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Abstract. This paper investigates terahertz (THz) imaging and classification of freshly excised murine xenograft
breast cancer tumors. These tumors are grown via injection of E0771 breast adenocarcinoma cells into the flank
of mice maintained on high-fat diet. Within 1 h of excision, the tumor and adjacent tissues are imaged using a
pulsed THz system in the reflection mode. The THz images are classified using a statistical Bayesian mixture
model with unsupervised and supervised approaches. Correlation with digitized pathology images is conducted
using classification images assigned by a modal class decision rule. The corresponding receiver operating char-
acteristic curves are obtained based on the classification results. A total of 13 tumor samples obtained from 9
tumors are investigated. The results show good correlation of THz images with pathology results in all samples of
cancer and fat tissues. For tumor samples of cancer, fat, and muscle tissues, THz images show reasonable
correlation with pathology where the primary challenge lies in the overlapping dielectric properties of cancer
and muscle tissues. The use of a supervised regression approach shows improvement in the classification
images although not consistently in all tissue regions. Advancing THz imaging of breast tumors from mice
and the development of accurate statistical models will ultimately progress the technique for the assessment
of human breast tumor margins. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.2.026004]
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1 Introduction
Terahertz (THz) imaging technology has been a growing area of
interest for biomedical applications.1 For example, pulsed THz
systems have been used to conduct imaging of liver cirrhosis,2

osseous tissue damage,3 and differentiation of cancerous tissues
of the brain,4 stomach,5 colon,6 and breast,7–10 among others.
However, imaging of breast and other cancers has been mostly
limited to formalin-fixed, paraffin-embedded (FFPE) tissue to
date, with only a few studies working with freshly excised tissue
due to the challenges of obtaining fresh tissue outside of a sur-
gical setting.4,10–12 One alternative to fresh human tissue, as used
in this work, is tumors from mice. Mice have notably been used
to generate xenograft brain tumors for THz imaging of fresh and
FFPE tissue using either 9L/lacZ glioma cells4 or 6C glioma
cells.13 They have also been used to obtain FFPE xenograft
liver tumors from H22 liver cancer cells for THz imaging14

and breast cancer tumors grown from MDA MB 231 cells
imaged subcutaneously in vivo and fresh ex vivo.15 This work
makes use of E0771 mouse-derived breast adenocarcinoma to
generate xenograft tumors for excision and THz imaging.
Additionally, a high-fat diet is used to provide a sufficient
fatty background for xenograft tumors to more closely resemble
human excised tissue.16

While a significant amount of THz imaging has been able to
qualitatively compare produced images of tissue to pathology
sections,8,9 the quantification of THz image accuracy has

been limited so far. This process generally requires some auto-
matic classification or thresholding of THz image data and digi-
tization of pathology information for comparison. Digitization
of pathology in this work is obtained using a morphing algo-
rithm, which enables a pixel-by-pixel comparison between
the THz images and digitized pathology results.7,17 Of classifi-
cation methods used for THz imaging of fresh tissue, the use of
support vector machines (SVM) and principal component analy-
sis (PCA) reported up to 92% accuracy for breast cancer when
combined.18 The techniques used separately showed a 96% sen-
sitivity and 87% specificity for SVM and 92% sensitivity and
87% specificity for PCA of normal versus dysplastic tissue
in colon cancer imaging.19 SVM also attained a 72% discrimi-
nation in 1.89-THz continuous wave imaging of breast cancer.7

In applications not handling fresh tissue, SVM was used for
FFPE tissue imaging and spectroscopy.5,20,21 Only a few
other methods have been used for fresh tissue imaging, such
as PCA for murine brain glioma.4 However, several classifica-
tion methods have been applied to FFPE tissue applications and/
or spectroscopy of tissues, including wavelet transformation for
osteosarcoma,22 orthogonal signal correction and fuzzy rule-
bending expert system for cervical cancer,23 multispectral clas-
sification of FFPE basal cell carcinoma,24 and PCA for poten-
tially malignant skin nevi25 and FFPE liver cancer.26,27

This work investigates a Bayesian mixture model utilizing
a Markov chain Monte Carlo (MCMC) scheme for THz image
classification of both fresh and FFPE murine breast tumors.28
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This work is different from the authors’ previous work where
they performed qualitative THz imaging and characterization
of FFPE breast cancer tissue8,9 as well as THz imaging and
image processing of three-dimensional FFPE breast cancer tis-
sue and characterization of carbon nanoparticles for THz con-
trast enhancement.29,30 Preliminary results using the methods in
this work on a frozen tissue sample have been published in
conference proceedings.31,32 To the authors’ knowledge, this
is the first time the Bayesian mixture model has been applied
to THz imaging applications, and it is also the first time that
the E0771 breast adenocarcinoma cells have been used in
THz imaging.

