. Xu et al.30 presented a freeform
spectrometer using a toroid reflective surface to correct astig-
matism. Rodgers31 designed an off-axis four-mirror system
that used the off-axis section of an even-order asphere.
Furthermore, Nakano and Tamagawa32 designed an off-axis
three-mirror system. The original configuration was ana-
lyzed by conic surfaces and further optimized by Zernike
polynomials. Fuerschbach et al.9 presented an off-axis
three-mirror long-wavelength infrared imaging system using
the off-axis part of a fringe Zernike polynomial surface by

Fig. 3 Freeform optical elements as the accessory of traditional projection optical system.

Fig. 4 Freeform prism in a head-worn display. Fig. 5 Freeform off-axis reflective infrared imaging system.
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combining the nodal aberration theory and the full-field dis-
play method, as shown in Fig. 5. The use of an off-axis opti-
cal path configuration and a freeform surface makes the
imaging system more compact and more efficient in cor-
recting the off-axis aberration.

Optical freeform surfaces also play a key role in pano-
ramic imaging systems with a wide field of view. Ma
et al.33 presented a panoramic annular imaging system
with nonsymmetric, rotational, and variable focal length,
which had a freeform surface characterized by XY polyno-
mials, as displayed in Fig. 6. Zhou and Bai34 designed a
small-distortion panoramic annular lens with a Q-type free-
form surface. Previous panoramic imaging systems had an
inherent shortcoming, namely, a central blindness without
the image. By applying a stitched freeform surface between
the central and peripheral regions, a large field-of-view pano-
ramic lens without central blindness could be realized.35

Additionally, several other applications employing free-
form surfaces have been demonstrated. Alvarez36 applied
two complementary freeform optical components repre-
sented by third-order XY polynomials to realize a vary-
ing-focal-length lens system. Smilie et al.37 fabricated a
germanium Alvarez lens for infrared imaging under condi-
tions of modern precision optical manufacturing. Hicks38

developed a ray-tracing method to obtain a discrete data
point cloud for a freeform reflector, which was used to
design a 45-deg field of view and a lower-distortion
driver-side mirror to effectively increase the driver’s field
of view. Zhu et al.39 presented a direct design method to
obtain a discrete data point cloud, which was fitted by
XY polynomials for further optimization of an F-theta free-
form scanning lens. Its field of view was ∼120 deg, and the
scanning error was lower than 1 μm.

The current applications of optical freeform surfaces
show that there are mainly two strategies for characterizing
the freeform surface. First, the freeform surface is expressed
as explicit mathematical functions in the freeform optical
design by directly optimizing the coefficients. Most of the
commonly used freeform functions have been integrated
into commercial optical design software. Second, a freeform
surface is derived from discrete data points by specific design
algorithms. Additionally, in freeform surface testing, the
obtained freeform shape data are also included in a discrete
data point cloud. They must be further fitted accurately by

analytical or numerical functions for the next optimization or
the final freeform surface estimation. Among the different
function types for representing freeform surfaces, there is
a particular impression about the XY-type polynomial free-
form surface, which is frequently used in different applica-
tions. This can be illustrated briefly using the optical
aberration theory. When the symmetry of an optical system
is not considered, its aberration function can be approxi-
mated by expanding it as a combination of XY polynomials
in a Taylor series for a specific field of view. In other words,
each term of the XY polynomials corresponds to a specific
aberration and can correct it. Similarly, the aberration func-
tion can be decomposed as a linear combination of Zernike
polynomials, which is why Zernike polynomials are increas-
ingly used. They provide more degrees of freedom and aber-
ration correction capabilities in the freeform optical design.
The advantages of freeform surfaces make them attractive to
optical engineers for practical applications. In the following
section, we describe the different freeform surface represen-
tation techniques in detail.

3 Mathematical Descriptions of Optical Freeform
Surface

According to the different applications of freeform surfaces
mentioned in Sec. 2, the common analytical functions used
to represent optical freeform surfaces can be generally cat-
egorized as orthogonal polynomials and nonorthogonal
functions. On the other hand, representation techniques
employed to obtain an optical freeform surface from discrete
data points are also important in direct freeform optics design
and in freeform optical testing. For a freeform surface with
large slope variation in local areas or large global gradient,
hybrid or combined representation methods should be con-
sidered for characterizing the fine local features of a freeform
surface. In this section, these representation techniques for
freeform surfaces are discussed and analyzed.

3.1 Analytical Functions

3.1.1 Orthogonal polynomials

Orthogonal polynomials,40 such as Zernike polynomials,41

are widely used to analyze optical surface deviations and
wavefront aberrations owing to their elegant mathematical
performance. Here, we describe mathematical orthogonality
and different analytical orthogonal polynomials.

Definition and properties of orthogonal polynomial.
Polynomial functions PmðρÞ, PnðρÞ, and the weighted func-
tion wðρÞ that are defined over a range ρ ∈ ½a; b� satisfy a
relationship

EQ-TARGET;temp:intralink-;e001;326;203

Z
b

a
wðρÞPmðρÞPnðρÞdρ ¼ δmncn; (1)

then PðρÞ is a weighted orthogonal polynomial, where δmn is
the Kronecker delta function. The subscripts m and n are the
nonnegative integers. When m ¼ n, δmn ¼ 1, and when
m ≠ n, δmn ¼ 0. cn is the corresponding coefficient,
which can be calculated by Eq. (2). When cn ¼ 1, the poly-
nomial is the orthonormal polynomial

Fig. 6 Freeform panoramic annular imaging system with a large field
of view.
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EQ-TARGET;temp:intralink-;e002;63;752cn ¼
Z

b

a
wðρÞ½PnðρÞ�2dρ: (2)

The Zernike circle polynomial is a typical orthogonal and
complete polynomial used to describe the aberration func-
tion, fit wavefront data, or represent a freeform surface.
When the freeform surface is expanded as a linear combina-
tion of Zernike circle polynomials, Zernike circle polynomial
has the following properties.

1. Because of the orthogonality and completeness of
Zernike polynomials, the coefficient of one term is in-
dependent of the number of used terms.

2. In the expansion, the first term is the piston term,
which indicates the mean value of the surface or wave-
front function.

3. Except the first term, the mean value of the other terms
is zero.

4. Except the first term, the variance of the surface or
wavefront function is the sum of the squared coeffi-
cients of the other terms.

5. Except the first term, the standard deviation of each of
the other terms is the corresponding coefficient value.

Obviously, other different-type orthogonal polynomials
have similar properties to those of Zernike polynomials
for representing an optical freeform surface.

