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Abstract. Diffuse optical tomography (DOT) measures concentration changes in both oxy- and deoxyhemoglo-
bin providing three-dimensional images of local brain activations. A pilot study, which compares both DOT and
functional magnetic resonance imaging (fMRI) volumes through t-maps given by canonical statistical parametric
mapping (SPM) processing for both data modalities, is presented. The DOT series were processed using
a method that is based on a Bayesian filter application on raw DOT data to remove physiological changes
and minimum description length application index to select a number of singular values, which reduce the
data dimensionality during image reconstruction and adaptation of DOT volume series to normalized standard
space. Therefore, statistical analysis is performed with canonical SPM software in the same way as fMRI
analysis is done, accepting DOT volumes as if they were fMRI volumes. The results show the reproducibility
and ruggedness of the method to process DOT series on group analysis using cognitive paradigms on the
prefrontal cortex. Difficulties such as the fact that scalp–brain distances vary between subjects or cerebral
activations are difficult to reproduce due to strategies used by the subjects to solve arithmetic problems are
considered. T-images given by fMRI and DOT volume series analyzed in SPM show that at the functional
level, both DOT and fMRI measures detect the same areas, although DOT provides complementary information
to fMRI signals about cerebral activity. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Diffuse optical tomography (DOT) is a noninvasive imaging
technique that uses near-infrared (NIR) light to image cerebral
activations. DOT measures changes in the absorption of NIR
light in the cerebral cortex, allowing an estimation of changes
in cerebral oxygenated (HbO) and deoxygenated hemoglobin
(HbR) concentration due to local brain activation.1 DOT uses at
least two wavelengths in the range of 650 to 950 nm (Ref. 2)
travelling to and from the DOT device by optic fibers (optodes)
or LEDs, to measure the absorbed quantity of NIR light from
biological tissue by measuring diffusely scattered lights. The
NIR light is applied to the subject’s head combined such as
sources–detectors to form “optical data channels.” Changes in
light attenuation between source and detector are transformed
into changes in the concentration of HbO and HbR by applying
the modified Beer–Lambert’s law.3

DOT transforms the detected light from different measuring
distances on the surface into depth information providing three-
dimensional images of cerebral activations, instead of the planar
backprojection, which is obtained with the topographic appro-
ach.4 With the purpose of increasing spatial resolution and posi-
tional accuracy of optical brain imaging,5 two steps have been

used to create functional DOT images. The first step is the forward
model, which models light migration processes that quantitatively
relates the activity inside the head tissue with the measured light
intensity changes.6 The second step is an image reconstruction
algorithm, which is used to reconstruct a three-dimensional
activity image from light intensity changes measured from
recordings on the head surface. There are different reconstruc-
tion methods, such as minimum norm estimates,7 linear con-
strained minimum variance,8 or source localization using spatial
flexibility.9

Unlike DOT devices which measure HbO and HbR, func-
tional magnetic resonance imaging (fMRI), which measures
blood oxygen level-dependent (BOLD) response after a local
neural activation, is rapidly becoming a “gold standard” for
in vivo imaging of human brain activity due to its high spatial
resolution, although it has some disadvantages, such as high
sensitivity to participant motion, restrictive environment, low
temporal resolution, and high cost.10

The hemodynamic changes measured by both DOT and
fMRI devices are caused by dynamics in blood volume, blood
flow, and blood oxygenation. Some physiological signals, such
as heart rate or ventilation rate, involved in systemic blood oxy-
gen and cerebral hemodynamics influencing the scalp layer11

may generate variability, which involves spatial and temporal
changes throughout the brain and scalp12 during DOT neuroi-
maging experiments. In a previous research, a user-independent
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procedure consisting of a Bayesian algorithm13 on raw DOT
data was applied to remove physiological noise caused by
cardiac and breathing activity.

Hemodynamic changes during the performance of cognitive
tasks such as arithmetic calculation can be measured in prefron-
tal areas using neuroimaging techniques,14–16 where cerebral
activations are differential depending on the complexity of the
arithmetical problems,17 the arithmetical ability of the subject,18

and strategies used to solve an arithmetical problem.19

However, there is no standard tool for the analysis of DOT
data, which hinders the research groups’ ability to produce
reproducible research. There are software programs to process
topographic and tomographic data, which have been specifically
created to process functional near-infrared spectroscopy (fNIRS)
data. As the statistical parametric mapping (SPM) is a statistic
tool, which has been widely used to process fMRI series, we
propose here an approach to make DOT data suitable for analy-
sis in SPM, without modifying SPM, accepting DOT volumes
as if they were fMRI volumes, allowing a standard analysis of
DOT series.

Accepting DOT volumes as if they were fMRI volumes,
canonical SPM20 was applied during the processing of DOT
data as a statistical tool in the same way as fMRI. In order to
apply canonical SPM as a statistical tool, one assumes which
image reconstruction methods using commercial NAVI (NIRx
Medical Technology LLC, Glen Head, New York) software are
valid, but unlike other authors, a minimum description length
(MDL)21 index was applied to select those singular values,
which reduce the dimensionality of the data, according to image
reconstruction algorithm used. Furthermore, DOT volumes with
normalized standard space Montreal Neurological Institute
(MNI) are adapted. These procedures enable a robust and user-
independent analysis of DOT series making them suitable for
statistical analysis in SPM in the same way as fMRI series are.

