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Abstract. The Deepwater Horizon (DWH) oil blowout in the Gulf of Mexico (GoM) led to the
largest offshore oil spill in U.S. history. The accident resulted in oil slicks that covered between
10,000 and upward of 40,000 km? of the Gulf between April and July 2010. Quantifying the
actual spatial extent of oil over such synoptic scales on an operational basis and, in particular,
estimating the oil volume (or slick thickness) of large oil slicks on the ocean surface has proven
to be a challenge to researchers and responders alike. This challenge must be addressed to assess
and understand impacts on marine and coastal resources and to prepare a response to future spills.
We estimated surface oil volume and probability of occurrence of different oil thicknesses during
the DWH blowout in the GoM by combining synoptic measurements (2330-km swath) from
the satellite-borne NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and near-
concurrent, much narrower swath (~5 km) hyperspectral observations from the NASA Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). A histogram-matching approach was used to
transfer AVIRIS-derived oil volume to MODIS pixel-scale dimensions, after masking clouds under
both sun glint and nonglint conditions. Probability functions were used to apply the transformation
to 19 MODIS images collected during the DWH event. This generated three types of MODIS oil
maps: maps of surface oil volume, maps of relative oil thickness with four different classes
(ie., 0 um, <0.08 um, 0.08 to 8 um, and >8 um), and maps of probability distributions of
different thicknesses. The results were compared with satellite-based synthetic aperture radar
measurements and evaluated with concurrent aerial photographs. Although the methods may not
be ideal and the results may contain large uncertainties, the current attempt suggests that coarse-
resolution optical remote sensing observations can provide estimates of relative oil thickness/volume
for large oil slicks captured by satellites. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOIL [DOI: 10.1117/1.JRS.12.026008]
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1 Background and Objective: Mapping Surface Oil of the Deepwater
Horizon Oil Blowout

The tragic Deepwater Horizon (DWH) blowout led to the largest accidental offshore oil
discharge in the history of the modern petroleum industry. The estimates of oil volume released
during the spill have varied widely, with the U.S. government providing an estimate of 3.19
million barrels of crude oil discharged into the northern Gulf of Mexico (GoM) over 87
days (20 April to 15 July 2010).' Government agencies, industry, and academic research
groups collected an unprecedented amount of remote sensing observations of the surface ocean
to help guide mitigation efforts and to assess the spatial extent and variations of oil on the surface
of the GoM.* Studies have used different airborne and satellite sensors including satellite-
based synthetic aperture radar (SAR),”” Moderate Resolution Imaging Spectroradiometer
(MODIS),*!” the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),!'"!® the
Advanced Spaceborne Thermal Emission and Reflection Radiometer,'*'® and the DMSC-
MK?2 UV-Visible-Near IR Sensor'’ to quantify oil extent on the ocean surface. Some of the
imagery was used operationally by the U.S. National Oceanic and Atmospheric Administration
(NOAA) and other groups to map the surface oil extent in order to provide timely information
for oil tracking and mitigation.” An important challenge with remote sensing to date still needs
to be addressed: How can surface oil thickness or volume be quantified through remote
sensing?

NASA conducted extensive overflights with the scientific AVIRIS sensors during the evo-
lution of the DWH event (Fig. 1). These observations were used to identify areas covered with

Fig. 1 (a) AVIRIS flight coverage in the northern GoM from May 6 to July 22, 2010. Coverage
after July 22, 2010 is not shown here. A total of 456 flight lines in 41 days between May 6
and October 4, 2010 were surveyed by NASA JPL to assess the DWH oil spill. (b) However,
to date, only the AVIRIS flight lines collected on May 17, 2010 have been processed by the
USGS to generate surface oil volume estimates. These AVIRIS runs were used in this study to
generate statistics to derive oil volume maps from MODIS. The background image in panel
(b) shows the MODIS/terra red-green-blue (RGB) true color image collected on May 17,
2010.

Journal of Applied Remote Sensing 026008-2 Apr—Jun 2018 « Vol. 12(2)



Hu et al.: Remote sensing estimation of surface oil volume during the 2010 Deepwater. . .

oil/water emulsions likely thicker than several dozens of microns.*'? AVIRIS oil volume data
produced by Clark et al.'” were used as the basis for the development of the empirical MODIS oil
thickness model in this study. A limitation of sensors flown on aircraft is their limited spatial
coverage, limited observation frequency, and ultimately, the significant effort required to analyze
the data. Satellite-based sensors also were used extensively, as these provided data for quick
surface oil presence/absence assessments. For example, the two MODIS sensors and MERIS
together provided near-daily observations of the GoM at spatial resolutions of between
250 m and 1 km per pixel.

A fundamental problem with all remote sensing technologies is the difficulty in estimating
thickness or volume of oil in a particular pixel. Additional information, external to that collected
by one of these sensors, is required to differentiate between a <1 um oil sheen and a >1 mm oil
slick. Clearly, oil thickness is an important parameter needed to assess a spill’s severity and to
determine appropriate response actions. Improved oil characterization also provides insight into
how different types of oil are transported in surface waters and informs federal agencies that
perform oil spill risk analyses.

The challenges in estimating oil thickness on water are well documented.'®° Accurately
measuring average oil thickness or volume from a vessel is challenging, given the difficulty
of collecting data in the field and the spatial heterogeneity of oil.!” During the DWH event,
no scientific in situ measurements of oil thickness were made because there was no commu-
nity-accepted method for such measurements, and no synoptic field sampling occurred when
remote sensing data were collected. Regardless, to assess the impacts of the spill, government
agencies needed to characterize the oil on the ocean surface, using the best information available.
The wealth of different types of remote sensing data collected during the DWH blowout
represents an opportunity to develop methods for quantifying oil thickness or volume using
satellite-based remote sensing. The objectives of this study were to address this challenge
through:

1. developing a method to scale up spatially limited but quantified oil thickness maps
estimated from high-resolution hyperspectral AVIRIS measurements to multiband
coarse-resolution MODIS observations;

2. developing a method to quantify the probability of oil coverage with different oil thick-
ness at a given time and location;

3. mapping surface oil, its volume, classified by thickness, and the probability of different
thickness classes.

Although these tasks are related, the methods used to achieve them are different. Therefore,
unlike traditional manuscripts with one section for all Materials and Methods, this manuscript is
arranged in the following way, where methods for different tasks are described separately.
Below, we first provide a brief review of the remote sensing techniques needed to conduct
oil spill assessments (Sec. 2). We then describe the approach to scale up AVIRIS oil volume
estimates to larger spatial scales and conduct statistical assessments using MODIS measurements
of surface reflectance (Sec. 3). We use AVIRIS-based statistics to generate probability
functions of various oil thickness classes, and those statistics are then applied to the
MODIS maps to generate probability coverage maps for different oil classes (Sec. 4). We com-
pare the large-scale maps derived using MODIS to airborne photographs and to regional esti-
mates of oil cover derived from satellite-based SAR observations (Sec. 5) and finally discuss
uncertainties and weaknesses of our approach (Sec. 6). Diagnostic results are presented in
Appendix A.

2 Remote Detection and Characterization of Surface Oil

Remote sensing techniques for oil spill detection and characterization include optical (both
passive and active), microwave, thermal, lidar, and radar sensors mounted on aircraft and
satellite platforms.*>!71%2122 Merging the data from airborne and satellite sensors helps to
scale up the high spatial resolution airborne measurements to conduct semiquantitative assess-
ments of surface oil extent and oil volume over synoptic scales.
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SAR measurements have been used widely to detect the presence/absence of oil slicks, either
by users manually delineating radar-dark areas, such as NOAA used during the DWH response
(Environmental Response Management Application®®), or using semiautomated data analysis
schemes.”* As part of the DWH analyses, combining concurrent data from multiple sensors,
Garcia-Pineda et al.’ recently demonstrated the possibility of identifying thick emulsified oil
in SAR imagery. These data provide an excellent foundation with which to test new algorithms
and methods.

Optical remote sensing provides useful, low-cost information on oil location and surface
areal coverage.”*! Photographs collected with digital cameras and Landsat images proved
the concept that visible radiance reflected off the ocean’s surface provides information on
oil seeps and spills.***?> Hu et al.”® demonstrated the use of medium-resolution (250-m)
MODIS data for spill assessment in Lake Maracaibo. Other studies have confirmed oil slick
detection taking advantage of the sun glint in satellite images.”>?*** Figure 2 shows two
MODIS images, taken only 1.5 h apart over the northern GoM, where oil slicks can be clearly
visualized under sun glint [Fig. 2(a)] and nonglint conditions [Fig. 2(b)]. This optical contrast
method was used operationally to trace the transport of DWH oil on surface of the GoM and to
validate numerical models of the motion of the o0il.™'**” A combination of optical and SAR
sensors can improve the coverage for spill monitoring and tracking.” In this paper, we develop
the rationale to estimate thickness of the oil patches during the DWH blowout using optical
means.

To date, attempts to estimate surface oil thickness and volume are based on empirical efforts,
where relative oil thickness was assessed through visual inspection,** or relationships between
laboratory measurements of reflectance spectra and known oil thickness were scaled to airborne
and satellite observations.!#-*® Clearly, significant errors can be introduced. Laboratory con-
ditions are typically for oil within a bottle, or at the surface of a container with a few squared
meters in surface cross-section, which are different from the wide range of meteorological,
oceanographic, and illumination conditions, where oil is over synoptic scales on the surface
of the ocean. Indeed, the differences observed in an oil slick when viewed from different direc-
tions (Fig. 2) could be associated with the changes in solar and viewing geometry, rather than
the changes in oil thickness or distribution. On the other hand, crude oil without emulsion’®
has dramatically different optical properties from oil emulsion:'? the former shows large changes
in reflectance in the blue—green wavelengths but negligible changes in the near-infrared
(NIR) and short-wave infrared (SWIR) wavelengths, whereas the latter shows the opposite.
In each case, reflectance does not change linearly with changing oil thickness. In the real
ocean environment, surface oil can form oil emulsion (either water in oil or oil droplets in
water) under influence of sun light and waves and therefore change reflectance over
time,** making it difficult to develop unified rules to quantify nonemulsified oil and oil
emulsion because the same amount of oil may be completely different reflectance magnitudes
and shapes.