Two typical circular orthogonal polynomials.

Zernike circle orthogonal polynomials

The ordering number of the Zernike circle polynomial fol-
lows Noll’s ordering.42 A Zernike polynomial is expressed as

EQ-TARGET;temp:intralink-;e003;63;381Zjðρ;ϕÞ ¼ Zm
n ðρ;ϕÞ

¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
R0
nðρÞ; m ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðnþ 1Þp
Rm
n ðρÞ cos mϕ; m ≠ 0 ðevenÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðnþ 1Þp
Rm
n ðρÞ sin mϕ; m ≠ 0 ðoddÞ

;

(3)

where the subscript j is the ordering number, n andm are the
nonnegative integers, n −m is even, and n −m ≥ 0. Rm

n ðρÞ
is the radial function, which is described by

EQ-TARGET;temp:intralink-;e004;63;257Rm
n ðρÞ ¼

Xðn−mÞ∕2

k¼0

ð−1Þkðn − kÞ!
k!
�
nþm
2

− k
�
!
�
n−m
2

− k
�
!
ρn−2k: (4)

The higher-order Zernike polynomials can be obtained
from the recurrence relations that they satisfy. The first 28
Zernike polynomials are listed in Table 1.

As discussed in Sec. 2, the Zernike polynomial is widely
used. Fuerschbach et al.9 designed a compact off-axis three-
mirror long-wavelength infrared imaging system using
fringe Zernike polynomials to further improve its imaging
performance. In theory, any surface or wavefront, regardless
of how complex it is, can be accurately represented by apply-
ing a sufficient number of Zernike polynomial terms.
However, in practice, only a finite number of terms are usu-
ally used for freeform surface analysis.

Q-type orthogonal polynomials

To overcome the numerical deficiency of even-order polyno-
mials and improve the manufacturability and testability of
aspheres, Forbes proposed Qcon

n ðu2Þ polynomials for repre-
senting strong surfaces with large aspheric deviations and
Qbfs

n ðu2Þ polynomials for characterizing mild surfaces
with constrained slopes based on Jacobi polynomials.43–46

Furthermore, a Qm
n ðu2Þ polynomial was proposed for char-

acterizing optical freeform surfaces.47 The Qm
n ðu2Þ polyno-

mial has a similar construction to the Zernike polynomial and
represents the deviation between the freeform surface and the

Table 1 The first 28 Zernike circle polynomials Z j ðρ;ϕÞ

n m j Z j ðρ;ϕÞ
0 0 1 1

1 1 2 2ρ cos ϕ

1 1 3 2ρ sin ϕ

2 0 4
ffiffiffi
3

p ð2ρ2 − 1Þ

2 2 5
ffiffiffi
6

p
ρ2 sin 2ϕ

2 2 6
ffiffiffi
6

p
ρ2 cos 2ϕ

3 1 7
ffiffiffi
8

p ð3ρ3 − 2ρÞ sin ϕ

3 1 8
ffiffiffi
8

p ð3ρ3 − 2ρÞ cos ϕ

3 3 9
ffiffiffi
8

p
ρ3 sin 3ϕ

3 3 10
ffiffiffi
8

p
ρ3 cos 3ϕ

4 0 11
ffiffiffi
5

p ð6ρ4 − 6ρ2 þ 1Þ

4 2 12
ffiffiffiffiffiffi
10

p ð4ρ4 − 3ρ2Þ cos 2ϕ

4 2 13
ffiffiffiffiffiffi
10

p ð4ρ4 − 3ρ2Þ sin 2ϕ

4 4 14
ffiffiffiffiffiffi
10

p
ρ4 cos 4ϕ

4 4 15
ffiffiffiffiffiffi
10

p
ρ4 sin 4ϕ

5 1 16
ffiffiffiffiffiffi
12

p ð10ρ5 − 12ρ3 þ 3ρÞ cos ϕ

5 1 17
ffiffiffiffiffiffi
12

p ð10ρ5 − 12ρ3 þ 3ρÞ sin ϕ

5 3 18
ffiffiffiffiffiffi
12

p ð5ρ5 − 4ρ3Þ cos 3ϕ

5 3 19
ffiffiffiffiffiffi
12

p ð5ρ5 − 4ρ3Þ sin 3ϕ

5 5 20
ffiffiffiffiffiffi
12

p
ρ5 cos 5ϕ

5 5 21
ffiffiffiffiffiffi
12

p
ρ5 sin 5ϕ

6 0 22
ffiffiffi
7

p ð20ρ6 − 30ρ4 þ 12ρ2 − 1Þ

6 2 23
ffiffiffiffiffiffi
14

p ð15ρ6 − 20ρ4 þ 6ρ2Þ sin 2ϕ

6 2 24
ffiffiffiffiffiffi
14

p ð15ρ6 − 20ρ4 þ 6ρ2Þ cos 2ϕ

6 4 25
ffiffiffiffiffiffi
14

p ð6ρ6 − 5ρ4Þ sin 4ϕ

6 4 26
ffiffiffiffiffiffi
14

p ð6ρ6 − 5ρ4Þ cos 4ϕ

6 6 27
ffiffiffiffiffiffi
14

p
ρ6 sin 6ϕ

6 6 28
ffiffiffiffiffiffi
14

p
ρ6 cos 6ϕ
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best-fit sphere along the normal direction. The sag of the
freeform surface along the z-axis is z ¼ fðρ;ϕÞ
EQ-TARGET;temp:intralink-;e005;63;730

z ¼ cbfsρ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2bfsρ

2
q

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2bfsρ

2
q �

u2ð1 − u2Þ
XN
n¼0

a0nQ0
nðu2Þ

þ
XM
m¼1

um
XN
n¼0

ðamn cos mϕþ bmn sin mϕÞQm
n ðu2Þ

�
: (5)

In Eq. (5), when m ¼ 0, then Q0
nðu2Þ is the same as

Qbfs
n ðu2Þ. When m > 0 and m is an integer, Qm

n ðu2Þ charac-
terizes the deviation along the normal direction. Here, amn is
the coefficient of the symmetric termQm

n ðu2Þ cos mϕ and bmn
is the coefficient of the nonsymmetric term Qm

n ðu2Þ sin mϕ.
Let t ¼ u2; then Qm

n ðu2Þ ¼ Qm
n ðtÞ. The Jacobi polynomial

Jmn ðtÞ associated with Qm
n ðtÞ is described by Eq. (6).