The aim of this work is to demonstrate that the above
procedures for the DOT data analysis are applicable to group
analysis using a cognitive paradigm on the frontal cortex. Brain
activations in the frontal cortex are more subtle during motor or
visual tasks.22 The scalp–brain distance in the prefrontal cortex
varies across subjects, and this may reduce the quality of the
DOT signal from the cerebral cortex during the recordings,
because the penetration depth of NIR light in adult human
brain imaging is about 3 to 4 cm.23 It is possible, using the
above procedures, to compare t-contrast maps given by SPM for
both DOT and fMRI modalities.

2 Methods

2.1 Subjects and Stimulus Procedure

Twenty four healthy right-handed volunteers were divided into
two study groups of 12 volunteers in each group according to
arithmetical abilities. One group was formed of undergraduate
science students (engineering, physics, or mathematics), who
require a high level of mathematical ability and the other
group was formed of undergraduate arts and social science stu-
dents (philosophy or psychology), who do not need a high level
of mathematical skill. All subjects who participated in the study
had no history of neurological disease. Written informed con-
sent was explained and signed prior to experiment. The study
was approved by the local ethics committee (Universidad de La
Laguna) and was conducted in accordance with the Declaration
of Helsinki.

A block design was developed in which the participants
began with 20 s of dummy time to stabilize the photon absorp-
tion and to ensure tissue steady-state magnetization in fMRI.
The rest period consisted of the observation a static white cross
in the center of the screen. The instruction, e.g., “count back-
ward from 136 in sevens” in the mother-tongue of the participant
(Spanish) appeared 6 s before the block of tasks, which started
when the statement disappeared. The calculation condition (dif-
ficult count) involved the participants starting to count backward
from a three-digit integer in, e.g., sevens, nines, or thirteens until
the end of the task period. The control condition (easy count)
involved the subjects counting backward from a three-digit
integer in, e.g., ones or twos, at their own speed. A different
three-digit integer and subtraction number were given at the
beginning of each 30-s period while the screen was black, as
shown in Fig. 1.

A total of twelve blocks of tasks, divided into six blocks for
calculation condition and six blocks for control condition, were
performed in both DOT and fMRI devices with a random
order of the instructions. The paradigm was displayed on
the screen using Presentation (Neurobehavioral Systems, Inc.,
Albany, California).

As fMRI has been the most commonly used technique in
neuroimaging studies, the assumption was made that informa-
tion provided by fMRI was reliable. A comparison between
active condition (difficult count) and control condition (easy
count) indicated frontal areas, which involve mental calculation
in fMRI, as shown in Table 1.

Fig. 1 Scheme of the block design with the time onset of each condition. A total of 12 blocks included
easy and difficult count were conducted in fMRI and DOT devices. The upper row indicates the time of
each block. The lower row indicates each condition.
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The different levels of task complexity were reflected in the
fMRI data for a subject without arithmetic skills. Solving the
problems of a greater (as compared to lesser complexity) com-
plexity was accompanied by a stronger and more widespread
brain activation comprising a frontal cortex. T-contrast maps
of fMRI helped to corroborate the implication of prefrontal
areas in the paradigm applied allowing the comparison of t-con-
trast maps given by SPM for both fMRI and DOT modalities.

The subjects performed the task in similar conditions for the
DOTand fMRI measurements: supine position, dark room, com-
patible fMRI glasses (VisuaStim Digital-Resonance Technology
Inc.), where the paradigm was displayed on the screen, physio-
logical sensors, and a grip on the right hand, which allow us to
confirm whether the participants performed the task properly
according to the frequency of pressing the button for each
level of complexity because the count was performed in silence.
The order of each session was counterbalanced between the
subjects starting with DOT or fMRI measurements.

After the DOT and fMRI measures, each subject was asked
which strategies they used to solve the calculation. Mental
calculation is a complex task involving several fundamental
cognitive activities including covert production of numbers,
retrieving arithmetic facts from memorized tables, execution of
specific calculation procedures such as subtraction, and storing
data in working memory for further operations.19 The fact that
subtraction is not an automatic procedure, which may require
specific calculation strategies, explains the high level of prefron-
tal activation observed during this cognitive activity.

2.2 Optical Data Acquisition

A DYNOT 232 instrument (NIRx Medizintechnik GmbH
Berlin, Germany) was used to acquire the DOT data. The system
performs continuous-wave measurements using two frequency-
encoded laser sources at 760 and 830 nm with a sampling rate of
1.8 Hz in a time multiplexed scanning fashion. The equipment
provides a high dynamic measurement range needed for diffuse
tomography multidistance measurements. NIR light travelled to
and from the DOT device by optic fibers. In the present study,
64 fiber optic probes were used, which acted as detectors and
32 of them acted as a source, thereby providing 2048 optical

channels. The optodes were arranged in a rectangular grid of
5 × 11 and 1 × 9 with a distance of 1 cm between them.