Radiative transfer modeling has been used to better understand the fundamental optics
of oil-water interactions. Otremba et al.***® developed a theoretical approach through

29.0°N

Fig. 2 MODIS RGB images (R: 645 nm; G: 555 nm; B: 469 nm) showing oil slicks with different
optical contrast (spectral reflectance) only 1.5 h apart, due to different solar/viewing geometry and
wind. (a) April 29, 2010, 16:55 GMT and (b) April 29, 2010, 18:30 GMT. The image width is about
120 km. The red X shows the DWH spill location. Figure adapted from Hu et al.?’
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Monte-Carlo simulations to understand optical contrast of oil film and oil droplets under various
conditions. This theoretical approach is currently not practical because it would require mod-
elling observations and optical properties of both 0il**** and the underlying water* for all con-
ditions encountered in each pixel of all satellite images covering an oil spill such as that of the
DWH. Recently, an attempt was made to model reflectance of oiled surface under sun glint in
order to determine oil slick thickness,* yet the general applicability of the approach remains to
be tested.

A practical approach to estimate oil thickness was proposed by Clark et al.'> They used
hyperspectral laboratory measurements to develop algorithms for airborne hyperspectral images
without sun glint. Unique spectral features in the shortwave-infrared (SWIR) wavelengths
(e.g., at 1.2, 1.7, and 2.3 ym) are linked to different oil thickness and oil/water mixing ratios
under controlled laboratory conditions. Based on these observations, Clark et al.'” developed
oil thickness maps from a few AVIRIS flight lines collected on May 17, 2010, including
uncertainties in these estimates. More recently, Dubucq et al.*® also demonstrated that SWIR
wavelengths are useful for detecting thick oil slicks.

However, AVIRIS coverage for any particular day during the period of the DWH blowout
was limited (Fig. 1). To date, only the analyses for flight lines on May 17, 2010 have been
published.'> MODIS provided more frequent optical observations at medium spatial resolution
(250 and 500 m) during this time, often at near-daily temporal resolution. On May 17, 2010,
MODIS observations were also collected nearly concurrently with AVIRIS flights. These data
provide the basis to develop a systematic MODIS-based algorithm to combine the advantages of
both measurements. MODIS and AVIRIS have important differences in spectral and spatial res-
olutions, as well as in their solar/viewing geometry. The objective of our study was to develop
a simple and practical approach to overcome this technical challenge to improve assessments
made with MODIS based on the limited AVIRIS observations and interpretations by Clark
et al.'> There are several data products derived from MODIS measurements, including oil
volume maps, maps of oil thickness classes, and maps of oil probability. Each of these types
uses its own method. Therefore, we describe these methods in a sequential way. Figure 3 presents
a schematic flow chart to help understand the individual steps to derive the three data products
(Products I to III), where the steps are detailed in the following sections.

AVIRIS MODIS
R(2) R™ ()
Tetracorder PDF %oudmasking
e-glint

Oil delineation
A 4 A 4

SAR/Airborne/ AVIRIS oil MODIS Ry (M)

Photo volume map over oil footprint
—— | |
Statistics Statistics Histogramﬁ\/latching
MODIS oil MODIS oil MODIS oil
thickness classes: » probability for volume algorithm
Sheen, thin, thick each class Voiref (Re)
Validation Application to/multiple images
Product II Product III Product I
“» MODIS oil maps: —»  MODIS oil MODIS oil
Sheen, thin, thick probability maps volume maps

Fig. 3 Schematic flowchart showing the major steps in deriving the three MODIS-based data
products (I to Ill). Product | is described in Sec. 3, while products Il and Ill are described in
Sec. 4 and validation is presented in Sec. 5. Here, AVIRIS R(4) refers to AVIRIS surface reflec-
tance, MODIS R,."?" refers to the original MODIS Rayleigh corrected reflectance, and MODIS R,
refers to R,, anomaly of oil-containing pixels (in reference against nearby oil-free water pixel).
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3 Estimating Surface Oil by Spatially Scaling up AVIRIS Observations
to Synoptic MODIS Measurements

3.1 Data and Methods

3.1.1 Data sources and data processing

The AVIRIS sensor has 224 spectral bands, from 380 to 2500 nm. Its ground resolution varies
with aircraft altitude, generally between 3.5 and 20 m. AVIRIS data were collected on 41 days
between May 6 and October 4, 2010, covering a total of 456 flight lines (Fig. 1). All the data are
available in calibrated at-sensor radiances from the NASA Jet Propulsion Laboratory (Ref. 47).

The AVIRIS data collected on May 17, 2010, were processed by the USGS using the
ACORN atmospheric correction module. Ground calibration sites were used to produce apparent
surface reflectance [R(4), dimensionless]. Based on R(4), the USGS used the Tetracorder spec-
tral shape-matching system™ to derive oil/water mixing ratio, areal fraction coverage, thickness,
and oil volume for each AVIRIS pixel containing thick oil emulsion.'*> The continuum-removed
absorption feature strength and shapes for multiple absorption features were used by Clark
et al.'” to determine the oil:water ratio and oil volume. The observed level relative to the refer-
ence spectra for a specific oil:water ratio and volume was used to determine fractional coverage
using a model with ocean water. The emulsions generated in the USGS laboratory from oil
samples collected at the surface of the ocean during the DWH blowout were used to construct
the relationships between sample properties (e.g., oil/water mixing ratios, effective oil thickness,
oil volume) and reflectance spectral shapes and magnitudes in the SWIR bands."”

Three products were derived by Clark et al.'> using the AVIRIS data: conservative, aggres-
sive, and possible oil. In our study, we used the “aggressive” estimates to scale up MODIS
observations because these were intermediate estimates (between the other two categories).
These estimates then were used to derive subpixel fractional oil coverage for each MODIS
image based on the near-concurrent AVIRIS observations of the same geographic area. Although
termed “aggressive,” the AVIRIS estimates did not include surface oil thinner than 20 ym
because according to laboratory experiments, oil slicks thinner than 20 ym does not have reli-
ably detectable SWIR signatures. Therefore, all subsequent MODIS analyses based on these
AVIRIS results are regarded as an underestimate of the total DWH oil coverage and total volume
at any particular time because the AVIRIS-derived estimates are used to scale the MODIS reflec-
tance (Fig. 4).

MODIS collects spectral data in 36 bands from the visible to the thermal IR with nominal
ground resolutions at nadir varying between 250 m and 1 km for different bands. In this study,
the seven spectral bands designed for land and cloud observations were used because they do not
saturate over sun glint regions.*’ These bands are 645 and 859 nm (250-m resolution); and
469, 555, 1240, 1640, and 2130 nm (500-m resolution).

The raw (level-0) MODIS data were obtained from NASA Goddard Space Flight Center
(GSFC). Because the standard atmospheric correction (implemented in SeaDAS) often treats

0.25 0.25
1000 ——OQil volume (AVIRIS) 1000 —Oil volume (AVIRIS)
-~ — R 1200 0.2 ~ — Ry 160 0.2
= 100 - =100
2 015 & 2 015
I : 5 10 %
$ 01 & 2 0.1 o
S 1 S 1
0.05 0.05
(@) (b)
0.1+ + + + + + 0 0.1+ + + + + +0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 4 Cumulative histograms of MODIS Rayleigh-corrected reflectance (a) R, 1240 (aqua) and
(b) R, 1640 (terra; both after subtraction of the nearest water background), and AVIRIS-derived
surface oil volume for the AVIRIS flight line Run10 in Fig. 1(b). The x-axis shows the cumulated
frequency. Note that oil volume is plotted in log scale. They show different shapes in the cumu-
lative histograms but are forced to agree with each other at each x-axis point using regressions,
as shown in Fig. 5.
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the bright pixels (from either weathered oil or sun glint) as clouds or bad data, SeaDAS was used
only to derive the calibrated top of atmosphere sensor radiance (L, ;). Then, Rayleigh-corrected
reflectance for each band [R,. ;"] was derived as per Hu et al.:*®

R ;™ (60,0, Ap) = nL* 1 (60,0, Ap)/(F X cos 6y) — R, (6, 6, Adp), 9]

where L*, is L, after correction for gaseous absorption, F, is the extraterrestrial solar irradiance,
0, is the solar zenith angle, € is the sensor zenith angle, A¢ is the relative azimuth between
the sensor and the sun, and R, is the reflectance due to Rayleigh (molecular) scattering.
The solar-viewing geometry is defined by (6,0, A¢), which changes from pixel to pixel.
The R,. ;" data were mapped to a rectangular projection at 250-m resolution covering the
GoM or a georeferenced window covering particular oil features. During this step, the 500-m
resolution data were interpolated to 250-m resolution using a sharpening scheme.’® The bands
centered at 645, 555, and 469 nm were used to compose true-color red—green—blue (RGB)
images for visualization. Here, the superscript “raw” indicates that these are the raw R, data
from direct Rayleigh correction. In the subsequent analysis, the R, " data over oil-containing
pixels are referenced against nearby oil-free water, resulting in reflectance anomaly. Such an
oil-water anomaly is referred to as R, (Fig. 4).

3.1.2 Methods for deriving MODIS oil thickness maps

Delineate surface oil slicks. The step-by-step details in the processing and delineation of
the oil patterns at the surface of the ocean are described in the International Ocean Color
Coordinating Group (IOCCG) handbook.?” We briefly summarize the method below.

Oil on the surface of the ocean shows spatial contrast (either positive or negative, or both)
with surrounding background water in MODIS R,. imagery with sun glint. This allows slicks to
be delineated.®?>?° This step effectively provides a measure of oil presence or absence on the
surface for each pixel. Whereas several image segmentation (classification) methods have been
established to delineate slicks in a semiautomatic fashion,”* such methods are not effective with
MODIS sun glint imagery because the intensity of the sun glint is uneven across any one image,
different from image to image, and because clouds interfere with the observed spatial patterns.’!
Therefore, manual delineation is more effective to outline the boundary of each slick after inter-
active image stretching to highlight the oil-water contrast.”® An example is shown in Fig. 1(b),
where the slick delineation is shown in red. In the work of Hu et al.,”® about 50 MODIS images
between April 22 and July 31, 2010, were used to study the presence of oil in the northeastern
GoM, where the aggregated oil footprint was determined to be 103,000 km?.