Forbes reported several Qm
n ðtÞ polynomials with n ¼

0;1; 2;3 and m ¼ 0;1; 2;3; 4;5. In this paper, the first four-
terms of Q6

nðtÞ polynomials are listed in Table 2,

EQ-TARGET;temp:intralink-;e006;63;494Jmn ðtÞ ¼
8<
:

1 − t
2
; m ¼ 1 and n ¼ 1

ð−1Þnð2nÞ!!
2ð2n−1Þ!! J

�
−3
2
;m−3

2

�
n ð2t − 1Þ otherwise

:

(6)

To obtain the higher-order Q-type polynomials, a recur-
rence relation can be applied to improve the computation
efficiency.

Different orthogonal polynomials with differently shaped
apertures. For the circular aperture or pupil of the optical
system, Zernike polynomials provide a superior perfor-
mance. In modern optical engineering, more optical systems
with noncircular pupils or optical components with noncir-
cular boundaries are being developed. For example, rectan-
gular or square optical elements are applied in anamorphic or
high-power laser optical systems.48 Many optical elements
with square apertures are used in the U.S. National
Ignition Facility and the China Inertial Confinement Fusion
laser driver. In large telescopes, the giant reflector is stitched
by hundreds of hexagonal mirrors. Freeform optical elements
with noncircular apertures are also implemented in practical
applications.49

For freeform surface analysis in freeform optical elements
with differently shaped apertures, the corresponding
orthogonal polynomials must be applied to the similarly
shaped apertures. Owing to the orthogonality and complete-
ness of Zernike polynomials, a freeform surface with noncir-
cular aperture can also be expressed as a linear combination
of the corresponding orthogonal polynomials over the same
aperture. Using Zernike polynomials as the basis functions,
orthogonal polynomials (such as Zernike square polyno-
mials, Zernike rectangular polynomials, Zernike hexagonal
polynomials, Zernike elliptical polynomials, and Zernike
annular polynomials) over the corresponding apertures
can be derived by the Gram–Schmidt orthogonalization
method.50 Tatian,51 Barakat,52 Mahajan and Dai,50 Swantner
and Chow,53 Hasan and Shaker,54 Díaz and Mahajan,55 and
Díaz and Navarro56 reported analytical Zernike orthogonal
polynomials with differently shaped apertures. Ferreira
et al.57 proposed a rigorous and powerful theoretical frame-
work to obtain the orthogonal basis with a conicoid first
mode for surface specification. Liu et al.58 applied two-
dimensional (2-D) Chebyshev polynomials to characterize
the “W”-shaped freeform optical elements. Mahajan59 ana-
lyzed the aberration of an anamorphic optical system using
2-D Legendre polynomials. These two orthogonal polyno-
mials were used for square or rectangular apertures. The
differences between 2-D Chebyshev and Legendre polyno-
mials for representing complex freeform surfaces were com-
pared comprehensively by Ye et al.,60 who elaborated on the
mathematical expressions of several typical orthogonal pol-
ynomials for representing freeform surfaces.

Gram–Schmidt orthogonalization method deriving non-
circular orthogonal polynomials. For freeform surfaces
with noncircular apertures, such as square, rectangular, ellip-
tical, annular, sector, and hexagonal apertures, the corre-
sponding orthogonal polynomials can be derived by the
Gram–Schmidt orthogonalization method,50 which employs
a set of complete orthogonal polynomials as basis functions
and uses an iterative transformation method.

For simplicity, a Zernike circle polynomial Zjðx; yÞ in the
Cartesian coordinate system is written as Zj. The subscript j
is a positive integer starting from 1 and the ordering number,
Fj denotes the corresponding noncircular orthogonal poly-
nomial, and Gj is the intermediate transformation polyno-
mial. Generally, the first term is

EQ-TARGET;temp:intralink-;e007;326;257F1 ¼ G1 ¼ Z1 ¼ 1: (7)

Furthermore, if G, Z, and F satisfy the recurrence relation
Gjþ1 ¼ Zjþ1 þ

Pj
k¼1 cjþ1;kFk, then the corresponding non-

circular normalized orthogonal polynomial F is

EQ-TARGET;temp:intralink-;e008;326;198Fjþ1 ¼
Gjþ1

kGjþ1k
¼ Gjþ1�

1
A

R
aperture G

2
jþ1dx dy

�
1∕2 . (8)

The transformation coefficient cjþ1;k is

EQ-TARGET;temp:intralink-;e009;326;139cjþ1;k ¼ −
1

A

Z
aperture

Zjþ1Fkdx dy; (9)

where A is the area of a regular noncircular aperture inscribed
in a unit circle. The area of an annular aperture is
AAA ¼ πð1 − ε2Þ, where ε is the annular ratio. The area of

Table 2 The first four-terms of Q6
nðtÞ polynomials.

n Q6
nðtÞ

0 8
9
ffiffi
7

p

1 − 8ð−77þ72tÞ
9
ffiffiffiffiffiffiffiffi
1397

p

2 8ð73645−159432tþ85344t2Þ
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
542196655

p

3 − 8ð−1858285þ6903936t−8322912t2þ3275520t3Þ
9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4280409445

p
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a square aperture is ASA ¼ 2. The area of a rectangular aper-
ture is ARA ¼ 4a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
, where a is the half-width of the

rectangular aperture along the x-axis and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
is the half-

width along the y-axis. The area of a hexagonal aperture
is AHA ¼ 3

ffiffiffi
3

p
∕2. The area of an elliptical aperture is

AEA ¼ πb, where b is the half-minor axis along the
y-axis, and the half-major axis along the x-axis is unity.

Using recurrence iteration based on the Gram–Schmidt
orthogonalization method, analytical orthogonal polyno-
mials for differently shaped apertures can be derived. These
polynomials can be used for freeform surface representation,
wavefront estimation, and aberration analysis.

Two typical Jacobi square orthogonal polynomials. In
the orthogonal polynomial used for the square aperture
derived by the Gram–Schmidt orthogonalization method,
the x and y variables of each term are mixed together.
The 2-D Chebyshev and Legendre polynomials are two
square orthogonal polynomials with x and y variables,
respectively, which can be applied to characterize anamor-
phic freeform surfaces.