This work is organized as follows: methodology including
mice tumor sample preparation, image acquisition, and the stat-
istical model in Sec. 2; the results of THz image correlation with
pathology in Sec. 3; and discussion and concluding remarks
in Sec. 4.

2 Methodology

2.1 Terahertz Imaging Setup

This work makes use of the TPS Spectra 3000 THz pulsed im-
aging and spectroscopy system (TeraView, Ltd., United
Kingdom) at the University of Arkansas. A diagram of the sys-
tem can be seen in Fig. 1. The THz emitter is a biased bowtie
antenna on a GaAs substrate excited by a femtosecond Ti:sap-
phire laser pulse to generate the THz signal. The signal is then
directed using mirrors to the sample as shown in Fig. 1(a). For
this work, two imaging setups are observed. For FFPE samples,
the tissue block surface is imaged directly as shown in Fig. 1(a).
The setup in Fig. 1(b) is used in fresh tissue samples, where a
polystyrene plate is placed between the tissue and the system to

provide a consistent imaging plane and to prevent fluid leakage
into the system optics. A second polystyrene plate is placed on
top of the tissue to provide light pressure to keep the tissue inter-
face flat with the imaging window. The incident THz time-
domain signal is shown in Fig. 1(c), and the Fourier transform
of the signal is shown in Fig. 1(d), demonstrating a frequency
range from 0.1 to 4 THz. To generate the THz image, the stage
holding the sample is scanned in steps (smallest step is 50 μm
with 200 μm used in all results in this work). The reflected THz
pulse is measured at each pixel. For FFPE samples, the THz
image is obtained from the peak value of the reflected signal
normalized against the incident signal peak obtained using a
gold mirror. For fresh tissue samples, better image clarity
was observed by taking the spectral power across a selected
range, f1 to f2, as

11

EQ-TARGET;temp:intralink-;e001;326;587spectral power ¼
Zf2

f1

jEsampðfTHzÞj2∕jErefðfTHzÞj2dfTHz;

(1)

where Esamp is the magnitude of the reflected sample signal fol-
lowing Fourier transform, Eref is a reference signal from the
polystyrene plate interface with air at the same plane as the
fresh tissue (to keep the signal focus the same), and fTHz is
the frequency in THz. This calculation is only used for fresh
tissue because the FFPE tissue is low-absorption and, therefore,
subject to multiple reflections,29 which can cause frequency-
domain oscillations.

2.2 Mice Tumor Sample Preparation

E0771 murine breast adenocarcinoma cells were grown in
RPMI 1640 media supplemented with 10% fetal bovine
serum, 1% L-glutamine, and 1% penicillin–streptomycin.
These cells were kept in a humidified incubator (5% CO2

and 37°C) and cultured when the cells reached 75% to 90% con-
fluence. This culturing involved passaging the cells by collect-
ing and redistributing them into new Petri dishes to prevent
overcrowding and cell death. E0771 cells in this work were
injected within the first 10 passages to prevent any deterioration
in cell viability. For example, one mouse could be injected with
cells after three passages, whereas another could be injected
after nine passages, depending on cell availability when each
mouse reached its target weight. A group of 10 C57BL/6J
mice were maintained on a high-fat diet (D12492 from
Research Diets, Inc.) until they reached a target weight of
35 g.16 The mice were then injected in the flank with a subcuta-
neous bolus (3 million cells suspended in serum- and media-free
saline) of E0771 murine breast cancer cells to grow tumor xen-
ografts. Once tumors reached a diameter of 1 cm, tumors and
adjacent fat were excised from the mice under anesthesia for
THz imaging.

Excised samples were transferred in phosphate-buffered
saline for transfer from the excision site to the THz system
and imaged within an hour of excision. Tumors were bisected
to have a cross-section with both cancer and fat at a flat surface
for imaging. Following THz imaging, the samples were placed
in 10% buffered formalin and shipped to the Oklahoma Disease
Diagnostic Laboratory for histopathology assessment.