In the present work, after screening for cloud cover, we selected a dataset consisting of
19 images spanning 18 days (Table 1; note that we used two images collected on April 29,
2010). These represent the best cloud-free MODIS data.

Cloud masking. Clouds are opaque to light and therefore need to be identified in optical
remote sensing imagery and removed from further processing to minimize errors in estimating
surface ocean oil cover. We tested several cloud-masking methods for the present study but none
gave entirely satisfactory results. These include the standard MODIS cloud mask (MOD35),>?
and cloud mask strategies we developed for our sea surface temperature (SST) data product and
for MODIS sun glint imagery.® These methods resulted in either too many false-positive pixels
(i.e., too many pixels labeled as clouds) or too many false-negative pixels (i.e., too many clouds
missed). For example, the MOD35 cloud mask often identified thick oil as clouds (Fig. 17) in
Appendix Al).

We therefore developed a cloud masking method specifically to address this issue for
this study using a probability density function (PDF). The PDF was used to examine pixels
within a running window for texture analysis (see Appendix Al for more details). This
method led to a much improved set of cloud masks, as shown, for example, in Appendix Al
(Fig. 17).
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Table 1 MODIS images and estimated total surface oil volume (units: 10° barrels). Total oil
volume was estimated from (1) continuous oil volume maps (continuous), which is “product I” in
Fig. 3; (2) probability maps using three MODIS thickness classes (probability_three), which is
“product IlI” in Fig. 3; and (3) probability maps using five MODIS thickness classes (probability_
five), which is also “product IlI” in Fig. 3. The meaning of these three different estimates is
explained in the following sections. The image name convention is SYYYYMMDD.HHMMSS,
where S: sensor (A: MODIS/aqua; T: MODIS/terra), YYYY: year, MM: month, DD: day, HH:
GMT hour, MM: minutes, SS: seconds. The decreases in oil volume over time (e.g., after day
20000527) can be due to mitigation efforts and/or storms.”

Continuous Probability_three Probability_five
(108 barrels) (108 barrels) (108 barrels)
A20100425.185500 27 30 33
T20100429.165500 49 51 52
A20100429.183000 49 57 62
A20100504.184500 78 74 75
A20100509.190500 106 55 55
T20100510.163500 111 82 85
A20100511.185500 117 89 93
T20100517.164000 150 130 124
A20100520.184500 167 210 239
A20100523.191500 184 251 272
T20100524.164500 190 214 228
A20100527.185510 206 299 346
A20100610.190500 156 165 170
A20100612.185010 210 145 160
T20100618.164000 174 158 168
A20100626.190500 146 154 159
A20100712.190500 45 45 47
A20100714.185500 67 84 90
A20100721.190000 52 83 88

The PDF-generated cloud mask for each of the 19 MODIS images was carefully inspected
and cross-referenced with the corresponding MODIS RGB image. Small artifacts occurred
infrequently in the PDF cloud mask product, as one can easily tell which pixels were
clouds from the RGB image because clouds are features that stand out from the background
pixels and clouds often have shadows in adjacent pixels. Small cloud patches were sometimes
missed while some other cloud-free pixels were treated as clouds. These rare (<5%) artifacts
were manually corrected, resulting in a final dataset of cloud masks. These were applied to
the MODIS images (i.e., masking the corresponding pixels) prior to performing statistical
analyses.

After application of the cloud mask, R, ;" was used to delineate the oil presence/absence
based on their spatial contrast with the surrounding waters. To minimize the effects of sun
glint, the R ™" value of each oil pixel was normalized by subtracting a mean R,V value
of the nearest oil-free water pixels, where these pixels were determined through comparing
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the distance of water pixels to the oil-pixel of interest.”> Such deglinted R, values represent
the oil-water R,. contrasts, which also corrected the aerosol scattering effects through the
reference subtraction. In the following text, R, , refers to the oil-water reflectance anomaly.
We then proceeded to estimate average oil thickness as oil volume contained in each oil
pixel based on the R,., product using the AVIRIS observations described in the following
section.

Correlation between MODIS and AVIRIS. We tested several methods to examine the
relationship between MODIS R, ; data and AVIRIS reflectance data, and to build an empirical
model of using MODIS R, data to estimate surface oil volume, based on concurrent and
colocated AVIRIS oil volume data. We first had to account for the different spatial resolution
(pixel size) of the MODIS and AVIRIS images and the different measurement conditions
associated with each sensor. For example, MODIS images may show sun glint, whereas AVIRIS
images were collected in a way that purposefully minimized sun glint. We concluded that
a pixel-to-pixel match between MODIS and AVIRIS, even after aggregating AVIRIS pixels
to the MODIS pixel size, simply did not provide a solid base for the empirical model of surface
oil volume (see Appendix A2). This can be due to the fact that there may have been a location
mismatch between AVIRIS and MODIS measurements (AVIRIS ~ 20:00 GMT while
MODIS ~ 16:40 GMT). We therefore developed and tested a histogram-matching strategy,
as outlined below. Note that histogram matching in typical image processing is a process
whereby an image is transformed so that its histogram matches that of a specified histogram.
Here, we simply use the term to force two histograms from MODIS R, ; and AVIRIS-derived oil
volume, respectively, to agree with each other. In such a method, slight mismatch in locations
of oil slicks between AVIRIS and MODIS would not result in a significant problem as total oil
volume from the two measurements should be similar. This is clearly evidenced in the MODIS
image pairs in Fig. 2, which were collected 1.5 h apart with very similar spatial distribution
patterns.

With histogram matching, the cumulative histograms from MODIS R, and from AVIRIS-
derived oil volume were forced to agree with each other. By testing different MODIS
bands, we found that the 1640-nm band from MODIS/Terra and the 1240-nm band from
MODIS/Aqua provided the most sensitive histograms relative to the AVIRIS cumulative
oil volume histograms because of the elevated reflectance of thick emulsified oil in these
spectral bands.!> Different bands were selected for MODIS/Terra and MODIS/Aqua
because of the detector errors in the MODIS/Terra 1240-nm band and MODIS/Aqua
1640-nm band. The 2130-nm bands have much lower sensitivity (signal-to-noise ratio) and
therefore were not used.*’ Figure 4 shows the cumulative histograms for MODIS R, in these
bands and AVIRIS-derived oil volume for the entire AVIRIS flight line Runl0 shown in
Fig. 1(b).

Both Figs. 4(a) and 4(b) show similar curve shapes in the cumulative histograms for the
deglinted R 1749 and Ry 1640 values. To show low oil volume more effectively, the y-axis in
the figures was plotted in log scale. As with any cumulative histograms, the monotonously
increasing patterns in both MODIS R, and AVIRIS oil volume can be used to establish
a relationship between the two. Such relationships are shown in Figs. 5(a) and 5(c) for MODIS/
Terra and MODIS/Aqua, respectively. Polynomial regressions were obtained between the
two parameters. Using such regression relationships derived for the May 17, 2010 AVIRIS
and MODIS measurements, MODIS R, data for all images were used to model oil volume
for each MODIS pixel.

We compared the oil volume modeled from MODIS R,. with the oil volume estimates from
the corresponding overlapping AVIRIS images [Figs. 5(b) and 5(d)]. We found excellent agree-
ment between the two; this was expected since the model uses a self-tuning approach to force
the two observations to agree with each other. For the same reason, Fig. 5 does not mean that
there is a definitive relationship between MODIS R, and oil volume for the individual MODIS
pixels. Instead, for a given MODIS R, value, the integrated oil volume for all MODIS pixels
below that R, value agrees with the integrated oil volume for all corresponding AVIRIS pixels in
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Fig. 5 Histogram-matching relationships between AVIRIS-derived oil volume and MODIS
(@) Rrc1e40 (terra) and (c) Ryc 1240 (aqua). The relationships are based on the histograms
shown in Figs. 4(a) and 4(b), respectively. The black lines are stepwise polynomial regressions.
These led to MODIS-derived oil volumes in (b) and (d) (y-axis), as compared with AVIRIS-derived
oil volume (x-axis) for this particular case on May 17, 2010. These regressions were applied to all
MODIS images (both terra and aqua) under similar sun glint conditions to derive oil thickness
maps. The arrow annotations in panel (a) show the average thickness per pixel that corresponds
to the oil volumes shown in the y-axis. In this study, MODIS-derived oil volume maps were
classified into one of these three bins.

order to have mass conservation. The regression results should be interpreted as multipixel
statistics rather than at individual pixel level.

In the rest of the text below, we refer to the relationship between MODIS R, under sun glint
and surface oil volume as R, #"™ — V regressions.

Consistency between MODIS observations collected under different condi-
tions. The algorithms derived from the histogram matching between AVIRIS and MODIS
should only be applied to MODIS images collected under similar sun glint conditions.
Some of the MODIS images do not contain significant sun glint [e.g., Fig. 2(b)]. An alternate
approach was required to estimate oil volume (or average thickness) under different sun glint
conditions.

Based on the same idea of deriving R, 8" — V relationships between AVIRIS and MODIS
images, we derived a relationship between MODIS R, with sun glint [Fig. 2(a)] and without sun
glint [Fig. 2(b)]. To minimize the impact of possibly different atmospheric aerosols (type and
quantity) and illumination between the scenes, again the R, data were those normalized against
the nearest oil-free water pixels for both MODIS images.