Two-dimensional Chebyshev polynomials

The 2-D Chebyshev polynomials are defined by the products
of one-dimensional first-kind Chebyshev polynomials in the
x- and y-dimensions. The Chebyshev polynomials TnðxÞ of
the first kind61 in the x-dimension are orthogonal in the range
½−1;1� with a weighted function wðxÞ ¼ 1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
, as

shown in

EQ-TARGET;temp:intralink-;e010;63;428

Z
1

−1

TnðxÞTmðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p dx ¼
	

1
2
πδnm for n ≠ 0; m ≠ 0

π for n ¼ m ¼ 0
; (10)

where δnm is the Kronecker delta. In the y-dimension, the y
variable is used instead of the x variable to obtain TnðyÞ.
Therefore, a 2-D Chebyshev polynomial Cjðx; yÞ is
EQ-TARGET;temp:intralink-;e011;63;356Cjðx; yÞ ¼ TnðxÞTmðyÞ; (11)

where the subscript j is the ordering number. The orthogon-
ality of 2-D Chebyshev polynomials is

EQ-TARGET;temp:intralink-;e012;63;308

Z
1

−1

Z
1

−1
Cjðx; yÞCj 0 ðx; yÞ

dx dyffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
¼

	
0 for j ≠ j 0

K for j ¼ j 0 ; (12)

whereK is a constant value used for the normalization of 2-D
Chebyshev polynomials

EQ-TARGET;temp:intralink-;e013;63;216K ¼
(
π2 for n ¼ m ¼ 0

π2∕4 for n ¼ m ≠ 0

π2∕2 for else

: (13)

The normalized 2-D Chebyshev polynomial CNj can be
derived by Eq. (14). The first 28 2-D Chebyshev polynomials
are shown in Table 3.

EQ-TARGET;temp:intralink-;e014;63;134CNj ¼
Cj∕

ffiffiffiffi
K

p


Cj∕
ffiffiffiffi
K

p 


 ¼ Cj∕
ffiffiffiffi
K

ph
1
4

R
1
−1

R
1
−1

�
Cj∕

ffiffiffiffi
K

p �
2
dx dy

i
1∕2 :

(14)

Two-dimensional Legendre polynomials

The 2-D Legendre polynomials are obtained in a similar way
to 2-D Chebyshev polynomials. The Legendre polynomials62

PnðxÞ in the x-dimension are orthogonal over the interval
½−1;1� with a weighted function wðxÞ ¼ 1

EQ-TARGET;temp:intralink-;e015;326;128

Z
1

−1
PnðxÞPmðxÞdx ¼ 2

2nþ 1
δnm: (15)

To obtain PnðyÞ, we substitute the x variable in PnðxÞ
with the y variable. Thus, the 2-D Legendre polynomials

Table 3 The first 28 2-D Chebyshev polynomials Cj ðx; yÞ.

Polynomial order Cj ðx; yÞ
0 C1 ¼ 1

1 C2 ¼ x

1 C3 ¼ y

2 C4 ¼ 2x2 − 1

2 C5 ¼ xy

2 C6 ¼ 2y2 − 1

3 C7 ¼ 4x3 − 3x

3 C8 ¼ ð2x2 − 1Þy

3 C9 ¼ xð2y2 − 1Þ

3 C10 ¼ 4y3 − 3y

4 C11 ¼ 8x4 − 8x2 þ 1

4 C12 ¼ ð4x3 − 3xÞy

4 C13 ¼ ð2x2 − 1Þð2y2 − 1Þ

4 C14 ¼ xð4y3 − 3yÞ

4 C15 ¼ 8y4 − 8y2 þ 1

5 C16 ¼ 16x5 − 20x3 þ 5x

5 C17 ¼ ð8x4 − 8x2 þ 1Þy

5 C18 ¼ ð4x3 − 3xÞð2y2 − 1Þ

5 C19 ¼ ð2x2 − 1Þð4y3 − 3yÞ

5 C20 ¼ xð8y4 − 8y2 þ 1Þ

5 C21 ¼ 16y5 − 20y3 þ 5y

6 C22 ¼ 32x6 − 48x4 þ 18x2 − 1

6 C23 ¼ ð16x5 − 20x3 þ 5xÞy

6 C24 ¼ ð8x4 − 8x2 þ 1Þð2y2 − 1Þ

6 C25 ¼ ð4x3 − 3xÞð4y3 − 3yÞ

6 C26 ¼ ð2x2 − 1Þð8y4 − 8y2 þ 1Þ

6 C27 ¼ xð16y5 − 20y3 þ 5yÞ

6 C28 ¼ 32y6 − 48y4 þ 18y2 − 1
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Ljðx; yÞ can be obtained from the product of PnðxÞ and
PmðyÞ
EQ-TARGET;temp:intralink-;e016;63;730Ljðx; yÞ ¼ PnðxÞPmðyÞ: (16)

The orthogonality of 2-D Legendre polynomials is
described by

EQ-TARGET;temp:intralink-;e017;63;682

1

4

Z
1

−1

Z
1

−1
Ljðx; yÞLj 0 ðx; yÞdx dy ¼ δjj 0 : (17)

The first 28 2-D Legendre polynomials are listed in
Table 4.

3.1.2 Nonorthogonal functions

In addition to the analytical orthogonal polynomials, there
are several nonorthogonal functions applied to characterize
freeform surfaces, such as XY-type polynomials, spline func-
tions, and radial basis functions.

XY-type polynomials. In XY-type polynomials, the free-
form surface is represented as a base surface with a linear
combination of multiple xmyn monomial terms. The base
surface is usually a conic or anamorphic surface, as
shown in
EQ-TARGET;temp:intralink-;e018;326;593

zðx;yÞ¼ cxx2þcyy2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðkxþ1Þc2xx2−ðkyþ1Þc2yy2

q þ
XJ
j¼2

ajxmyn;

j¼ðmþnÞ2þmþ3n
2

þ1; (18)

where cx and cy are the curvature radii in the two correspond-
ing directions, and kx and ky are the conic constants. As
shown in Eq. (18), it combines the advantages of an anamor-
phic surface and an XY polynomial surface and has more
degrees of freedom for characterizing a freeform surface.

This type of freeform surface is not available in optical
design software. However, it can be defined in such software
using the feature “user-defined surface” for further optimi-
zation of the corresponding freeform optical system.63

Additionally, the off-axis part of the XY-type polynomial
is usually used to represent freeform surfaces.