The instrument’s moldable scaffolding allows the placing of
the fibers on the head to make a more stable optical contact to
the skin, thereby minimizing artifacts from mechanical noise.
The grid was placed over the prefrontal cortex above the zygo-
matic arch until Fz position referring to the EEG 10-20 system.24

2.3 Data Quality

The optical signals propagating through the brain contain sev-
eral spontaneous fluctuations originating from cardiac pulsation,
respiration, and change of blood pressure,25 which contaminate
the signals measured by DOT and induce spatial and temporal
changes able to give a false interpretation of brain activations.

The subjects were monitored through physiological records
throughout the experimental period. Each of them wore sensors
to measure cardiac cycle and breathing. Physiological data were
recorded continuously at 4 KHz using AD Instrument ML870/P
PowerLab16/30 as measurement system.

The dynamic retrospective filtering of physiological noise
(DRIFTER) algorithm,13 which modeled and removed physio-
logical data that were recorded during experimental time in each
subject, was used to filter raw DOT data, allowing accurate
dynamical tracking of the variations in the cardiac and respira-
tory frequencies (Fig. 2). Thus, a false interpretation of brain
activations generated by contaminated signals is avoided and
serial correlations are reduced allowing the application of
canonical regression models used by SPM.

2.4 Coregistration of Optodes Position

Prior to the experiment, the grid of optodes was positioned on
each subject to mark the four corners of the grid array used. The
corners were marked by vitamin E capsules, which provide
a contrast in T1 images.

The use of a finite-element mesh (FEM) precalculated over
a generic head model requires a spatial normalization tool of
SPM8 (The Wellcome Trust Centre for Neuroimaging, Univer-
sity College London). The mentioned SPM tool computes an
affine and a nonlinear transformation between two volumes to
warp both images and fit them into a template. The generic head
model was defined as the template and the subject’s anatomical
scans were defined as the source image. Therefore, the subject’s
anatomical scans were warped to fit the boundaries of the
generic head model without losing structural information.26 The
above transformations allow the translocation of the subject’s
anatomy to the anatomic MR scans of the generic head model
on which the FEM is based. The position of 64 optical fibers was
interpolated between the coordinates of the four corners marked
by vitamin E and assigned to the FEM (Fig. 3).

2.5 Forward Model and Image Reconstruction

Image reconstruction requires the creation of a weight matrix
containing information on each DOT voxel of signals collected
from all source–detector combinations on the surface of the
medium.27 Assuming as valid procedure to reconstruct the DOT
image, NAVI tools were used.

The BrainModeler tool from the NIRx NAVI imaging was
used, which contains FEMs,6 which describe an inhomogeneous
distribution of optical properties and an arbitrary geometry of
different layers. The location of source and detectors on the

Table 1 Representative number of voxels by anatomical area in fMRI
according to complexity cognitive tasks.

Anatomical area
Number of voxels,

difficult > easy count
Number of voxels,

easy > difficult count

Difficult > easy count
BOLD signal

T: 1.64, p < 0.05;
corrected FDR

T:1.64, p < 0.05;
corrected FDR

Frontal superior
medial left

186 11

Frontal superior
medial right

38 21

Frontal superior left 7 54

Frontal superior right 54 12

Cingulum anterior left 11 —
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tissue surface and inner optical properties is defined as the for-
ward model. The forward model describes changes in measured
boundary data that are caused by small changes of absorption
within the tissue for each channel-node combination. The sub-
mesh that best approximated the area of our measurements
according to the translocate positions of the fibers grid was
selected. The submesh contained 4921 nodes and 21,144
tetrahedrons and thus, its dimensions were 12.05 cmðwidthÞ ×
8.85 cmðheightÞ × 5.46 cmðthicknessÞ, as shown in Fig. 4.

A weight matrix (W) is obtained as result of the relationship
between the number of nodes of the submesh (4921) and optical

channels (2048) measured by the combination of 32 sources–64
detectors located on the head surface:

EQ-TARGET;temp:intralink-;sec2.5;326;159ΔR 0 ¼ WΔμ;

where ΔR 0 is the vector containing the measures for all source–
detector combinations and Δμ is the vector containing optical
properties. Therefore, small changes in Δμ lead to proportional
changes in ΔR 0 by using a linear perturbation approach.

A normalized difference method28 was applied to recon-
struct DOT images. The above method relates, according to

(a)

(b)

Fig. 2 Representation of average optical channels (2048) over time of a subject. (a) and (b) Red plot
shows raw DOT data without filtering and black plot shows DOT data DRIFTER-filtered algorithm for both
wavelengths. Abscissas axes represent the experimental time in frames and ordinate axis correspond to
normalized arbitrary units.

Fig. 3 Representation of the four corners, which marked the position of the optical fibers for coregistra-
tion. (a) Subject’s anatomical scans with the fiduciary marks on the head surface in real space.
(b) Anatomical MR scans of the generic head model on which the FEM is based. (c) Subject’s anatomical
scans warped into the space of the generic head model.
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a perturbation approach, measured surface data with changes in
interior optical properties of the medium used, compared to
a reference medium. Absorption changes at two wavelengths
led to reconstructed images of relative changes in HbO, HbR,
and HbT using extinction coefficients of HbO and HbR for
both wavelengths.29

DOT signals were scaled by the normalization of column
vector to their mean values and an offset of 2.1014 was applied
to the DOT values so that they oscillated on the same scale as
fMRI values.