Figures 6(a) and 6(b) show the R, histograms for the MODIS images without sun glint
[Fig. 2(b)] and with sun glint [Fig. 2(a)], respectively. The relationship between their R,
after histogram matching is shown in Fig. 6(c). Such derived relationships were applied to
the R, " —V relationships, resulting in the correlation between surface oil volume and
MODIS R, under nonglint conditions (termed as R, """ — V thereafter).
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Fig. 6 Histogram match between MODIS oil pixels delineated under (a) no sun glint and (b) sun
glint conditions from aqua and terra measurements on April 29, 2010 (see Fig. 2), respectively.
Note that after the nearest-neighbor correction, most reflectance values from the oil pixels are
negative in (a), meaning that pixels with oil are darker than the surrounding water when no
sun glint is present. The 1240-nm and 1640-nm bands are chosen for MODIS/aqua and
MODIS/terra, respectively, because of bad detectors for the MODIS/aqua 1640-nm band and
MODIS/terra 1240-nm band. The regression relationship derived from the histogram match is
shown in panel (c).

Application to MODIS observations. The 19 MODIS images in Table 1 were separated
into two classes: with sun glint, where oil slicks show positive spatial contrast from the surround-
ing water [e.g., Fig. 2(a)], and without sun glint, where oil slicks show both positive and negative
contrasts [e.g., Fig. 2(b)] at visible wavelengths. For sun glint and nonsun glint cases, R, 8" — V
and R, "¢" _V regressions were used to derive the oil volume maps, respectively.
The regression relationships were applied to pixels delineated as containing oil, after appropriate
cloud masking (Fig. 3).

3.2 MODIS Oil Thickness Maps

Figure 7 shows an example of the MODIS derived oil volume distribution on May 17, 2010.
For a fixed pixel size (250 m X 250 m), the oil volume shown in Fig. 7(b) can be converted to
average thickness per pixel. Visual inspection indicates that there is a general relationship
between MODIS brightness and oil volume (i.e., oil volume increases with increasing reflec-
tance). This is a result of the R, &M — V regression. Some of the changes in MODIS brightness
are apparently due to other factors than surface oil. For example, along the tail of the oil slick to
the southeast of the blowout site, there is a very bright patch. This may be caused by current
shears due to a cyclonic eddy north of the tail and an anticyclonic eddy (i.e., the loop current)
south of the tail. Direct application of the regression relationship to the delineated patch would
result in an overestimate of the oil volume. Thus, the oil patches along the tail were manually
changed to no value (i.e., no valid observation).

Figures 8 and 9 show two other examples of such MODIS-derived oil volume maps under
similar sun glint conditions. The oil volume maps indicate substantial spatial structure of the
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Fig. 7 (a) MODIS Terra 250-m resolution RGB image on May 17, 2010 showing oil slicks (outlined
in red) from the DWH oil spill. This is the same image as in Fig. 1(b). The oil slicks outlined in red
have enhanced contrast due to both sun glint and water circulations; (b) surface oil volume map
derived from the MODIS R, data using the AVIRIS-MODIS regression relationship and some
manual cleanup of anomalies (R,.9™ — V regression; see text). This type of map is listed as “prod-
uct I in Fig. 3. The color-coded numbers represent estimated surface oil volume per MODIS 250-
m pixel (note that the MODIS pixel in the E-W direction is adjusted by cosine of latitude after map
projection, corresponding to ~223 m). 1000 L/pixel is approximately equivalent to a uniform
18 um in oil thickness, and likewise, 100 L/pixel is approximately equivalent to a 1.8 um in oil
thickness. The relatively low thickness is due to mixed pixels.

surface oil patches. For example, the western part of the oil slick in Fig. 8(c) (i.e., left half of
the slick) shows thicker patches than the eastern part of the slick. This is reasonable, since the
western side is closer to the DWH spill site. Such enhanced reflectance can even be detected by
the low-SNR meteorological GOES Imager under nonglint conditions.**

The R, "€ —V regression was applied to MODIS images, where oil slicks showed
negative contrast relative to open waters (Fig. 10). The oil volume map derived by Terra image
under sun glint conditions 1.5 h earlier, analyzed using R, 8" —V regression [Fig. 9(b)],
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Fig. 8 Same analysis as in Fig. 7, but the MODIS Aqua RGB images in (a) and (b) and oil volume
map in (c) were from April 25, 2010 (18:55 GMT). The color-coded numbers represent estimated
surface oil volume per MODIS pixel. 1000 L/pixel is approximately equivalent to 18 ym in oil
thickness, and likewise, 100 L/pixel is approximately equivalent to 1.8 um in oil thickness.
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Fig. 9 (a) MODIS Terra RGB image collected on April 29, 2010, at 16:55 GMT and (b) the cor-
responding MODIS oil volume image (i.e., “product I” in Fig. 3). The high-concentration patch
outlined by the dotted circle in (b) is apparently due to contamination by clouds. 1000 L/pixel is
approximately equivalent to 18 um in oil thickness, and likewise, 100 L/pixel is approximately
equivalent to 1.8 um in oil thickness.

shows comparable spatial patterns for most of the spilled region. To the left of the image
(southwest portion of the spill), there were some inconsistencies between the two volume
images. Figure 9(b) shows thin oil films but Fig. 10(b) shows several thick slicks. Such
inconsistencies may be due to changes over time and other possible causes for which the method
may not account.

Table 1 provides a summary of the total surface oil volume derived from the 19 MODIS
images, termed as “product I” in Fig. 3. During the month after the initial blowout, total oil
volume increased almost monotonically. After May 27, 2010, total oil volume at the surface
remained relatively stable except on June 12. Some of the physical and chemical processes
that played a role in modulating the surface oil volume were discussed by MacDonald
et al.’
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Fig. 10 (a) MODIS Aqua RGB image collected on April 29, 2010, at 18:30 GMT. (b) The corre-
sponding MODIS oil volume image (i.e., “product I” in Fig. 3). The high-concentration patch
outlined by the dotted circle in (b) is apparently due to contamination by clouds. The color-coded
numbers represent surface oil volume per MODIS pixel. 1000 L/pixel is approximately equivalent
to 18 um in oil thickness, and likewise, 100 L/pixel is approximately equivalent to 1.8 um in
oil thickness. Note that the image in (a) is the same as in Fig. 2(b).

4 Oil Classification and Probability Maps

4.1 Methods

The time series of MODIS images shows oil volume estimates that rarely exceeded 1000 L per
250 m pixel, corresponding to an average thickness of 18 ym. The maximum estimated oil vol-
ume per pixel was around 2000 L or an average thickness of 36 yum. DWH oil response and
recovery efforts focused on surface oil that was thick (>1 mm).”*® Observations from AVIRIS,
boats, and laboratory-based spectral measurements indicated that surface oil thickness indeed
reached several millimeters to >1 cm in extreme cases. '

Our upper limit of thickness from the MODIS-based estimates appears lower than is actually
observed in the field. This apparent discrepancy is mainly due to pixel size. Surface oil can be
very patchy, and only a small area within a MODIS pixel had thick oil. Although the NIR-SWIR
reflectance of thick oil may be saturated beyond a certain thickness (e.g., a few millimeters),'>
this is unlikely to happen to the entire AVIRIS 7.6-m pixels and such a saturation effect would
not impact the fact that the MODIS signal is confounded with both thick and thinner patches for
a reduced mean thickness over the area of the MODIS pixel. This effect is illustrated in Fig. 21
and in Sun et al.,'" where within a MODIS pixel, some AVIRIS pixels can have much thicker oil
than the mean oil thickness of the MODIS pixel. Indeed, based on AVIRIS measurements,
Sun et al.!' estimated that if 50% fractional pixel coverage were to be required to detect oil
with thickness greater than sheen for most oil containing pixels, a 30-m resolution sensor
would be needed.

In practice, for the same oil volume within a MODIS pixel, the impact to the marine envi-
ronment may be different between two scenarios: the pixel contains homogeneous oil films of
5 pum or heterogeneous oil films of varying thickness (e.g., from submicrons to millimeters) with
their average being 5 um. Assessment of thick oil distributions may be particularly important
for oil spill assessment, as ocean plants (e.g., pelagic Sargassum spp.) and animals (fish, birds)
may be significantly affected at scales much smaller than the MODIS pixel size.

To better understand the oil patchiness and uncertainty in average oil thickness estimated
with MODIS, two methods were used to modify the MODIS-derived oil volume maps
(Fig. 3).

The first method divided the features identified in each image into several oil thickness
classes, specifically thin, medium, and thick. The Bonn Agreement55 provides five thickness
codes to describe different thickness ranges. These were based on field observations, where
observed areas are much smaller than MODIS pixels. If these classes were to be used, there
would be no MODIS pixels in the two thickest classes. Therefore, three oil thickness classes
were defined according to MODIS oil volume histograms shown in Fig. 5(a).
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In Fig. 5(a), there are two inflection points, corresponding to oil thickness of 0.08 and 8 um,
respectively. Then, the three classes of oil thickness were chosen as: <0.08 ym (but >0, rep-
resenting oil sheen), between 0.08 and 8 um, (representing thin oil), and >8 um (representing
thick oil). The oil volume maps derived in Sec. 3 were first converted to thickness maps,
from which three classes were separated on each map.

A second method was to derive oil probability maps. Oil probability distribution analyses
allow estimates of the likelihood that oil of a given thickness will occur in a MODIS pixel.
Integration of the probabilities allows an estimate of total volume within a pixel.

Three steps are required to convert average thickness to probability values for different
thickness classes. Step 1 was to define the thickness classes. Three thickness classes
were defined following the Bonn Agreement and AVIRIS statistics. The three classes
have thickness ranges of about: >0to <1.7 (mean ~ 1 pgm), 1.7 to 20 gm (mean ~ 10 ym), and
>20 ym (mean ~ 50 ym) (Table 2). The basis for such selections can be found in
Appendix A4. Note that these thickness classes are from AVIRIS statistics instead of
MODIS statistics.