Spline surface. A spline surface is very flexible in com-
puter-aided design and freeform surface construction. The
NURBS surface is increasingly being applied to optical
design. Its mathematical expression is

EQ-TARGET;temp:intralink-;e019;326;334zðu; vÞ ¼
P

n
i¼0

P
m
j¼0 wi;jBi;kðuÞBj;lðvÞPi;jP

n
i¼0

P
m
j¼0 wi;jBi;kðuÞBj;lðvÞ

; (19)

where Pi;j is the control function, wi;j is the weighted factor.
Bi;kðuÞ is the k’th-order B-spline function along the u-direc-
tion in Eq. (20), and Bj;lðvÞ in Eq. (21) is similar to Bi;kðuÞ; it
is the l’th-order B-spline function along the v-direction. The
subscripts i, j, k, and l are nonnegative integers

EQ-TARGET;temp:intralink-;e020;326;227

8<
:k¼ 0; Bi;0ðuÞ ¼

	
1; if ui ≤ u < uiþ1 and ui < uiþ1

0; otherwise

k ≥ 1; Bi;kðuÞ ¼ u−ui
uiþk−ui

Bi;k−1ðuÞþ uiþkþ1−u
uiþkþ1−uiþ1

Biþ1;k−1ðuÞ
;

(20)

EQ-TARGET;temp:intralink-;e021;326;151

8<
: l ¼ 0; Bj;0ðvÞ ¼

	
1; if vj ≤ v < vjþ1 and vj < vjþ1

0; otherwise

l ≥ 1; Bj;lðvÞ ¼ v−vj
vjþl−vj

Bj;l−1ðvÞ þ vjþlþ1−v
vjþlþ1−vjþ1

Bjþ1;l−1ðvÞ
:

(21)

The local feature of a NURBS surface can be controlled
by the control function and weighted factor. The freeform

Table 4 The first 28 2-D Legendre polynomials Lj ðx; yÞ.

Polynomial order Lj ðx; yÞ
0 L1 ¼ 1

1 L2 ¼ ffiffiffi
3

p
x

1 L3 ¼ ffiffiffi
3

p
y

2 L4 ¼ ffiffiffi
5

p ð3x2 − 1Þ∕2

2 L5 ¼ 3xy

2 L6 ¼ ffiffiffi
5

p ð3y2 − 1Þ∕2

3 L7 ¼ ffiffiffi
7

p ð5x3 − 3xÞ∕2

3 L8 ¼ ffiffiffiffiffiffi
15

p ð3x2 − 1Þy∕2

3 L9 ¼ ffiffiffiffiffiffi
15

p
xð3y2 − 1Þ∕2

3 L10 ¼ ffiffiffi
7

p ð5y3 − 3yÞ∕2

4 L11 ¼ 3ð35x4 − 30x2 þ 3Þ∕8

4 L12 ¼ ffiffiffiffiffiffi
21

p ð5x3 − 3xÞy∕2

4 L13 ¼ 5ð3x2 − 1Þð3y2 − 1Þ∕4

4 L14 ¼ ffiffiffiffiffiffi
21

p
xð5y3 − 3yÞ∕2

4 L15 ¼ 3ð35y4 − 30y2 þ 3Þ∕8

5 L16 ¼ ffiffiffiffiffiffi
11

p ð63x5 − 70x3 þ 15xÞ∕8

5 L17 ¼ 3
ffiffiffi
3

p ð35x4 − 30x2 þ 3Þy∕8

5 L18 ¼ ffiffiffiffiffiffi
35

p ð5x3 − 3xÞð3y2 − 1Þ∕4

5 L19 ¼ ffiffiffiffiffiffi
35

p ð3x2 − 1Þð5y3 − 3yÞ∕4

5 L20 ¼ 3
ffiffiffi
3

p
xð35y4 − 30y2 þ 3Þ∕8

5 L21 ¼ ffiffiffiffiffiffi
11

p ð63y5 − 70y3 þ 15yÞ∕8

6 L22 ¼ ffiffiffiffiffiffi
13

p ð231x6 − 315x4 þ 105x2 − 5Þ∕16

6 L23 ¼ ffiffiffiffiffiffi
33

p ð63x5 − 70x3 þ 15xÞy∕8

6 L24 ¼ 3
ffiffiffi
5

p ð35x4 − 30x2 þ 3Þð3y2 − 1Þ∕16

6 L25 ¼ 7ð5x3 − 3xÞð5y3 − 3yÞ∕4

6 L26 ¼ 3
ffiffiffi
5

p ð3x2 − 1Þð35y4 − 30y2 þ 3Þ∕16

6 L27 ¼ ffiffiffiffiffiffi
33

p
xð63y5 − 70y3 þ 15yÞ∕8

6 L28 ¼ ffiffiffiffiffiffi
13

p ð231y6 − 315y4 þ 105y2 − 5Þ∕16
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shape can be changed flexibly. Chrisp et al.64,65 designed an
imaging freeform optical system using NURBS freeform
surfaces. The imaging performance of the system was
improved compared with that obtained when using Zernike
polynomial surfaces. Radial and toroidal NURBS surfaces
have been integrated into commercial optical design soft-
ware, which gives optical designers more options. The
next step should be improving the ray-tracing speed and effi-
ciency when using NURBS functions for characterizing free-
form surfaces.

Radial basis function. A linear combination of radial
basis functions with the conic surface forms another freeform
surface type, as described by

EQ-TARGET;temp:intralink-;e022;63;598zðx; yÞ ¼ cðx2 þ y2Þ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðkþ 1Þc2ðx2 þ y2Þ

p þ
XN
n¼1

wnΦn;

(22)

where Φn is the radial basis function and wn is the corre-
sponding coefficient. The radial basis function is expressed
as Eq. (23) over a supported region with a fixed center

EQ-TARGET;temp:intralink-;e023;63;502ΦnðpÞ ¼ φðkp − pnk2Þ; (23)

where p is a point ðx; yÞ in the supported region, pn is the
supported center ðxn; ynÞ, kp − pnk2 is the Euclidean norm,
and φ is the basic function for constructing the radial basis
function.

Eq. (23) shows that the supported center pn can be
changed in the supported region. Thus, the radial basis func-
tion is multicentric. Cakmakci et al.27 designed a head-worn
display using a Gaussian radial basis function freeform sur-
face, which was integrated into optical design software by
applying the “user-defined surface” feature. Moreover, the
local feature of the freeform surface can be controlled by
the radial basis function.