Of the 10 injected mice, 9 grew sufficient tumors for this
study while 1 mouse did not grow any tumors even after

Fig 1. Diagram of THz imaging system in reflection mode (a) for
FFPE tissue in paraffin block or (b) for fresh tissue between polysty-
rene plates. (c) Incident time-domain signal and (d) incident spectrum
following Fourier transform.
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multiple injections. For the first four tumors, only one half of the
bisected tumor was imaged as a fresh sample, but as handling
improved, the latter five tumors had both bisected halves
imaged, designated as sections A and B in the results presented
in Sec. 3. Some bisections were discarded, for example, the sam-
ple designated as 6Awas found to have an excessive amount of
deterioration in the pathology assessment and was, therefore,
not investigated further. This leaves a total of 13 samples
used in this study. All animals received care in compliance
with the guidelines outlined in the Guide for the Care and
Use of Laboratory Animals. The procedures were approved
by the University of Arkansas Institutional Animal Care and
Use Committee.

2.3 Correlation Process of THz and Pathology
Images

The goal of this work is to quantitatively assess the accuracy of
THz images with respect to the pathology results. A pixel-by-
pixel comparison is proposed for the generation of receiver oper-
ating characteristic (ROC) curves.7 Since a pathology photo-
graph has inherently higher resolution than the THz imaging,
two processes are implemented to compare the two images.
First, a pathology morphing algorithm is used to digitize the
histopathology slides and generate a pathology classification
at the same resolution and orientation as the THz image,
known as the morphed pathology mask. Second, a statistical
model is implemented on the THz image to generate a proba-
bility-based classification of the different tissue regions in the
sample. These two processes are then combined to obtain
pixel-by-pixel correlation. The details of these schemes are
given in the following sections.

2.3.1 Pathology morphing and pathology mask generation

To make pixel-by-pixel comparison possible, the image morph-
ing in this work reshapes a pathology image according to the
external contour of the THz image to match their external
shapes.17 Although this technique is often used to create a
sequence of intermediate images between the source and the tar-
get, in this case, it is used only to match the pathology to the
external contour of the THz image. The morphing algorithm is
performed in MATLAB® using the following five steps, which
are demonstrated in Fig. 2: (i) masking: a THz image mask
[Fig. 2(b)] is established using the external contour of the origi-
nal THz image [Fig. 2(a)]. The algorithm uses only the external
contour so that the morphed pathology is not affected by fea-
tures in the THz image. (ii) Classification: low-power micro-
scope images of the pathology slide are stitched using a
panorama editor, and the stitched image is converted into the
hue, saturation, and value color model [Fig. 2(c)]. Fat tissue
is identified by differences in saturation while fibrous, muscle,
and cancer regions are identified by different hue thresholds
scaled to the brightness and contrast of the original pathology
image. Each identified region is then assigned a value for the
pathology results [Fig. 2(d)]. (iii) Rotation: to account for
differences in orientation between the THz image and pathol-
ogy, the pathology mask is temporarily assigned values of 0
(outside) and 1 (inside) and is rotated in 1-deg iterations. For
each rotation, the edges of the pathology and the THz masks
are cropped, and the cropped pathology resolution is tempo-
rarily reduced to that of the THz mask. The cross correlation
between the two images is performed using the sum–product

operation,33 and the original pathology mask is rotated to
the angle with the highest cross correlation [Fig. 2(e)].
(iv) Resizing: the pathology mask is downsampled to match
the THz mask resolution. (v) Reshaping: a reshaping operation
is performed on each row or column of the pathology mask
using cubic spline interpolation for stretching or downsampling
for shrinking until it matches the dimensions of THz mask
[Fig. 2(f)].34

2.3.2 Statistical Bayesian mixture model

A statistical Bayesian mixture model is used to classify the THz
scan data in a way that it can be compared to pathology. This
method produces a vector of probabilities that each pixel in the
THz image belongs to a region of tissue. This method provides a
twofold advantage over simple thresholding techniques: (i) the
pixels that would be borderline between two different tissue
regions can be represented by probability between those two
regions and (ii) a decision rule can be applied to classify
each pixel into individual regions. This work uses a modal
class decision rule simply based on which region has the largest
probability for each pixel, but additional decision rules can be
applied without the need to modify the probability model. This
work explores both unsupervised (e.g., Gaussian and t-distribu-
tion) and supervised (e.g., regression model) approaches.