Step 2 was to define the probability functions for each MODIS thickness class (<0.08 but
>0 pm; 0.08 to 8 ym; >8 um). This is accomplished by examining AVIRIS oil thickness sta-
tistics (derived from this study) for each MODIS thickness class. For the data on May 17, 2010,
the AVIRIS pixels had a resolution of 7.6 m. Thus, for each 250-m MODIS pixel collected at the
same time, AVIRIS had over 1000 pixels of data. These data show that a MODIS R, classified
as thin oil (for example) in fact may have patches of oil at the 7.6-m scale that cover a wide
range of thicknesses. Figure 11 shows the cumulative AVIRIS statistics for each MODIS class.
Even for the thin MODIS class, there are still some AVIRIS pixels with oil thickness >50 pym.
In other words, for each MODIS class, there are fractional areas with different oil thicknesses.
These thicknesses are defined as 1, 10, 50 ym with their corresponding ranges >0 to <1.7 ym,
1.7 to 20 ym, and >20 um. In calculating statistics, AVIRIS pixels containing no oil were
included. After this was taken into account, the probability of each of the four AVIRIS thickness
classes (including O ym) within each MODIS class was calculated (Table 3). For example, for
a MODIS pixel classified to contain oil of median thickness (0.08 to 8 ym), on average 87.2% of
the pixel contains no oil, 0.0031% contained oil of 1 ym, 0.5% contained oil of 10 ym, and
12.3% contained oil of 50 um.

These data illustrate the spatial heterogeneity of the oil within a MODIS pixel. A typical
MODIS pixel covering the detected oil had patches of thick oil, and the remainder of
the area had either no oil or very thin oil (AVIRIS was not used to classify thin sheens).

Table 2 The Bonn Agreement (2012) on oil appearance and thickness classes together with
MODIS oil thickness classes and AVIRIS thickness classes defined in this study (modified
from those determined by Clark et al.)'2. These are based on statistics of MODIS and AVIRIS.
The choice of the three MODIS classes and the sensitivity of integrated oil volume on the different
threshold choices can all be found in Appendix A4. Note the different names in the thickness
classes.

Bonn Agreement This study
Thickness ~ MODIS MODIS AVIRIS AVIRIS
Code  Description/appearance (um) class thickness (um) class thickness (um)
1 Sheen 0.04t0 0.3  Sheen <0.08 Thin <1.7 um
(mean ~ 1 um)
2 Rainbow 0.3t05.0 Thin 0.08 to 8 um
3 Metallic 5.0 to 50 Thick >8 um Thick 1.7 10 20 um
(mean ~ 10 um)
4 Discontinuous 50 to 200 Thicker >20 um
True Color (mean ~ 50 um)
5 Continuous True Color >200
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Fig. 11 Probability of AVIRIS thickness (in micrometers) distributions after they are aggregated to
MODIS pixel sizes for the three MODIS classes (>0 but <0.08 ym, 0.8 to 8 um, and >8 um). All
AVIRIS data from Fig. 1(b) were used in the calculations. The aggregation included both oil and
oil-free AVIRIS pixels.

Table 3 Fractional coverage of oil with different thicknesses (first row, determined from AVIRIS
statistics and Bonn agreement) in each MODIS thickness class (first column). The AVIRIS classes
(0, 1, 10, 50 um) correspond to the following ranges (0, >0 but <1.7, 1.7 to 20, >20 um). These
statistics are based on all AVIRIS flight lines on May 17, 2010. For example, for the MODIS pixels
classified as containing oil of 0.08 to 8 um thick, 87.2% of their covered surface contain no oil, and
12.28% of their covered surface contain thick (50 xm) oil.

AVIRIS thickness class

MODIS thickness class 0 um 1 um 10 um 50 um
0 um 1.0 0 0 0

<0.08 um 0.998 9.30E-05 0.00195 0.0004
0.08 ~8 um 0.872 3.10E-05 0.00507 0.1228
>8 um 0.612 0.000136 0.13567 0.2519

Step 3 was to apply these established probability functions (Table 3) to the MODIS
classification maps to derive oil probability maps. In doing so, the study region was first
gridded to 5-km cells, and all MODIS pixels within each cell were determined to contain
all oil thickness values (including 0) with different probabilities. A MODIS pixel within the
5-km cell could belong to one of the following five classes (top row in Table 3, plus no data
coverage):

Ty => no oil => thickness t;= 0 ym

T, => thin oil => 0 ym < thickness t;<1.7 ym (mean = 1)

T, => intermediate oil => 1.7 ym < thickness t,<20 ym (mean = 20)

T3 => thick oil => 20 um < thickness t; (mean = 50)

T, => no observation (due to either no coverage, clouds, land, or sensor artifacts—unlike
in the previous method, these were not filled in based on values from nearest
neighbors).

Note that the units of T4 are percentage cover, with Y ¢, T; = 100%. The units of
ti=0to3 are pm.
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Then, the following approach was used to generate Ty, T, T,, T3, and T, for each
5-km cell.

Within each 5-km cell, there are a total of Ny = 400 MODIS 250-m pixels. Of these pixels,
we have N; pixels for MODIS class C 7 (Jj=0to04, 0: no oil; 1: thin; 2: medium; 3: thick;
4: no observation). Each of these classes will have various percentage cover of T;_,_4. Then,
the percentage of noncoverage within the 5-km cell is as follows:

P, = N,/Np x 100%. )

The percentage for each of the 7,__3 classes is as follows:

3 3
Pios = (Z T,,jzv.,.> /> Njx x 100%. 3)
j=0 j=0

where T ; is obtained from Table 3 and subscript j represents the MODIS oil class. To account
for nonlinearity during the conversion, P,_y_; is further normalized from 1 to P4, resulting
in >>* o P; = 100.

This calculation was repeated for each 5-km cell in each image, leading to oil probability
distributions for each of the 19 MODIS images.

4.2 MODIS Classifications and Qil Probability Distributions

While the complete results of both types of maps (oil classification maps and oil probability
maps) can be found in Appendix AS, Figs. 12 and 13 present two examples, one for each
type.

Figure 12 shows a MODIS map based on data collected on May 17, 2010. Different oil
classes (sheen, thin, and thick) are shown with other categories (no oil, clouds, artifacts,
and land). The general distribution is similar to that shown for continuous-scale oil volume
maps (Fig. 7) because one was derived from the other. The discrete class map offers a simpler
representation. Only a small area near the oil rig was classified as thick oil. As mentioned above,
the large area covered by MODIS pixels smears the distribution of patches within each pixel
(Fig. 21, Ref. 11).

Legend

[ INooil 5

[ Thin -
B rhick )
B Atifact ¥-

| cioud ) N
|:| Land

Fig. 12 An example of the MODIS oil thickness classification map for May 17, 2010. This is the
same map as in Fig. 7, but the oil volume was classified into different average thicknesses per
pixel as defined in Table 2. This map is listed as “product II” in Fig. 3. Sheen: <0.08 um; thin: 0.08
to 8 um; thick: >8 um. The “artifact” in the elongated tail is due to extreme sun glint, where oil
thickness estimates are subject to large uncertainties.
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Fig. 13 An example of MODIS oil probability distribution maps for May 17, 2010 (same as in
Fig. 12). These maps are listed as “product llI” in Fig. 3. The different classes are defined in
Table 2: thin: <1.7 um (mean = 1 um); thick: 1.7 to 20 um (mean = 10 um); thicker: >20 um
(mean = 50 um). For each 5-km grid cell, the sum probability for all five classes (no observation,
oil-free water, thin, thick, and thicker oil) adds up to 1.0. A value of 0.20 in a certain grid cell in
the thicker oil class means that 20% of that cell contains thicker oil. Note that because of
the large pixel size, most of the pixel is not covered by any oil (i.e., large fractional values in
the oil-free water map).

The smearing effect is illustrated in the corresponding MODIS oil probability distribution
maps of Fig. 13 for May 17, 2010. Effectively, five maps show the probability values for each of
the five classes in each gridded 5-km cell. Other than the “no coverage” class due to land, cloud
cover, and other artifacts, the “oil-free-water” class dominates most cells (typically >50%),
even within the oil footprint. In other words, over a 25 km? area, even within an oil slick area,
at least 50% of the surface was not covered by oil. This is likely an artifact derived from the
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AVIRIS-derived oil distribution maps (based on the Tetracorder system), which did not capture
oil sheens. As defined here, thick oil (~10 gm) and thicker oil (~50 um) each covered less than
10% of any given 5-km grid cell, except in the immediate vicinity of the wellhead (Fig. 13).
The percent cover for the thin class is nearly zero in all grid cells (<0.01%). This is against
the common sense that the majority of the area of oil slick is thin 0il.”® However, as noted
previously, the AVIRIS classification that used to calibrate the MODIS observations did not
include oil sheen, causing an underestimate in the MODIS-based thin oil class. Similar findings
were obtained for all 19 MODIS cases in this study. This underestimation of thin oil coverage
does not affect the other two classes (thick and thicker) that are the typical target for oil spill
response.

5 Validation

5.1 Validation Data and Methods

There are several fundamental difficulties in estimating oil thickness with remote sensing.
Specifically, (1) surface oil is very patchy (at the submeter to meter scale) (Fig. 21; Ref. 11),
causing mixed pixels in satellite imagery, (2) it is extremely difficult to measure the surface
oil thickness (or volume) in the field!” mainly because it is difficult to collect oil from
a known water area, and (3) as a result of 1 and 2, there is no field ground truth data to
help calibrate or validate remote sensing observations. Most reliable measurements of oil
thickness have been obtained in well-controlled laboratory environments. It is not clear yet
how to determine the surface oil thickness, considering waves, a moving boat, or how to
correlate it with concurrent reflectance measurements in a heterogeneous environment (see
review by Ref. 18). This is a typical problem in oil spill remote sensing research, and, to
our best knowledge, none of the published oil spill remote sensing papers has been validated
using field measured oil thickness or volume simply because such a field measurement was not
possible. Then, without a direct field validation, how much can these coarse-resolution MODIS
estimates be trusted?

There are several indirect ways to validate the MODIS-derived oil volume maps. The first is
an intuitive evaluation. In the NIR and SWIR wavelengths, increased oil volume, especially with
weathered oil, would cause increased backscattering (by,, m~!) and, to a lesser extent, increased
absorption (a, m~!). Because reflectance is roughly proportional to by, /a, increased oil volume,
when oil is emulsified, should lead to increased reflectance in the NIR and SWIR wavelengths.
This is actually the concept behind the correlation between MODIS R, and AVIRIS-derived oil
volume.