3.2 Representation Techniques for Deriving an
Optical Freeform Surface from Discrete Data
Points

3.2.1 Numerical orthogonal polynomials

The analytical orthogonal polynomials with differently
shaped apertures derived by the Gram–Schmidt orthogonal-
ization method are, in theory, only orthogonal over their con-
tinuous domain of definition. Generally, the obtained data
are the discrete data points, where the orthogonality of the
analytical polynomials may be degraded. Thus, a set of
orthogonal polynomials that can adapt discrete data points
are necessary. On the other hand, for a freeform surface
with a complex aperture, applying the Gram–Schmidt ortho-
gonalization method with iterations is rather tedious.
Malacara et al.66 presented discrete orthogonal polynomials
for wavefront analysis with a circular aperture. Dai and
Mahajan67 proposed a noniterative and fast algorithm to
obtain analytical orthogonal polynomials with arbitrarily
shaped aperture. Furthermore, Ye et al.49 presented numeri-
cal orthogonal polynomials based on the matrix transforma-
tion method for fitting a discrete data point cloud of a
freeform surface.

Initially, a numerical orthogonal polynomial is expressed
as a linear combination of Zernike polynomials owing to its
orthogonality and completeness, as shown in

EQ-TARGET;temp:intralink-;e024;326;469Flðxn; ynÞ ¼
XJ
j¼1

MljZjðxn; ynÞ; (24)

where Flðxn; ynÞ is the numerical orthogonal polynomial, the
subscript l is the ordering number, and ðxn; ynÞ is the point
coordinate in the effective region. The number of data points
in the effective region is N, where n ¼ 1;2; : : : ; N.Mlj is the
transformation coefficient, and J is the number of terms of
the Zernike polynomial Zjðxn; ynÞ.

For a data point, Eq. (24) can be expanded as

EQ-TARGET;temp:intralink-;e025;63;327

8>>>>>>>><
>>>>>>>>:

F1ðxn; ynÞ ¼ M11Z1ðxn; ynÞ þM12Z2ðxn; ynÞþ · · · þM1jZjðxn; ynÞþ · · · þM1JZJðxn; ynÞ
F2ðxn; ynÞ ¼ M21Z1ðxn; ynÞ þM22Z2ðxn; ynÞþ · · · þM2jZjðxn; ynÞþ · · · þM2JZJðxn; ynÞ
..
.

Fjðxn; ynÞ ¼ Mj1Z1ðxn; ynÞ þMj2Z2ðxn; ynÞþ · · · þMjjZjðxn; ynÞþ · · · þMjJZJðxn; ynÞ
..
.

FJðxn; ynÞ ¼ MJ1Z1ðxn; ynÞ þMJ2Z2ðxn; ynÞþ · · · þMJjZjðxn; ynÞþ · · · þMJJZJðxn; ynÞ

: (25)

The transform matrix M is

EQ-TARGET;temp:intralink-;e026;63;195

M ¼

2
6666666666664

M11 M12 · · · M1j · · · M1J

M21 M22 · · · M2j · · · M2J

..

. ..
. ..

. ..
. ..

. ..
.

Mj1 Mj2 · · · Mjj · · · MjJ

..

. ..
. ..

. ..
. ..

. ..
.

MJ1 MJ2 · · · MJj · · · MJJ

3
7777777777775
: (26)
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Therefore, Eq. (25) can be described in the matrix form
EQ-TARGET;temp:intralink-;e027;63;740½F1ðxn; ynÞ F2ðxn; ynÞ · · · Fjðxn; ynÞ · · · FJðxn; ynÞ �

¼ ½Z1ðxn; ynÞ Z2ðxn; ynÞ · · · Zjðxn; ynÞ · · · ZJðxn; ynÞ �

2
6666666666664

M11 M21 · · · Mj1 · · · MJ1

M12 M22 · · · Mj2 · · · MJ2

..

. ..
. ..

. ..
. ..

. ..
.

M1j M2j · · · Mjj · · · MJj

..

. ..
. ..

. ..
. ..

. ..
.

M1J M2J · · · MjJ · · · MJJ

3
7777777777775
: (27)

For all the data points in the effective region, it can be
EQ-TARGET;temp:intralink-;e028;63;5712
6666666666664

F1ðx1; y1Þ F2ðx1; y1Þ · · · Fjðx1; y1Þ · · · FJðx1; y1Þ
F1ðx2; y2Þ F2ðx2; y2Þ · · · Fjðx2; y2Þ · · · FJðx2; y2Þ

..

. ..
. ..

. ..
. ..

. ..
.

F1ðxn; ynÞ F2ðxn; ynÞ · · · Fjðxn; ynÞ · · · FJðxn; ynÞ
..
. ..

. ..
. ..

. ..
. ..

.

F1ðxN; yNÞ F2ðxN; yNÞ · · · FjðxN; yNÞ · · · FJðxN; yNÞ

3
7777777777775

¼

2
6666666666664

Z1ðx1; y1Þ Z2ðx1; y1Þ · · · Zjðx1; y1Þ · · · ZJðx1; y1Þ
Z1ðx2; y2Þ Z2ðx2; y2Þ · · · Zjðx2; y2Þ · · · ZJðx2; y2Þ

..

. ..
. ..

. ..
. ..

. ..
.

Z1ðxn; ynÞ Z2ðxn; ynÞ · · · Zjðxn; ynÞ · · · ZJðxn; ynÞ
..
. ..

. ..
. ..

. ..
. ..

.

Z1ðxN; yNÞ Z2ðxN; yNÞ · · · ZjðxN; yNÞ · · · ZJðxN; yNÞ

3
7777777777775

2
6666666666664

M11 M21 · · · Mj1 · · · MJ1

M12 M22 · · · Mj2 · · · MJ2

..

. ..
. ..

. ..
. ..

. ..
.

M1j M2j · · · Mjj · · · MJj

..

. ..
. ..

. ..
. ..

. ..
.

M1 J M2 J · · · MjJ · · · MJJ

3
7777777777775
: (28)

Equation (28) can also be written in the matrix form

EQ-TARGET;temp:intralink-;e029;63;303F ¼ ZMT; (29)

where F and Z are two N × J matrices and MT is the transpose
of matrix M. Furthermore, the derivation of the numerical
matrix F is described in Ref. 49.

The derivation process of a numerical matrix F formed by
the numerical orthogonal polynomial Flðxn; ynÞ is in gen-
eral. According to its practical use, a numerical orthogonal
polynomial can also be decomposed as a linear combination
of other orthogonal polynomials with completeness. The
numerical orthogonal polynomial can be applied to represent
the discrete data point cloud of a freeform surface as well as a
freeform surface with a general shaped aperture.