The unsupervised approach considers the pixel-wise summa-
rized intensities of the THz image as random variables that are
independent but not identically distributed. Pixels from the same
tissue region are assumed to follow the same probability distri-
bution while pixels of different regions may have different prob-
ability distributions. Hence, the probability distribution for any
pixel in the image can be thought of as a mixture model, a

Fig 2. Pathology morphing process for mouse tumor 3: (a) THz reflec-
tion image of fresh tissue, (b) resulting THz image mask, (c) the low-
power pathology image, (d) pathology mask, (e) rotated pathology
mask, and (f) final morphed pathologymask after resizing and reshap-
ing with respect to the image mask in (b).
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weighted sum of parametric probability distributions or mixture
components. This work utilizes a Bayesian framework for
implementing mixture models. An MCMC scheme is used to
generate a large number of samples from the posterior joint dis-
tribution of mixture parameters and compute empirical summa-
ries for these parameters.28 To carry out the MCMC, the data
augmentation technique in Ref. 35 is used. For a THz image
of n pixels with xi denoting the intensity of pixel i for
i ¼ 1; 2; : : : ; n, a hierarchal structure for mixture distribution
for xi is proposed
EQ-TARGET;temp:intralink-;e002;63;642

½xijθ; zi�∼indfðθziÞ; zi ∼Multðq1; q2; : : : ; qkÞ;

πðθÞ ¼
Yk
j¼1

πðθjÞ; πðq1∶kÞ ¼ Dirðα1∶kÞ; (2)

where zi is a latent variable corresponding to pixel i that would
indicate the tissue region of the pixel. If the image has k distinct
tissue regions, zi ∈ f1; 2; : : : ; kg. The marginal model for x
integrating out the z is a k-component mixture model with mix-
ture weights given by q1∶k. Mult and Dir are the abbreviations
for multinomial and Dirichlet probability distributions, respec-
tively. θj, the parameters for the probability distribution (mean,
standard deviation, etc.) for pixels from region j, has a prior
distribution πðθjÞ for j ¼ 1; 2; : : : ; k. α1∶k denotes the parame-
ters in the Dirichlet prior for q1∶k. One can produce different
types of mixture model by altering the choice of the family
of distributions for f and the associated set of parameters θ.
The two specifications of f that used in this work are described
below. Our first proposal is a Gaussian mixture model (normal
distribution):

EQ-TARGET;temp:intralink-;e003;63;406½xijzi ¼ j� ¼ N ðμj; σ2jÞ; μj ∼N ðμ0j; c0jÞ; σ2j ∼
1

σ2j
;

(3)

where μj and σj are the location and scale parameters of the
normal-distribution Gaussian function N for component j.
μ0j and c0j are the hyperparameters and assumed to be
known. In absence of any reliable prior information, one can
arbitrarily choose the c0j to be large to diffuse the prior prob-
ability. The prior choice for σ2j is known as the noninformative
prior and is improper as well. Our second proposal is a t-mixture
model (t-distribution)

EQ-TARGET;temp:intralink-;e004;63;259½xijzi ¼ j� ¼ tdjðμj; σ2jÞ; μj ∼N ðμ0j; c0jÞ; σ2j ∼
1

σ2j
;

(4)

where dj ∈ N, the degrees of freedom for the j’th component,
characterizes the heaviness of the tail. A small value for dj will
produce a heavy tailed t-density curve whereas higher values of
dj will make the tails lighter and will eventually approach
Gaussian tails. Hence, instead of using fixed dj values, the
model can be more flexible by learning the possible values
of dj from the data. However, employing the Gibbs sampling
technique directly on a t-mixture density is difficult, so the
t-density is instead viewed as a scale mixture of Gaussian
density.36 Here, the Gaussian and t-mixture models from
Eqs. (3) and (4) are employed on each sample. Additionally,
skewed mixture models were also investigated as in Ref. 37,

but the implementation of these models is more complex,
and no case was found where they outperform the nonskewed
models.

Following each iteration of the model, posterior updates of
μj, σ2j , q1∶k, and zi (and dj for t-mixture) were applied prior to
the next iteration. Post-MCMC, posterior draws were collected
for each of z1; z2; : : : ; zn. The probability vectors pt represent-
ing the classification uncertainty are empirically calculated as

EQ-TARGET;temp:intralink-;e005;326;462ptðjÞ ¼
#zi ¼ j

#Iterations
; i ¼ 1; 2; : : : ; n and j ¼ 1; 2; : : : ; k:

(5)

For this work, the number of iterations was set at 20,000,
and only the latter 10,000 were considered for calculating the
probability vectors to let the model converge. One important
point to note is that the mixture model for the data as mentioned
in Eq. (2) stays the same for any permutation of fθ1; θ2; : : : ; θkg,
i.e., there is no natural ordering between mixture components.
Thus, they must be labeled according to some criterion.38 Here,
the mean intensity of the included points in each component is
used to number them.