The second is a qualitative assessment of the MODIS-derived total oil volume on the surface.
With oil continuously reached the ocean surface for nearly 3 months, sequential images particu-
larly during the initial spill period should show increased surface oil volume over a gradually
larger oil footprint.

Finally, other observations provide independent evaluation of MODIS-derived maps.
These observations include satellite-based SAR and airborne photos taken during the course
of the blowout event. The details on SAR data processing can be found in Ref. 5. The aerial
photographs used to compare with the MODIS oil classification maps are briefly described
here.

Over 1600 aerial digital images were retrieved from the NOAA database of DWH
photographs, the Environmental Response Management Application (ERMA, 2015) and
Ocean Imaging Corporation’s archive. From these, 1542 photos were visually compared to
MODIS-derived classifications generated for May 9, May 17, June 10, June 26, and July
12, 2010. Each photo contained a GPS-generated latitude, longitude stamp, which was used
to geolocate the photograph in ESRI’s ArcGIS ArcMap GIS display software. After close visual
inspection of the photographs, each was digitally laid over the MODIS oil footprint for the cor-
responding date. Thus, 816 of the 1542 were selected for categorization and comparison to
the MODIS oil thickness classifications. A total of 726 photographs were not suitable for
comparison because:
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¢ they were not within the MODIS product footprint for the matching day;

¢ the photograph was taken too close to the ocean’s surface to be able to discern sufficient
spatial information on oil coverage;

¢ the photograph was taken at a highly oblique angle making the geolocation of the center
point of the image misleading in relation to the information in the photograph; or

¢ the analyst was not able to determine the oil type/thickness in the photograph.

The photographs selected were then grouped into five classes:

¢ Thick: a significant portion of the photo (~20% or more) contained thick oil;

¢ Thin: no portion contained thick oil, but a significant portion of the photo (~20% or more)
portion contained thin oil;

¢ Sheen: no portion contained thick or thin oil, but a significant portion of the photo
(~20% or more) portion contained oil sheen;

¢ Nonoil: none of the above was found from the photo.

The ArcGIS class code for the MODIS-derived oil thicknesses was then extracted from
the location of each photograph for each date. The results were tabularized into a comparison
matrix, as defined by Congalton and Green,”’ Congalton,”® and Story and Congalton.”® The
photographs were the “reference data.” These matrices provide the overall photograph-to-
MODIS class accuracy assessment as well as a representation of errors of omission and errors
of commission.

Omission errors were calculated by dividing the total number of correctly classified sample
units in a category by the total number of sample units in that category from the reference
data (the column total). This measure is also called the “producer’s accuracy,” because from
this measurement, the producer of the classification will know how well a certain area was
classified.

Commission errors were calculated by dividing the number of correctly classified sample
units for a category by the total number of sample units that were classified in that category.
This measure is the “user’s accuracy,” indicating for the user of the map the probability
that a sample unit classified on the map actually represents that category on the ground.
A Congalton matrix was generated for each of the 5 MODIS days.

5.2 Validation Results

5.2.1 Visual inspection and comparison with oil area

Each of the MODIS oil products (continuous oil volume maps, oil classification maps, and oil
volume probability maps) was visually inspected and compared with the corresponding MODIS
RGB images and SWIR R, data. In each case, high-volume pixels (equivalent to high thickness
pixels) corresponded to higher R,. values as compared with lower-volume pixels, regardless of
the presence of sun glint. This is expected, as all MODIS products were ultimately derived from
R, data.

Integration of all oil pixels in Fig. 7(b) yields a total volume of about 146 K barrels of oil on
May 17, 2010. This is within the volume range estimate from a USGS report (Ref. 60).
This volume also represents about 10% of the total estimated oil spilled between April 22 and
May 17, assuming a constant spill rate of about 60 K barrels per day.’

Much of the spilled oil has been reported to remain in subsurface waters (Ref. 7; references
therein). Some of the oil evaporated, although the exact amount is unknown. McNutt et al.?
reviewed other losses of oil. The MODIS estimates based on AVIRIS-derived oil volume
may also be an underestimate, because the Tetracorder spectral shape matching system only
mapped thick oil slicks that cause enhanced reflectance in the NIR and SWIR. Most thinner
oil slicks were not considered during the USGS analysis, because these thinner slicks lack
diagnostic spectral features in the SWIR region.

A temporal consistency check was also used to examine the validity of the results. During the
first weeks of the oil spill (April 22 to about mid-May 2010) when mitigation effort (physical
removal, burning, use of dispersant) was less intense than in subsequent weeks, surface oil
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Fig. 14 Surface oil area and volume derived from MODIS measurements on three days. The dotted
lines after April 29, 2010, represent linear extrapolation from the April 25, 2010, and April 29, 2010,
measurements. On May 17, 2010, the extrapolated oil area is lower than the MODIS estimates, but
the extrapolated oil volume is higher than the MODIS estimates, suggesting that the surface oil on
May 17, 2010 spread out over a larger area with a lower mean thickness relative to earlier dates.

volume should have increased monotonically. Our results showed that both surface area covered
with oil and oil volume on the surface increased from April 25 to May 17 (Fig. 14). This rate of
volume increase is lower than that of the area increase after April 29, suggesting that as oil spread
widely over time, oil thickness decreased.

5.2.2 Comparison with concurrent satellite-based SAR measurements

Garcia-Pineda et al.’ show that the surface oil footprints derived from nearly concurrent MODIS
and satellite-based SAR measurements collected over the GoM during the DWH blowout
are very similar. The cumulative oil footprint from the two observation methods was also
similar.>? Garcia-Pineda et al.’ showed that within the SAR-derived oil footprint, bright
features match the thick-oil features identified in MODIS imagery. SAR is only considered to
differentiate primarily highly emulsified thick oil patches within the oil footprint. Thus, some of
the thick oil detected with MODIS is not visible in the corresponding SAR imagery. The inte-
grated oil volume for MODIS-SAR data pairs showed agreement to within 50% in nearly all
cases.’

Figure 15 shows an example of MODIS and SAR oil distribution maps derived for May 4,
2010. Specifically, an Aqua image was taken at 18:45 GMT and a Cosmo-SkyMED?3 (X-Band)
image was collected at 23:57 GMT. There is a slight mismatch between the oil footprints from
the two measurements, which illustrates the distance that surface oil can travel due to advection
and wind-related motion between the two measurement times. Overall, if the SAR and MODIS
images are compared side by side, one can see that the separate oil footprint patterns agree well.
Similar results were obtained for each of the 19 MODIS images collected within hours of SAR
observations. Relatively, bright pixels in the SAR oil footprint that match thick oil slick classes in
MODIS represent further evidence that, indeed, these satellite instruments observe different oil
thickness.

5.2.3 Comparison with concurrent airborne photograph interpretations

Figure 16 provides an example of the comparison between MODIS and aerial photographs,
while Table 4 lists the summary statistics of the Congalton matrix, and several representative
photos for the different oil classes are presented in Fig. 16. The example shows general
agreement in the spatial distributions of various oil classes between MODIS and aerial
photographs.

The Congalton matrix results showed a high-degree of mismatches between the sheen and
thin classes observed with MODIS and airborne observations. However, there was high fidelity
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Fig. 15 Comparison between the MODIS-derived oil thickness map and a satellite-derived SAR oil
footprint map on May 4, 2010. The SAR image is shown as a gray-scale image in the background.
MODIS classes 3, 4, and 5 correspond to thin, thick, and thickest oil, respectively. The location of
aerial photographs collected on the same day that show evidence of oil is overlaid on the image (see
symbols in the image legend). The displacement in the spatial patterns is due to the nearly 5 h differ-
ence in the time of acquisition of the images, which allowed for advection of oil and water (see text).

in the detection of the MODIS thick oil and nonoil classes. This may be due to (1) the under-
estimate in the MODIS sheen class (i.e., Tetracorder did not map for the presence of sheen
oil from AVIRIS), (2) different definitions between MODIS and aerial photographs for the
oil classes, (3) a mismatch between the locations of the aerial photo and MODIS pixels, or
(4) poor location information associated with a photograph, which typically was shot out of
the window of an airplane without sophisticated navigation information to locate the image
center on the ground. Given all these difficulties in defining, in particular, the thin oil classes,
and inherent differences between the two observations, the overall accuracy of 46% is reason-
able. Indeed, if all oil classes were to be combined to have a binary classification (oil and nonoil),
the overall accuracy would be much higher, with a producer’s accuracy of 94.87% and user’s
accuracy of 64.35%.

Another way to interpret the accuracy assessment is through the probability distribution maps
(Fig. 13). If a MODIS thick oil class (>8 um) has only 20% of oil cover (80% nonoil) and only
5% in the “thicker” class (50 ym), then, when 100 photos were taken randomly across the
MODIS pixel, the likelihood of capturing “thicker” oil would be very small, partially explaining
the relatively low accuracy number in Fig. 16 and Table 4.

Abundant airborne photos were taken in four other MODIS days: May 17, June 10, June 26,
and July 12. The same visual inspection was conducted to evaluate each MODIS classification,
with similar results to those in Table 4, i.e., the accuracy for the sheen and thin classes was lower
than for the other classes. The overall accuracy for all these cases generally ranged between
30% and 50%.

In summary, all indirect measures suggest that MODIS can provide useful maps of the total
integrated oil volume and spatial distributions of oil thickness. Their absolute accuracy cannot be
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Fig. 16 (a) and (b) Comparison between MODIS classified oil map on May 9, 2010, and airborne
photo classification results (triangles). Each of the 193 photos was visually inspected and inter-
preted independently from the MODIS observations to contain oil of different classes (including
nonoil). The statistics for this comparison are listed in Table 4. (c)-(f) Sample photos for the four
classes (not oil, sheen, thin, and thick) are provided.

directly verified due to lack of concurrent field data. Even if there were accurate and concurrent
field measurements of slick thickness, it would still be very challenging to compare with
the large MODIS pixel. Indeed, this is one primary reason why MODIS classification maps
and probability maps were derived from the continuous oil maps, as the former would provide
oil distributions on a relative sense (thin, medium, and thick) rather than absolute values while
the latter would provide the probability of encountering oil of different thicknesses at a given
location.