The rebuilding of the DOT image requires inverting the
weight matrix W resulting in an underdetermined and ill-
posed problem formulated as an inverse problem, due to the
fact that NIR light is highly attenuated with an increasing depth.

NIRx NAVI inverts the weight matrix using the truncated
singular value decomposition method. The MDL criterion
was used as the index to select the number of singular values
in order to reduce the dimensionality of W. DOT images
were reconstructed to a dimension of 40 × 40 × 40 from the
FEM library, by default. The values of the nodes of FEM
from this default dimension are interpolated to obtain other
dimensions, such as 64 × 64 × 64.

Finally, 1465 DOT volumes per experiment with a size of
64 × 64 × 64 voxels were reconstructed, in Analyze format,
which is compatible with SPM, for each molecule HbO and
HbR. The acquisition of all functional volumes was checked
with a repetition time of 552.5 ms∕volume.

2.6 Normalized Anatomical Space

Once reconstructed, DOT volumes for each hemoglobin mol-
ecule of HbO and HbR were fitted into a normalized anatomical
space (MNI) using the spatial normalization tool of SPM8.

2.7 Statistics

T-contrast maps were calculated in SPM8 for both data modal-
ities to determinate the degree of complementarity between the
fMRI-BOLD signal and hemodynamic changes registered by
the DOT device.

The DOT images were filtered to improve the signal-to-noise
ratio, using a high pass filter based on a discrete cosine trans-
form, 128-s cut-off period. The design matrix consisted of three
regressors with onsets for rest blocks and onsets for mental

count blocks according to the level of complexity. The regres-
sors were convolved with the canonical hemodynamic response
function (HRF). Polarities of the canonical HRF functions
were reversed to visualize negative response.30 After estimation,
activation maps were generated for the subjects by apply-
ing a fixed effects model analysis. Three contrasts were
computed: difficult count × easy count, difficult count > rest,
and easy count > rest.

2.8 Functional Magnetic Resonance Imaging Data
Acquisition

fMRIs were acquired in the volunteers by applying the same
stimulation pattern used in the DOTexperiment. The experiment
was performed in a 3T Signa Excite HD scanner (General
Electric). T1-weighted volume was acquired to precise anatomi-
cal localization (TR ¼ 6 ms, TE ¼ 1 ms, flip angle ¼ 12 deg,
matrix size ¼ 256 × 256 pixels, 0.98 × 0.98 mm in plane reso-
lution, spacing between slices¼ 1 mm, slice thickness¼ 1 mm,
interslice gap ¼ 0). The anatomical slices covered the whole
brain and were acquired parallel to the anterior–posterior com-
missure. A sequence of 415 T2*-weighted spiral volumes was
acquired, 15 axial slices each, field of view is 256 mm, slice
thickness is 4 mm, interslice gap is 1 mm, 64 × 64 matrix of
4 mm × 4 mm voxels, flip angle is 77 deg, TR is 2000 ms,
and TE is 24 ms.

2.9 Preprocessing and Statistical Analyses in
Functional Magnetic Resonance Imaging

fMRI volumes were preprocessed in SPM8 by applying realign-
ment to correct motion artifacts, slice timing correction, core-
gistration with structural image (T1), and fit into standard
anatomical space (MNI). An isotropic smoothing kernel of
8-mm full-width half-maximum was applied to the spiral
images to suppress noise and effects due to residual differences
in functional and gyral anatomy and high-pass filter with 128-s
cut-off period to remove low frequency noise corresponding to
breathing and pulse.

A general linear model (GLM) was constructed in SPM8 for
the task. The design matrix consisted of three regressors with
onsets for rest blocks and onsets for mental count blocks accord-
ing to the level of complexity. The regressors were convolved
with the canonical HRF. After estimation, a fixed effects model
analysis was performed to generate t-contrast images comparing
difficult count > easy count, difficult count > rest and easy
count > rest. Fixed model analysis does not allow for any overall
conclusions for the population, but it does for this sample. This
fact is secondary because our goal is to compare both neuroi-
maging techniques.

2.10 Region of Interest Analysis

There are studies that report that parietal–temporal and frontal
networks are involved during calculation processing.14 Our
interest was to only study frontal areas implicated in mental
count with the aim of determining whether the processed
method for DOT data applied to group analysis is valid, using
fMRI data as the “golden standard.” Thus, only the frontal area
according to the submesh selected for DOTwas represented here.
The multidistance approach used by DOT allows the detection of
changes in both extracerebral and cerebral areas. As our interest
was only cerebral areas, extracerebral areas were masked.

(a) (b)

Fig. 4 Finite model element mesh selection. (a) Localizations of opti-
cal fibers (circles) on the boundary were defined. Red dots corre-
spond to source and all of them act as receptors. (b) Atlas with an
FEM (blue) on the prefrontal cortex.
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3 Results

3.1 Behavior Analysis

The frequency of pressing the button for each level of complex-
ity was analyzed to confirm whether the participants performed
the task properly, which allowed the quantification of response
time during the subtractions in each block of tasks. Figure 5
shows a longer response time during the subtractions in the
difficult level than easy level for each group [high arithmetic
ability (HAA) and low arithmetic ability (LAA)]. These results
are to be expected since, e.g., the response times are lower for
subtraction in ones than for subtraction in sevens. Furthermore,
there are significant differences (p < 0.05) between the easy and
difficult level in LAA group according to Tukey’s multiple
comparisons.