Three assumptions are required for this approach to work:
(i) the value of k, the number of regions present in a tumor,
is assumed prior to running the MCMC algorithm, (ii) the order-
ing of different regions in terms of increasing intensity values is
also assumed, and (iii) each component has a unimodal distri-
bution. However, a multimodal distribution for a region will
work as well if the number of modes is known.

For cases where the assumptions for the classification model
may not be met, a supervised stochastic learning model is inves-
tigated, which builds the model utilizing one or more training
THz images and their corresponding pathologies.39 For any
pixel, the classification from pathology is considered a categori-
cal response corresponding to the pixel intensity. As there is
prior knowledge about the ordering of different regions based
on pixel intensities, the problem is treated as an ordinal regres-
sion by numbering the categories in ascending or descending
order. In a Bayesian framework, the data augmentation approach
of Ref. 39 is used.

The correlation schemes discussed above are summarized in
the flowchart of Fig. 3. The morphed pathology is used as
the reference point for the statistical model in two ways. The
first method provides a visual comparison by taking the

Fig 3. Correlation process flowchart for comparing THz images to
pathology.
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classification image following the decision rule applied to the
probability maps of the model. The second method plots an
ROC curve of the true and false positive ratios for different
threshold values assigned to the probability maps. For some

probability threshold of a given map (e.g., cancer or fat), a num-
ber of pixels will be assigned to the region in question. For
example, the true positive ratio of the cancer region indicates
the ratio between the pixels correctly assigned as cancer and

Table 1 Selected mice samples.

Mouse
No. 2 4 7A 7B 8A 8B 9A

Details Two regions:
cancer and fat

Two regions:
cancer and fat

Two regions:
cancer and fat

Two regions:
cancer and fat

Two regions:
cancer and fat

Three regions: cancer,
muscle, and fat

Three regions: cancer,
muscle, and fat

Fig 4. Correlation results for tumor samples 2, 4, and 7A. For tumor sample 2, images (b–d) for freshly
excised tumor tissue and images (f–h) for FFPE tissue: (a) pathology image, (b) morphed pathology
mask, (c) THz image, and (d) t -distribution model classification; (e) pathology image [same as in
(a)], (f) morphed pathology mask, (g) THz image, and (h) t -distribution model classification; and
(i) the ROC curves. For tumor sample 4, images (k–m) for fresh tissue and images (o–q) for FFPE tissue:
(j) pathology image, (k) morphed pathology mask, (l) THz image, and (m) t -distribution model classifi-
cation; (n) pathology image, (o) morphed pathology mask, (p) THz image, and (q) t -distribution model
classification; and (r) the ROC curves. For tumor sample 7A, images (t–v) for fresh tissue and images (w–
y) for FFPE tissue: (s) pathology image, (t) morphed pathologymask, (u) THz image, and (v) t -distribution
model classification; (w) morphed pathology mask, (x) THz image, and (y) t -distribution model classi-
fication; and (z) the ROC curves.
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the total number of pixels actually belonging to cancer in the
morphed pathology. As another example, the false positive
ratio of fat is the ratio between the pixels incorrectly assigned
as fat and the total number of nonfat pixels in the pathology. A
statistically effective technique should achieve a relatively high
true positive ratio while maintaining a low false positive ratio.

3 Experimental Results

3.1 Classification of Samples with Two Tissue
Regions

In this work, 13 samples obtained from 9 murine xenograft
breast cancer tumors are handled. Seven mice samples are
selected here to compare the THz imaging, morphed pathology,
and statistical model results, as summarized in Table 1.