6 Discussion: Uncertainties, Strengths, and Weaknesses

The empirical approach used here for estimating oil volume over synoptic scales based on optical
satellite imagery relies on a transfer function that applies results derived empirically from one
instrument (AVIRIS) to another (MODIS). Our analysis was based on AVIRIS/Tetracorder-
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Table 4 Evaluation of the MODIS oil thickness classification map on May 9, 2010, using 193
airborne photos. For each cross examination between MODIS classes and photo classes, pro-
ducer’s accuracy and user’s accuracy are calculated. If the photos were used as the “truth” (most
of them were taken under “not oil” condition), the overall accuracy of the MODIS classification is
46.11%, while the accuracy of each class varies. These results are corresponding to Fig. 16.

Reference data

Photo thick oil Photo thin oil Photo sheen Photo not oil Total
MODIS thick oil 13 32 1 1 47
MODIS thin oil 2 1 0 0 3
MODIS sheen oil 10 14 1 3 28
MODIS not oil 16 5 20 74 115
Total 4 52 22 78 193
Producer’s accuracy User's accuracy Overall accuracy
Thick oil = 31.71% Thick oil = 27.66% Total accurate = 89
Thin oil = 1.92% Thin oil = 33.33% Overall accuracy =

89/193 = 46.11%

Sheen oil = 4.55% Sheen = 3.57%
Not oil = 74/78 = 94.87% Not oil = 74/115 = 64.35%

Total photos viewed: 314

Not used: duplicate: 0

Not used: undeterminable: 120

Not used: out of MODIS foot print: 1

derived oil volume distributions on a single day (May 17, 2010). Any uncertainties associated
with such a limited analysis would be carried over to the MODIS products. In our estimation,
the MODIS-derived distributions are underestimates of the total oil found on the sea surface
during the DWH event. They may be interpreted as relative patterns even though the absolute
values were provided.

We conducted limited validations of presence of oil on the surface based on information
provided by observers on the ground and from aircraft photography. Yet, there is still no con-
current, direct measurements of oil thickness to validate the results from coarse-resolution
remote sensing. Although the technical approach may not be ideal, we used the best data avail-
able. The histogram matching approach provided results that are consistent with other datasets
and estimates derived independently from other remote sensing data.

We are not aware of any use of field-measured oil thickness in validating remote sensing
estimates in any published paper. Developing field methods for quantifying oil slicks represents
one of the immediate needs in oil spill remote sensing research. On the other hand, even in
carefully controlled laboratory conditions, oil thickness can vary by orders of magnitude
over minimal spatial scales.®’ In our study, it was clear that oil thickness across a 250-m
pixel is not uniform. AVIRIS data show patchy oil at subpixel scales (Fig. 21; Ref. 11).
These patches change the MODIS R,. and our estimates are thus approximations. Again,
the aim of this approach was to identify areas of relatively thick oil to understand their distri-
bution at the surface over synoptic scales to guide oil spill response, rather than to ascertain
the volume and subpixel distribution of oil with a high degree of uncertainty.

The three-thickness classes for MODIS were based on AVIRIS statistics (Appendix A4,
Fig. 22). More thickness classes could certainly be defined, yet they perhaps would not
yield more information since absolute oil thickness could not be validated directly.
A sensitivity analysis showed that even after the MODIS oil maps were divided into five
classes instead of three, the resulting oil probability maps are similar (Table 1).
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A significant limitation in oil volume assessment over synoptic scales such as required to
evaluate the entire GoM was spatial resolution. Finer-spatial resolution sensors such as Landsat
(30-m) did not cover the spill—in part because of its narrow swath (~180 km) and in part
because of its infrequent revisit time of 8 days with two sensors in orbit. The Sentinel-2 sensors
may provide revisit times of 5 days with two sensors flying simultaneously, each with a separate
set of viewing geometries. Until a new type of sensor with fine spatial-resolution and wide swath
is put in orbit, this problem has to be addressed through multisensor data fusion, such as done
here with two separate MODIS sensors.

During the DWH oil spill, MODIS-based surface-oil distribution maps were generated in
near real-time to share with stakeholders.”” The maps showed presence or absence of oil on
the ocean surface without information on oil volume. Empirical approaches such as the one
demonstrated here may provide additional useful information on the relative distribution patterns
of oil of different thicknesses. This is true even when AVIRIS or similar hyperspectral measure-
ments are not available to provide oil volume estimates to scale MODIS reflectance data.
In such cases, the conceptual relationship between MODIS R,. and oil volume (per MODIS
pixel; Fig. 5) may still be used to classify oil thickness for each oil-containing pixel, although
the thresholds to separate different classes need to be verified.

Eventually, it would be ideal if thickness estimates could be derived from optical models
based on radiative transfer theory, optical properties of oil and water, and field observations
of oil on the surface of aquatic environments under different conditions (wind speed and direc-
tion, sun and viewing angles, etc). Ideally, imaging spectrometer data collected over large swath
widths, at fine spatial resolution, and with frequent revisit times should be used in concert with
other remote sensing data, including SAR, to overcome many of the limitations inherent in any
one technology to quantitatively map oil spills.

7 Conclusions

Fine-resolution hyperspectral airborne measurements provide important information about
the spatial distribution of different types of oil emulsions that can be used to scale up rough
estimates of oil thickness to map oil distribution over synoptic spatial scales with coarse-
resolution satellite measurements. These observations help to develop surface oil volume dis-
tributions maps. The combination of methods helps to derive relative oil thickness classes and oil
probability maps. Although they may contain large degree of uncertainties, as no method was
available to measure oil thickness in the field to validate these estimates, these approaches
represent a step forward toward the ultimate goal of identifying areas of thick (actionable)
oil using readily available satellite data. Such remotely sensed oil distribution maps may
also help assess a spill’s potential impacts to the marine environment. These approaches
may thus be used in future spills to provide rapid assessment of thin and thicker oils on the
ocean surface in order to help response efforts in near real-time and postspill assessment retro-
spectively. The study also shows the advantage of using optical remote sensing data to estimate
not only the oil spill footprint but also the surface oil volume as long as data of sufficient spectral
and spatial resolutions are available.

Appendix A

A1 Cloud Masking for MODIS Sun Glint Imagery Over Oil Spill

Existing cloud masking methods were not designed for differentiating clouds from oil under sun
glint, and they often treat oil slicks as clouds. A new cloud masking method was developed to
address the issue.

The cloud masking uses a region-based modeled texture analysis, where image subsets are
modeled as being comprised of noise and a number of subelements each with its own texture.
A parametric, generative model then recreates the observed intensity through a probability
distribution function (PDF). The PDF is formed from a combination of functions representing
the image’s known structural information.

Journal of Applied Remote Sensing 026008-25 Apr—Jun 2018 « Vol. 12(2)



Hu et al.: Remote sensing estimation of surface oil volume during the 2010 Deepwater.. .

Fig. 17 (a) MODIS RGB image on June 26, 2010, shows oil slicks in the northern GoM; (b) stan-
dard MOD35 cloud mask falsely interprets thick oil as clouds; and (c) PDF cloud mask avoids this
problem.

Images for analysis are generated from the ratio of MODIS bands 1 and 2 (B1 = 645 nm and
B2 = 859 nm). Image preprocessing involves subsetting the image for the area of interest and
flattening to remove the large-scale gradient. Flattened images exhibit ~10% large-scale varia-
tions, whereas unflattened images vary by factors of 3 to 5. The PDF rolling window is
run through such preprocessed images, where fine-scale structure is retrieved by advancing
the window by one or two pixels.

Although a straight threshold approach could be applied to identify clouds, detailed
investigation of spill image subsets reveals significant intensity overlap between small dark
clouds and their shadows, water, and thin oil in the intensity-flattened image. The PDF
texture analysis models the PDF to partition scene elements rather than intensity thresholding,
where the model parameters are tuned for each image to obtain the best results from visual
inspection.

Figure 17 shows a comparison between the MODIS standard cloud mask (MOD35)
and the new PDF cloud mask. The MOD35 cloud mask falsely interprets thick oil as clouds,
whereas the PDF cloud mask avoids this problem. For all 19 MODIS images, the PDF
method showed much improved cloud masks. The small artifacts (false positive and false neg-
ative) from the PDF cloud masks were manually corrected. The end products were applied to all
MODIS oil products to mask cloud pixels. In calculating statistics, these pixels were treated as
no data.

A2 Why a Histogram Matching Method was Chosen

Our first attempt in correlating AVIRIS with MODIS was to extract spectral data from the
corresponding pixels along an artificial transect line, as shown in Fig. 18(a). Along this line,
several AVIRIS pixels were visually chosen to represent thick oil, thin oil, and oil-free water,
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Fig. 18 (a) MODIS RGB image on May 17, 2010, showing the surface oil slicks outlined in red.
Overlaid is one AVIRIS flight line (run 10) on the same day, with 14 points annotated, where
reflectance spectra are extracted and shown in (b). The red X marks the location of the DWH
oil spill site. The vertical rectangular boxes mark the spectral curvatures around 1.2, 1.73,
and 2.3 ym that are used by the USGS'? to determine the oil/water mixing ratio and thick oil
volume per area.

where their reflectance spectra are shown in Fig. 18(b). Compared with oil-free water pixels
whose reflectances in the NIR and SWIR are near zero, both thick and thin oil pixels showed
elevated reflectances in these spectral ranges. Only thick oil pixels showed spectral curvatures
around 1.2, 1.7, and 2.3 ym, where Clark et al.'? algorithm could be used to derive the
oil thickness and volume. This spectral continuum removed absorption depth increases with
increasing thickness of an emulsion slick.