3.2.2 Other representation techniques for handling
discrete data points

In the freeform optical design, the lack of an original refer-
ence freeform optical configuration is relatively common.
The optimization and design methods have been gradually
developed. The direct design method for freeform surface

is remarkable. It can be categorized as the aplanatic design
method,68 partial differential equation method,69 SMS
method,70 and iterative construction method.71 The direct
design method obtains discrete data points for the freeform
surface, and the discrete data point cloud must be fitted accu-
rately by analytical or numerical functions for further opti-
mization. In freeform optical testing, the obtained freeform
shape data also form a discrete data point cloud. In theory,
when the sampling dataset is sufficiently large, analytical
orthogonal polynomials with the corresponding shape of
aperture can be used approximately. Additionally, for a free-
form surface with a complex aperture shape, the correspond-
ing analytical orthogonal polynomial is usually difficult to
obtain. Malacara et al.,66 Dai and Mahajan,67 Ye et al.,49

and Hilbig et al.72 have presented different methods to over-
come this issue.

On the other hand, freeform surface or wavefront estima-
tion from a slope measurement is an alternative approach
used in modern optical testing, such as Shack–Hartmann
sensing and phase measuring deflectometry. The measured
data are the gradient-related discrete data point cloud. The
methods used to derive a freeform surface or wavefront
from its slope can be classified as zonal73 and modal74
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methods. Using the zonal method, Southwell73 analyzed the
differences of different data sampling types. Li et al.75

applied higher-order truncation errors based on the Taylor
series expansion to increase the estimation accuracy in the
Southwell data sampling type. Huang and Asundi76 used
an iterative compensation method. For freeform surfaces
with complex aperture shapes, the sag data of the freeform
surface derived from the slope could be treated with the dis-
crete Fourier transform77 or discrete cosine transform-based
methods.78 Zou and Rolland79 presented an iterative zonal
estimation method with the Gerchberg iteration80 to obtain
a freeform surface for general shaped pupils. However,
the zonal method is limited by the shape of the aperture,
and the iterative method is not very efficient for dynamically
varying aperture shapes.

In the modal method, the freeform surface or wavefront is
decomposed as a linear combination of basis functions. The
final coefficients characterizing the freeform surface are
obtained from the measured slope data. Cubalchini74 pro-
posed using the gradient function of Zernike polynomials
as the basis function for fitting the measured gradient
data. The drawback of this approach was that the gradient
function of a Zernike polynomial is not an orthogonal func-
tion, which caused instability in the coefficients. Thus, a set

of polynomials whose gradient functions are orthogonal over
the measured region must be selected. Zhao and Burge81 pro-
posed orthonormal vector polynomials in a unit circle.
Obviously, for noncircular apertures, Zhao’s method could
be limited. Mochi and Goldberg82 reported an iterative
method for obtaining an orthogonal basis function to recon-
struct a wavefront from its gradient. In this method, a finite
set of 2-D polynomials that are expected to describe the mea-
sured wavefront over the testing domain must be initially
selected. However, obtaining an orthogonal function over
the aperture is not very easy, especially for complex-shaped
apertures. Ye et al.83 presented a numerical orthogonal trans-
formation method to obtain numerical orthogonal gradient
polynomials for directly representing the measured gradient
data of a freeform surface with a general shaped aperture.
This method was noniterative and efficient and could also
be applied to the slope-based freeform surface or wavefront
sensing with the dynamically varying aperture shapes.

3.3 Representation Methods for Freeform Surfaces
with Strong Slope Variation

Regarding freeform surfaces with strong slope variations,
characterizing fine local features is a key issue for freeform

Fig. 7 A freeform optical element testing experiment. (a) Freeform optical element with steep variation at
the edge of an irregularly shaped aperture, (b) measured data after removing the tilt, (c) fitting error by the
first 37 Zernike polynomials approximately, and (d) fine reconstruction performance of the proposed com-
bination method.
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surface estimation. When using only finite polynomial terms,
the representation accuracy could be limited. Kaya et al.84

performed a comparative assessment between Zernike poly-
nomials and Q-type polynomials for precisely characterizing
a freeform surface. To fit an asymmetric local feature with
sub-nanometer accuracy, the number of polynomial terms
would reach thousands. The calculation of higher-order
Zernike or Q-type polynomials is relatively tedious. Trevino
et al.85 selected the first-class Bessel circular functions for
characterizing a complex corneal surface. Svechnikov et al.86

discussed the lateral resolving capacity of circular Zernike pol-
ynomials and the accuracy of representing complex freeform
surfaces, such as Gaussian and Gaussian-like surfaces. When
more polynomial terms are applied, the efficiency of the free-
form surface estimation is noticeably reduced.

Therefore, the hybrid or combination reconstruction
method could be an alternative approach to freeform surface
fitting with finite polynomials and high accuracy. The con-
cept of the hybrid representation method is similar to that of
subaperture stitching testing for large-aperture optical surfa-
ces. The entire aperture of a freeform surface with strong
slope variation is decomposed into multiple overlapping sub-
apertures. Every local surface corresponding to the subaper-
ture can be reconstructed by Zernike polynomials or other
orthogonal polynomials. Then, the entire freeform surface
is synthetized by all the local surfaces using specific algo-
rithms. Espinosa et al.87 investigated a combination of zonal
and modal fitting methods for evaluating an irregular corneal
surface. Its zonal fitting by Zernike circle polynomial
was implemented over a square subaperture rather than over

Table 5 Comparison of typical freeform surface representation techniques.

Freeform surface Representation techniques Advantages Remarks

Mild freeform
surface

Orthogonal
polynomials

Zernike circular polynomials (1) Each term is related to
a specific aberration

(1) The definition domain of
the orthogonal polynomial is
continuous, not for discrete
data points

Q-type polynomials (2) Orthogonality and
completeness

(2) The derivation of
higher-order polynomials is
not easy

Zernike polynomials over
a regularly noncircular aperture
by Gram–Schmidt orthogonalization

(3) One-to-one correspondence
with the aperture shape

2-D Chebyshev polynomials

2-D Legendre polynomials

Nonorthogonal
functions

XY-type polynomials (1) Related to the aberration Commonly used in freeform
optical design