3.2 Imaging Results

The use of different strategies by each subject makes it difficult
to reproduce an experiment, where mental calculations are

involved. Fact that is not important in this work, because our
aim is to compare both imaging techniques.

Poststudy, each subject was asked which strategies they used
to solve the calculation. Therefore, we separated the two afore-
mentioned groups (HAA and LAA) into three subgroups, each
with four subjects according to strategies used during mental
calculation according to fMRI data (Table 2).

Three t-contrasts in SPM8 were computed but only one
t-contrast was selected (difficult count > easy count) because
this is the best representation of cognitive changes per se unlike
the other contrasts (difficult count > rest or easy count > rest).
T-contrast maps were obtained by SPM8 and displayed using
xjView 8.131 for both the DOT series and fMRI series. T-images
were mapped onto MNI space in axial view for each HbO, HbR,
and BOLD signal (p < 0.05).

Figure 6 shows t-maps of activation for contrast difficult >
easy count measured by DOT and fMRI corresponding to the
HAAa subgroup. T-maps show prefrontal bilateral activations,
focused on the right hemisphere for HbO and BOLD signals.
Both HbO and HbR have a similar distribution in MNI space.

Figure 7 shows t-maps of activation for contrast difficult >
easy count measured by DOT and fMRI corresponding to the
HAAs subgroup. T-maps show bilateral activations on more
orbital areas for BOLD signals while HbR and HbO show bilat-
eral activation on superior frontal area, where HbR appears on
left hemisphere predominantly.

Figure 8 shows t-maps of activation for contrast difficult >
easy count measured by DOT and fMRI corresponding to the
HAAm subgroup. T-maps show bilateral activation for HbO
and HbR throughout the measurement space while BOLD
only deals with left orbital area.

Figure 9 shows t-maps of activation for contrast difficult >
easy count measured by DOT and fMRI corresponding to the
LAAf subgroup. T-maps show frontal bilateral activations for
HbR, HbO, and BOLD signal, although BOLD and HbO signals
are more representative in the left hemisphere than the right
hemisphere. BOLD does not include orbital areas as in previous
cases.

Figure 10 shows t-maps of activation for contrast difficult >
easy count measured by DOT and fMRI corresponding to the
LAAr subgroup. T-maps represent bilateral activations focused
on more frontal areas, near the interhemispheric fissure for HbO,
HbR, and BOLD signals.

Figure 11 shows t-maps of activation for contrast difficult >
easy count measured by DOT and fMRI corresponding to
the LAAm subgroup. T-maps show the predominance of the
BOLD signal in bilateral orbital areas. Both HbO and HbR
signals appear to have the same distribution as the BOLD
signal, where some voxels of HbR do not match with the
other molecules.

All subgroups show bilateral activations in the prefrontal cor-
tex with a dominance of the high arithmetic ability subgroups in
the right hemisphere while subgroups belonging to the low arith-
metic ability group dominate in the left hemisphere. However,
each subgroup has different cerebral activation loci according to
strategies used to solve the mental calculation. These differences
between subgroups make it difficult to determine which
common cerebral areas were activated for each molecule, so
DOT and fMRI were analyzed spatially to test the complemen-
tarity level between measured signals and to determine which
functional areas matched. Table 3 shows the common number
of voxels between each DOT and fMRI series.

Fig. 5 Representation of response time in seconds during the sub-
traction performed by a subject for each HAA and LAA group during
a session of mental count. Abscissas axes show difficult level (black
bars) and easy level (red bars) for each group, and the ordinate axis
shows the averages and errors of time in seconds in each count.
There are significant differences *(p < 0.05) between difficult and
easy complexity’s level in LAA group.

Table 2 Classification in subgroups according to strategies of
subtraction.

Subgroups of HAA

HAAa Applied algorithm to approximate to numbers interval
(approximate numbers system).

HAAs Applied direct subtraction and visualized the numbers
as a counter.

HAAm Combined both aforementioned strategies according
to complexity of task (difficult as HAAa, easy as HAAs).

Subgroups of LAA

LAAf Applied mental finger counting.

LAAr Recalled the last two digits and subtracted one by one.

LAAm Combined both aforementioned strategies according
to complexity of task (difficult as LAAf, easy as LAAr).
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The results show common anatomical regions between each
hemoglobin molecule (HbO and HbR) and BOLD signal mea-
sured by DOT and fMRI equipment, respectively. From a global
point of view, conjunction analysis shows that, in the prefrontal
cortex, DOT detects the same areas as fMRI at the functional
level. But in performing conjunction analysis, we lost informa-
tion because both techniques separately provide more informa-
tion about hemodynamic changes.