Figure 19 shows R,. spectra of three MODIS pixels over oil-free water, thin oil, and
thick oil. For each MODIS pixel, the corresponding mean and standard deviation of
AVIRIS spectra (extracted within the footprint of the MODIS pixel) are also shown in the
figure in order to determine whether there is any relationship between MODIS and
AVIRIS reflectance. The results in Fig. 19 indicate that although the water pixels showed
the lowest reflectance for both MODIS and AVIRIS, it is difficult to generalize any rules
to relate MODIS and AVIRIS reflectances or reflectance ratios. This is because nearly all
MODIS pixels contained significant sun glint, which not only increased MODIS R,.
in all bands but also changed the R,. spectral shape. By contrast, sun glint effects were
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Fig. 19 R,; spectra from three MODIS pixels [P1, P4, P11, locations annotated in Fig. 18(a)],
with corresponding AVIRIS surface reflectance averages and their standard deviations
overlaid. One MODIS pixel (250-m resolution) corresponds to about 900 AVIRIS pixels (~7.6-m
resolution).

avoided by the AVIRIS measurements. Note that while there is little variation among adjacent
AVIRIS pixels for the visible wavelengths (in particular, <500 nm, see small standard
deviations in Fig. 19), substantial variations are found among these pixels for longer
wavelengths, as indicated by the much higher standard deviations. This is because that
thick oil slicks are typically patchy, causing large variations in reflectance among
adjacent pixels,'! for otherwise, the reflectance at long wavelengths (>500 nm) should be
persistently small with limited standard deviations due to the high water absorption in
these bands.

Figure 19 and other spectral analyses®* indicated that it is impossible to establish a stat-
istical regression between AVIRIS and MODIS reflectance due to the presence of sun glint.
Alternative approaches must be developed to relate the two observations. We then attempted
to correlate MODIS reflectance and AVIRIS-derived oil thickness. Figure 20(a) shows
MODIS R,., 555 along the W-E transect and the mean oil thickness corresponding to the
MODIS pixels. For each MODIS pixel, only AVIRIS pixels with nonzero thickness were
used to calculate the mean. There is a general correlation east of 88.7°W, but the correlation
of R, 555, west of this longitude is poor. The result became worse when all AVIRIS pixels were
used to calculate the mean oil thickness [Fig. 20(b)], where little correlation was found
between MODIS R, ss5 and AVIRIS-derived mean oil thickness. This later case applies
to potential extrapolation of the correlation of R, 555, 555 between MODIS and AVIRIS data.
Thus, pixelwise regression between the two would not lead to reliable estimates from MODIS
R,. data. This also led to the conclusion that histogram matching was perhaps the only feasible
option.

A3 Heterogeneity of Oil Patches

Even though AVIRIS pixels (7.6-m resolution) show oil slicks thicker than 60 ym, after
averaging over a MODIS pixel (250-m resolution), the mean thickness is much reduced.
This phenomenon can be viewed from the high standard deviations along the AVIRIS transect
line in Fig. 20 and is further illustrated in Fig. 21 below. Oil on the sea surface is typically
very patchy, and high-resolution thick-oil pixels will then be smeared by more numerous
thinner-oil pixels in lower-spatial resolution images (I MODIS 250-m pixel corresponds
to 900 AVIRIS pixels). The smearing effect can be clearly visualized in Fig. 21, where
most of AVIRIS pixels contain thin oil. Although the smearing effect is linear in oil
volume, it is nonlinear between reflectance and oil volume, and this is one reason why
a histogram-matching method was used in this study to estimate oil volume from MODIS
measurements.
More details about the oil slick heterogeneity can be found in Sun et al.!!
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Fig. 20 MODIS reflectance (R,.) at 555 nm and AVIRIS-derived oil thickness along the W-E
AVIRIS flight line (run 10) on May 17, 2010 [yellow line in Fig. 18(a)]. For each MODIS pixel
along this line, the corresponding AVIRIS pixels were used to calculate the mean and standard
deviation of oil thickness (in um). (a) Only AVIRIS pixels with thickness >0 were used. (b) All
noncloud AVIRIS pixels were used. Note that a 250-m MODIS pixel represents the area of
over 1000 AVIRIS pixels. When only a small portion of AVIRIS pixels shows thickness >0,
the trends in panel (a) tend to be smeared in panel (b) due to the mean calculations.

Fig. 21 (a) Oil slicks identified from the AVIRIS flight line (top) on May 17, 2010. They show an oil
thickness range of 0 to >100 uzm. (b) The corresponding MODIS pixels show much lower range as
a result of pixel averaging.
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Fig. 22 Estimates of the three-class oil thickness values from AVIRIS statistics. The x-axis shows
the AVIRIS-derived oil thickness for all oiled pixels shown in Fig. 1(b). The y-axis shows the
cumulative frequency of these pixels.

A4 Define Oil Thickness Classes Based on BONN Agreement and
AVIRIS Statistics

In nature, oil thickness distribution tends to be log normal: most of the oiled pixels have thin oil
and fewer pixels contain thicker 0il.® Then, in converting the ranges in the BONN agreement
into mean values, it makes more sense to use geometric mean rather than arithmetic mean. Also,
the USGS Tetracorder shape-matching system was used to detect thick oil (emulsions) and was
not used to detect oil sheens, as defined in the BONN table. The Tetracorder system, however,
calculated the subpixel fractional oil coverage for an “oiled” pixel, resulting in thinner oil cal-
culations when the pixel was considered as a whole. Thus, the mean value corresponding to the
range Rainbow (0.30 to 5 pm) is sqrt(0.30 X 5) = 1.2 ym. If half of the sheen class (>0.15 ym)
can be observed by AVIRIS, the mean value is sqrt(0.15 X 5) = 0.87 pum. Thus, the mean value
representing the thin class after taking into account of the Bonn agreement and AVIRIS capacity
was taken as 1 um. This choice can also be seen in the cumulative frequency curve in Fig. 22,
where the lower inflection point is about 0.7 um.

The next class from the Bonn agreement (Metallic, 5.0 to 50 pm) corresponds to sqrt(5 x 50) =
15.8 um. The next class (transitional dark, 50 to 200) corresponds to sqrt(50 x 200) = 100.
Then, if the medium and thick classes were to be defined from the BONN agreement, the
mean values representing these classes would be 16 and 100 um, respectively. However,
based on AVIRIS observations (8-m resolution), these numbers were adjusted. Figure 22
shows the cumulative frequency distribution of AVIRIS-derived oil thickness for all oiled pixels
shown in Fig. 2(b). The 90% line corresponds to about 40 ym. This agrees well with the report
by Hollinger and Mennella®® that 90% of the oil was in 10% of the slick area. As a compromise
between this value and the mean value for the BONN agreement (100 ym), the mean thickness
for the thick class was then chosen to be 50 ym.

Taking 40 ym as the top thickness of the intermediate class, the mean thickness of the
intermediate class is sqrt(5 X 40) =~ 14 ym. Rounding to the nearest 10 would yield a mean
thickness of 10 ym.

When applying these three mean values (1, 10, 50 ym) to AVIRIS data, it was found that the
thickness ranges corresponding to these mean values are (>0 but <1.7 pgm), (>1.7 but <20 ym),
and (>20 um), respectively. These ranges were used to derive oil probability maps from
the MODIS-derive oil thickness classification maps.

A5 MODIS-Derived Surface Oil Maps

For each of the 19 MODIS images, three types of oil distributions maps were derived in this
study and provided below for reference (Figs. 23—41). They are: (1) continuous oil volume;
(2) oil classifications; and (3) oil probabilities.
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Fig. 23 April 25, 2010, 18:55 GMT. Top left: MODIS RGB image; top right: surface oil volume
(liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes (sheen,
thin, and thick) (“product II” in Fig. 3); bottom right: surface oil probability (e.g., 0.10 represents
that 10% of the surface is covered by the corresponding class) (“product llI” in Fig. 3).
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Fig. 24 April 29, 2010, 16:55 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product II” in Fig. 3); bottom right: surface oil probability (e.g., 0.10 rep-
resents that 10% of the surface is covered by the corresponding class) (“product III” in Fig. 3).
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Fig. 25 April 29, 2010, 18:30 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product II” in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product III” in Fig. 3).

Fig. 26 May 04, 2010, 18:45 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I’ in Fig. 3).
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Fig. 27 September 05, 2010, 19:05 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“Product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 28 May 10, 2010, 16:35 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 29 May 11, 2010, 18:55 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 30 May 17, 2010, 16:40 GMT. Top left: MODIS RGB image; top right: surface oil volume
(liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes (sheen,
thin, and thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10 represents
that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 31 May 20, 2010, 18:45 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 32 May 23, 2010, 19:15 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 33 May 24, 2010, 16:45 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I’ in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).

Fig. 34 April 27, 2010, 18:55 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 35 June 10, 2010, 19:05 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I’ in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 36 June 12, 2010, 18:50 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 37 June 18, 2010, 16:40 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I’ in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 38 June 26, 2010, 19:05 GMT. Top left: MODIS RGB image; top right: surface oil
volume (liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes
(sheen, thin, and thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10
represents that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).

Journal of Applied Remote Sensing 026008-38 Apr—Jun 2018 « Vol. 12(2)



Hu et al.: Remote sensing estimation of surface oil volume during the 2010 Deepwater. . .

Fig. 39 July 12, 2010, 19:05 GMT. Top left: MODIS RGB image; top right: surface oil volume
(liters per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes (sheen,
thin, and thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10 represents
that 10% of the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 40 July 14,2010, 18:55 GMT. Top left: MODIS RGB image; top right: surface oil volume (liters
per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes (sheen, thin, and
thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10 represents that 10% of
the surface is covered by the corresponding class) (“product I” in Fig. 3).
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Fig. 41 July 21,2010, 19:00 GMT. Top left: MODIS RGB image; top right: surface oil volume (liters
per MODIS 250-m pixel) (“product I” in Fig. 3); bottom left: surface oil classes (sheen, thin, and
thick) (“product I” in Fig. 3); bottom right: surface oil probability (e.g., 0.10 represents that 10% of
the surface is covered by the corresponding class) (“product I” in Fig. 3).
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