(2) Global definition of freeform
surface

Spline function (1) Local definition of freeform
surface

Ray-tracing with the design
tool is challenging

(2) Flexible in controlling
surface shapes

Radial basis function (1) Local definition of freeform
surface

Must be integrated into the
design tool using the
“user-defined surface” feature

(2) Multicentric feature

Numerical orthogonal polynomials (1) Adapt to general aperture
shapes

Numerical orthogonal
transformation method

(2) Adapt to discrete data points

Freeform surface
with strong slope
variation

Linear combination of hundreds or thousands of
basis polynomials

Lateral resolving capacity of
basis polynomials

Computational efficiency
reduced with many
polynomial terms

Hybrid or combination method (1) Local feature characterized
finely

Local fitting coefficients are
meaningless

(2) Only with finite number of
polynomial terms
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a circular subaperture. Kaya and Rolland88 proposed a hybrid
method combining local fitting in each subaperture and using
a radial basis function as a global approximant for obtaining
the entire surface. Ye et al.89 presented a combination method
for representing complex freeform surfaces. Every local sur-
face was reconstructed by the linear combination of numeri-
cal orthogonal polynomials, regardless of the local surface
aperture shape. The entire freeform surface was derived by
the overlapping averaging approach. As shown in Fig. 7,
a freeform optical element over an irregularly shaped aper-
ture has steep variations at the edge. When approximately
fitting it directly by Zernike polynomials over the entire aper-
ture, the local fitting error is relatively large. However, its
local deformations at the edge can be characterized finely
by the proposed combination method.

4 Discussion
The benefits of optical freeform surfaces in optical engineer-
ing result from the collaborative development of the manu-
facturing, testing, design tools, and application requirements
of freeform surfaces in the past 10 years. Advances in the
representation techniques of optical freeform surfaces can
further accelerate the improvement of freeform optics in
practical applications. From the previous analysis of different
types of optical freeform surface representation techniques,
we have a large map to help understand the general repre-
sentation techniques.

Nevertheless, we also need to know how to choose the
representation technique of a freeform surface in a specific
application. In general cases, when the freeform surface used
in the freeform optical design or freeform optical elements is
under manufacturing and testing, it can be qualitatively
described as a mild or strong freeform surface according
to the slope variation degree. For example, Gaussian-like
local areas in a freeform surface can be considered a strong
freeform surface. The freeform surface shown in Fig. 5 could
be considered a mild freeform surface. For a mild freeform
surface, diverse representation techniques can be employed
according to its practical use. When considering a freeform
surface with constrained slopes in its design, Q-type polyno-
mials could be a good choice. For the estimation of a free-
form surface with noncircular regularly shaped aperture,
orthogonal polynomials with the corresponding aperture
shape or numerical orthogonal polynomials are employed.
When local surfaces in a few specific fields must be con-
trolled, splines, or radial basis functions may be used. For
a freeform surface with large slope variation, hybrid or com-
bination methods could be applied to accurately characterize
its local features. On the other hand, in the process of form-
ing the freeform surface (from design to manufacturing to
testing), the current technologies of freeform optics also
limit the choice of freeform surface representation tech-
niques in practical applications.

Table 5 presents a comparison of several typical freeform
surface representation techniques and their advantages.
Orthogonal polynomials, because of their orthogonality,
completeness, and their aberration-related performance,
are frequently applied in freeform surface representation
and estimation. We must also note that the orthogonality
applies over a continuously defined domain; namely, the
sampled data points in the effective aperture must be suffi-
cient. On the other hand, the higher-order polynomial terms

can be derived by iterative recurrence. Regarding nonorthog-
onal polynomials, the XY-type polynomial is always used in
freeform surface design, as discussed in Sec. 2, owing to its
simplicity compared with orthogonal polynomials. Although
the spline function and radial basis function control local fea-
tures in the freeform surface representation, their ray-tracing
efficiency must be improved. These two functions can be
integrated into design tools by the “user-defined surface”
feature. In the method using a linear combination of base
polynomials fitting a strong freeform surface with steep
local variation with nanometer accuracy, the use of hundreds
or thousands of terms is required. Base polynomials have
evident lateral resolving capacity; however, many polyno-
mial terms reduce computational efficiency. In this situation,
the hybrid or combination method, discussed in Sec. 3.3,
could be an alternative approach to freeform surface repre-
sentation with finite polynomial terms and high accuracy.
Although local fitting coefficients are meaningless for the
entire surface, the hybrid or combination method can be
applied to characterize local surface features finely for free-
form surface estimation.

5 Conclusion
In the past 10 years, the optical freeform surface represen-
tation technique is a hot research topic. The representation
techniques of optical freeform surfaces are diverse and not
unique in specific applications. The development of repre-
sentation techniques, the requirements of design and appli-
cation, and the advancement of manufacturability and
testability of optical freeform surfaces will accelerate for
the improvement of freeform optics. By focusing on optical
freeform surface representation techniques, we review com-
prehensively the current state of the art of representation
techniques and their typical applications. Different types
of representation techniques are discussed and compared,
which will provide solutions for how to represent an optical
freeform surface and which representation technique could
be used in a specific application.

Generally, a freeform surface is represented as an explicit
mathematical function; it is decomposed as a linear combi-
nation of basis function added to the base surface. The base
surface is usually a conic surface or sphere. Basis functions
can be XY-type polynomials, Zernike polynomials, Q-type
polynomials, radial basis functions, or NURBS functions.
The differences and advantages of these methods are pre-
sented in Table 5. For a strong freeform surface with steep
slope variation in local areas, a hybrid or combination
method could be applied to accurately characterize local fea-
tures. In addition, by effectively combining different types of
functions, new functions could be constructed in the future
for representing optical freeform surfaces. Additionally, the
gradient variation of a freeform surface must be considered
within the current manufacturing and testing capacities.

Regarding the discrete data points obtained by the direct
design method for an optical freeform surface, the obtained
discrete data point cloud characterizing the freeform surface
must be fitted accurately by an appropriately chosen analyti-
cal function to obtain a suitable design starting point for
further efficient optimization. A similar process for freeform
surface analysis from discrete measured data exists in
freeform surface testing. Furthermore, in the design of a free-
form optical system with a large field of view, the use of
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a sectional or stitched freeform surface is a promising tech-
nique. The representation technique, as well as the fabrica-
tion and measurement, of this type of freeform surface could
be challenging.

On the other hand, the functions of most surface types
have been integrated into commercial optical design soft-
ware. However, special functions, such as the radial basis
function and the stitched surface, are not included. The
“user-defined surface” feature of optical design software
is very powerful and flexible and provides more degrees
of freedom for freeform optics design. Nevertheless, the
problem of the ray-tracing speed and optimization efficiency
must be overcome in the future.
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