4 Discussion

4.1 Prefrontal Activation During Arithmetic
Calculation

Different brain regions are responsible for the different functions
executed during arithmetic problem solving. Studies of neuro-
imaging indicate the role of the parietal cortex in the calculating

and processing of numbers and of the frontal cortex in numerical
knowledge and working memory.32 The interest of the present
study was to observe the frontal lobule with a cognitive para-
digm based on subtraction (difficult > easy), and the global
results show activations in the bilateral superior frontal gyrus,
inferior and middle frontal left, bilateral frontal inferior, and
cingulum anterior. These areas were found by other authors dur-
ing addition and subtraction operations in adults,33 and even in
children with learning disability affecting the normal acquisition
of arithmetic skills.34

However, each subgroup shows different activation loci
according to strategies used as in the case of subgroups with
high arithmetic abilities, where HAAa and HAAs show
dominance in the right hemisphere. This dominance may be
explained by the approximate numbers system, which represents
numerical magnitude information in a language independent
analog fashion and implicates frontal and parietal circuits in

Fig. 6 T-maps of brain activation for the HAAa subgroup measured by DOT and fMRI. All results were
mapped onto MNI space. Threshold p < 0.05 corrected FDR, at the voxel level for HbO (red), HbR (blue),
and BOLD (green) signals. Note color change to violet in common voxels.
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the right hemisphere.35 But, the HAAm subgroup shows slow
activations (p < 0.05, uncorrected) for both DOT and fMRI
measurements, which may be due to a combination of strategies
used, not shown a specific activation.

Otherwise, the subgroups with low arithmetic abilities show
dominance in the left hemisphere, which increased with task dif-
ficulty, a complex task can therefore be expected to produce a
greater number of activated voxels in the left compared to the
right hemisphere36,37 or in the cases of both subgroups, LAAf
and LAAm, that applied mental finger counting, which are hab-
its related to hemispheric lateralization,38 which displayed the
preferential involvement of the left prefrontal cortex although
the subjects were right-handed. The LAAr subgroup also
showed more dominance in the left hemisphere, because its
role in the planning of elementary sequences needed to execute
a calculation procedure.39 In this case, the strategy used showed

activations in orbital areas that may be involved in the rapid
learning of visual associations40 and the frontal medial area,
which supports the demand of working memory during arith-
metic operations.41

The acquisition of arithmetical skill to resolve a mental
calculation of the HAA group was reflected in the results, which
showed weaker brain activations than the LAA group. The
academic formation of each group may be involved in the
acquisition of arithmetical abilities; therefore, this leads one to
think that it would be difficult for one group to acquire the
same strategies of another group.

4.2 Image Quality

The signals in previous fMRI and NIRS studies are highly
correlated between both modalities.42 The present work

Fig. 7 T-maps of brain activation for the HAAs subgroup measured by DOT and fMRI. All results were
mapped onto MNI space. Threshold p < 0.05, corrected FDR at the voxel level for HbO (red), HbR (blue),
and BOLD (green) signals. Note color change to violet in common voxels.
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demonstrates that DOT activations are functionally similar to
fMRI activations in the prefrontal cortex. However, the percent-
age of volume overlap between DOT and fMRI voxels was cal-
culated in a defined space of 6384 voxels with a size of 2 × 2 × 2

for each voxel. This space corresponds to the frontal area
defined by the submesh of the FEM library selected in this
study without extracerebral areas fitted onto normalized MNI
space (Fig. 12), besides which, the percentage was calculated
according to significant voxels represented by t-maps of fMRI
for each subgroup. The percentage of common voxels between
HbO-BOLD and HbR-BOLD for each subgroup is shown in
Table 4.

DOT volumes are treated as fMRI volumes, thereby t-contrast
images have been used as the metric to quantify the percentage
of common voxels between both modalities by a conjunction
analysis, which allows testing for common activation across

subjects or tasks creating the intersection of statistical maps
thresholded at an alpha rate of 0.05 from random field theory.43

A low percentage of voxels is shown in the overlap between
modalities for each subgroup, which is, perhaps, because the use
of FE mesh is not personalized. The use of a generic head model
for the forward light modeling, making it necessary to coregister
subject-specific MR anatomy with head model MR anatomy to
localize the position of optodes. This procedure could reduce the
spatial accuracy of the derived activation foci, because there are
variabilities in the brain structures and the thickness of the
extracerebral tissue.44 The measured activation patterns can only
be projected onto structural MRI, which is performed on the
individual subject, when external landmarks are required for
cranio–cerebral correlations with the 10 − 10∕10 − 20 electrode
placement system.45 An approach would be to create a finite
element for a standard brain template46–48 or subject-specific

Fig. 8 T-maps of brain activation for the subgroup HAAm measured by DOT and fMRI. All results were
mapped onto MNI space. Threshold p < 0.05 uncorrected for HbO (red), HbR (blue), and BOLD (green)
signals. Note color change to violet in common voxels.
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MR scans,49,50 which forward model considering different opti-
cal properties for each brain layer, which could minimize the
reconstruction errors and improve spatial accuracy.

However, the use of a precalculated generic FEM allows a
saving in time and energy compared to the generation of indi-
vidual FE-meshes and forward models, especially for studies
comprising many subjects and using high density grids.51

Normalization onto MNI space leads one to think that there
could be another factor to explain the results of the overlap
between both modalities. Spatial normalization was developed
for voxel-based analysis in activation brain studies. This pro-
cedure takes into account a complete specification of the spatial
topography of each image, e.g., the topography of an image can
be characterized in terms of the coefficients corresponding to the
spatial basis functions. This coefficient, taken in conjunction
with the reference image, is a complete specification of the
topography of the original image. The anatomical topography

can be characterized by multivariate measures and depends on
conventional multivariate statistics.52 Therefore, normalization
procedures for DOT image onto MNI space should not distort
or increase variation in the GLM analysis.

Previous studies have measured qualitatively and quantita-
tively the colocalization between DOT and fMRI in visual53

and motor44 areas. FEM specific to each layer of a subject MR
anatomy guarantees an alignment with fMRI data allowing the
calculation of localization error in each voxel using, e.g., an aver-
age center-of-mass or phase map.54 The calculation of localization
error in each voxel on frontal areas could help to explain the
discrepancies observed in the overlap between both modalities.

4.3 Use of Canonical Statistical Parametric Mapping

On the one hand, in fMRI studies, the probability of obtaining
one or more activation foci of at least one voxel, is small, e.g.,

Fig. 9 T-maps of brain activation for the LAAf subgroup measured by DOT and fMRI. All results were
mapped onto MNI space. Threshold p < 0.05, corrected FDR at the voxel level for HbO (red), HbR (blue),
and BOLD (green) signals. Note color change to violet in common voxels.
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p-value <0.05. Gaussian processes allow a significant advance
in detecting activation foci in SPM, so information about the spa-
tial extent or volume of the activation is included in the analysis
of significant focal change.55 In DOT studies, the probability
of obtaining activation foci is high at the same p-value. DOT
volumes obtained with the approach in the present study are
sufficiently robust to be estimated giving significant activa-
tion foci without applying a Gaussian kernel, unlike NIRS-
SPM,56 which applies a different noise treatment in fNIRS and
fMRI.

During preprocessing, fMRI data were smoothened with a
Gaussian kernel of 8 mm typically used to match with DOT
data. An alternative approach would be the use of 13-mm
Gaussian smoothing for fMRI, the use of 8-mm Gaussian
smoothing for DOT data, or the use of both. These approaches
would increase the number of common voxels in the overlap
between both DOT and fMRI t-images.

On the other hand, SPM applies one process to analyze
each voxel using any statistical parametric test. The resulting
statistics are assembled into an image, that is then interpreted
as a spatially extended statistical process.57 The present work
allows a GLM analysis voxel-by-voxel over reconstructed DOT
images for each molecule HbO and HbR to be made, unlike
other authors who applied GLM analysis prior to the recon-
struction of the images.46,48

4.4 Limitations of Study

Studies have tried to find a spatial and temporal correlation
between the BOLD signal and HbR and HbO signal measure-
ment by both imaging techniques.42 The activations in the
prefrontal cortex recorded after cognitive tasks generated more
subtle activation changes unlike motor58 or visual59 tasks.
There was no repeated activation pattern during the cognitive

Fig. 10 T-maps of brain activation for the LAAr subgroup measured by DOT and fMRI. All results were
mapped onto MNI space. Threshold p < 0.05 corrected FDR, at the voxel level for HbO (red), HbR (blue),
and BOLD (green) signals. Note color change to violet in common voxels.
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paradigm in the cases here, making the study difficult to repro-
duce and which would require a larger sample size than the one
used here. Besides, simultaneously, recordings must be made
to compare both modalities60 while the cognitive paradigm is
presented to the subject.

From the methodological point of view, there are some con-
siderations, such as the physical principles of photon transport in
scattering media restrict the precision of the reconstruction.
Assumptions of optical properties in the subject limit the preci-
sion.44 Localization of optode fibers over each individual’s head
prior to generating the FE mesh, which saves in time and makes
group analysis difficult, could also introduce localization errors due
to transformation procedures. Besides, the FE mesh precomputed
on a generic head does not take into account that the thickness of
the extracerebral tissue varies between subjects, which reduces
the spatial accuracy of activated foci. NIR light only penetrates
3 to 4 cm deep, another limitation that should not be forgotten.

4.5 Neurovascular Coupling

Hemodynamic molecules measured by DOT provide comple-
mentary information to fMRI measurements. When spatially
comparing t-maps obtained by DOT and fMRI measures,
both HbO and HbR show common voxels with BOLD signals,
but if they are analyzed separately, it may appear that HbO and
BOLD are in greater concentration and better spatial match than
HbR.60 Vasodilatation generated by neural activation is reflected
in HbO and BOLD signals, whereas in some cases with HbR,
this even appears in the contralateral hemisphere. One possible
explanation is that HbR increased during neural activation and
was then washed by oxygenated blood arriving from vasodila-
tation.61 These increased HbR, which have not been washed
because nearby cerebral areas demand oxygen, may be detected
by DOT. Therefore, DOT provides most information about hemo-
dynamic changes. Both DOT and fMRI techniques measure

Fig. 11 T-maps of brain activation for the LAAm subgroup measured by DOT and fMRI. All results were
mapped onto MNI space. Threshold p < 0.05 corrected FDR, at the voxel level for HbO (red), HbR (blue),
and BOLD (green) signals. Note color change to violet in common voxels.
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Table 3 Representation of number of voxels common by anatomical
area to each combination between HbO-BOLD and HbR-BOLD.

Anatomical region

Peak MNI co-ordinate
No. of
voxelsx y z

Subgroup HAAa

Difficult > easy count (T: 2.35, p < 0.05) HbR ∩ BOLD

Middle frontal gyrus 34 42 −6 9

Frontal superior right 26 46 12 10

Difficult > easycount (T: 2.35, p < 0.05) HbO ∩ BOLD

Frontal medial orbital right 38 44 −10 244

Cingulum anterior right 16 46 10 11

Frontal superior medial right 12 60 26 12

Subgroup HAAs

Difficult > easy count (T: 1.65, p < 0.05) HbR ∩ BOLD

Middle frontal gyrus 32 46 −8 9

Frontal middle orbital right 20 46 −18 142

Cingulum anterior left −14 44 14 6

Difficult > easy count (T: 1.65, p < 0.05) HbO ∩ BOLD

Frontal medial orbital right 20 46 −18 93

Rectus right 12 42 −16 42

Frontal superior medial right 14 48 0 26

Subgroup HAAm

Not presented common voxels

Subgroup LAAf

Difficult > easy count (T: 1.65, p < 0.05) HbR ∩ BOLD

Frontal medial orbital right 12 54 −10 110

Cingulum anterior left −8 44 0 17

Cingulum anterior right 12 44 8 10

Frontal middle right 48 40 16 25

Difficult > easy count (T: 1.65, p < 0.05) HbO ∩ BOLD

Frontal medial orbital left −6 42 −12 9

Frontal medial orbital right 12 54 −10 27

Frontal superior medial right 20 42 0 11

Cingulum anterior left −10 44 0 21

Frontal superior medial left −14 58 0 34

Cingulum anterior right 12 44 8 14

Frontal superior medial right 12 60 8 40

Table 3 (Continued).

Anatomical region

Peak MNI co-ordinate
No. of
voxelsx y z

Subgroup LAAr

Difficult > easy count (T: 3.1, p < 0.05) HbR ∩ BOLD

Frontal medial orbital right 12 54 −10 110

Cingulum anterior left −8 44 0 17

Cingulum anterior right 12 44 8 10

Frontal middle right 48 40 16 25

Difficult > easy count (T: 3.1, p < 0.05) HbO ∩ BOLD

Frontal middle orbital right 42 48 −16 124

Frontal superior orbital left −14 60 −14 14

Frontal middle orbital left −26 58 −12 23

Cingulum anterior left −12 50 2 10

Subgroup LAAm

Difficult > easy count (T: 3.1, p < 0.05) HbR ∩ BOLD

Frontal middle orbital right 42 48 −16 126

Frontal superior orbital left −14 60 −14 16

Frontal middle orbital left −22 54 −10 21

Cingulum anterior left −12 50 2 10

Frontal middle left −38 56 4 20

Difficult > easy count (T: 3.1, p < 0.05) HbO ∩ BOLD

Middle frontal gyrus −2 46 −8 9

Frontal middle right 46 46 4 11

Frontal superior left −22 54 10 33

Frontal superior medial left −14 48 12 14

Frontal superior medial right 8 60 22 12

Fig. 12 Representation of the space defined by submesh selected
from FEM library, without extracerebral areas.
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hemodynamic changes but in different ways, i.e., signals mea-
sured or time repetition.

5 Conclusions
The fiber-grid was positioned on the forehead during DOT
experiments to improve the contact of the fibers with the
scalp because this area is free of hair. However, the scalp–brain
distance in this area varies across the subjects, which may
reduce the quality of DOT signal during the recordings. The
results here show that the NIR light can spread across the frontal
sinus and register hemodynamic changes in the cerebral cortex
regardless of the depth or morphology of the frontal sinus.

The results demonstrate that the processing method for DOT
series in the present study allows the use of a group analysis on
the prefrontal cortex using cognitive paradigms, which reflect
changes in the cognitive task in the strict sense with highly sig-
nificant results by means of subgroups analysis. By increasing
the sample rate for each subgroup, the results are expected to be
more significant. But the aim of the present work is to demon-
strate that the processing method applied for DOT data can be
applied to group analysis and that only using DOT measures is
sufficient for studying cognitive processing.

The results of work presented here indicate the processing
method for group analysis of DOT data used here is reproduc-
ible as a standard procedure during data filtering, choosing sin-
gular value numbers, and the coregister DOT volume series to
MNI space. DOT volume series are subsequently statistically
analyzed by canonical SPM (i.e., without software modifica-
tions), in the same way, as fMRI series are analyzed.

Finally, studies of functional dynamic62 or dynamical causal
modeling (DCM)63 for DOT data series could help to understand
complex processes in the prefrontal cortex during a cognitive
paradigm involving, e.g., mental calculation, making it possible
to know the most likely path between activated loci. There has
recently been a tendency to perform studies of functional
dynamic and DCM with the aim of increasing knowledge about
cerebral processing, where combined DOT and fMRI measure-
ments could be fundamental tools to understand neural com-
plexity and, especially, the neurovascular coupling in humans,
which is still unknown.
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