The images of fresh tissue samples are acquired as well as the
images of the FFPE samples of the same tissues following histo-
pathology. The results from three samples (samples 2, 4, and
7A) are shown in Fig. 4. The results of the fresh and FFPE tis-
sues are presented for mouse tumor 2 in Figs. 4(a)–4(i), for
mouse tumor 4 in Figs. 4(j)–4(r), and for mouse tumor 7A in
Figs. 4(s)–4(z). The first row of each tumor sample corresponds
to the fresh tissue, where Fig. 4(a) shows the pathology for
mouse tumor 2 (rotated to the fresh tissue orientation) with
regions of fat and cancer indicated. The morphed pathology
mask in Fig. 4(b) shows the digitized assignment of the two
regions with red color designating cancer and blue color desig-
nating fat. The THz reflected spectral power image calculated
using Eq. (1) with f1 ¼ 0.5 THz and f2 ¼ 1 THz in all results
is shown in Fig. 4(c). Here, it can be seen that the cancer region
shows a distinctly high reflection compared to the fat region.
The result of the statistical model is shown in Fig. 4(d) for
the t-distribution and is observed to correlate well to both the
THz and the pathology images. The same process is shown
for the FFPE tissue with the morphed pathology in Fig. 4(f),
THz time-domain peak image in Fig. 4(g), and the model-
based classification in Fig. 4(h). Here, the THz image can be
seen to closely agree with the pathology, which is supported
by the similarity between the morphed pathology and statistical
model. The ROC curves for both fresh and FFPE tissue cases are
given in Fig. 4(i). Here, it can be seen that the detection of
cancer and fat regions is very good for both cases of tumor sam-
ple 2, with a greater area under the ROC curve indicating better
correlation.

Similarly, good indication of the THz imaging can be seen
for tumor sample 4. Figures 4(k)–4(m) show the results for the
fresh tissue imaging. Here, it should be noted that the pathology
in Fig. 4(j) and mask in Fig. 4(k) reveal two primary regions of
cancer: a larger area with cell density similar to other tumor
cancer regions in this work and a smaller area [appearing as
a circle in Fig. 4(j)] with very dense cancer cells undergoing
rapid growth (based on pathology assessment). This second
cancer region is not seen in the fresh tissue image of Fig. 4(l)
primarily due to the histopathology process that slices into the
tissue 100 μm or more to get a good cross section of the tissue.
This difference between the imaging surface and the slice taken
for pathology can result in different features being visible
between fresh tissue and pathology. The FFPE tissue images
in Figs. 4(n)–4(q) show this second area of cancer clearly,
with particularly high reflection due to the high density of
the cancer cells. It should be noted that the pathology slice is
taken from the same surface at which the FFPE tissue scan is

performed. The ROC curves in Fig. 4(r) show good detection
from the THz imaging of the FFPE tissue, with slightly less
detection in the fresh tissue due to the difference in imaging sur-
face discussed above.

For tumor sample 7A, both fresh and FFPE tissues had sim-
ilar orientation during imaging, so a single pathology image in
Fig. 4(s) shows the central cancer tissue with fat on each side. In
this case, the morphed pathology in Fig. 4(t) designates much
larger areas of fat than is seen in the THz image of the fresh
tissue in Fig. 4(u) and subsequent classification in Fig. 4(v).
For this sample, there was excess fluid pooled under the tissue
when it was freshly excised. Additionally, the tumor had grown
large enough to undergo some necrosis in the center, leading to
the loose cellular tissue and blood being spread across the tissue
surface when bisecting the tumor. As a result, a higher reflection
from this liquid was spread over the areas that would normally
be fat. On the other hand, the images from the FFPE tissue in
Fig. 4(x) and classification in Fig. 4(y) show much better agree-
ment with the pathology mask in Fig. 4(w), because this fluid
was removed in the process. Figure 4(x) of THz image also
shows the varying reflections in the cancer region, with more
dense cancer tissue reflecting more, agreeing with the pathology
in Fig. 4(s). Though due to some necrosis, captured in the THz
image, the correlation with morphed pathology is not as consis-
tent as in tumors 2 and 4. Figure 4(z) shows that while the clas-
sification of the FFPE tissue is accurate, the fresh tissue poses a
challenge due to the excess fluid. Note that THz images show
clear visual differentiation among tissuse regions especially in
the FFPE cases, in agreement with previous work.9,29–30.

Another challenge is that some tissue samples showed more
significant shape distortion between THz images of fresh tissue
and pathology fixation. Examples of this distortion are shown in
Fig. 5 for tumor sample 7B [Figs. 5(a)–5(h)] and tumor sample
8A [Figs. 5(i)–5(p)]. For sample 7B, the tissue not only has
some distortion due to the histopathology process but is also
seen to have several gaps as detailed in Fig. 5(a). These gaps
primarily arise due to the necrosis on the interior of larger
tumors that fill with fluid during the fresh tissue imaging and
paraffin for the FFPE tissue. These gaps are considered a sep-
arate region during pathology morphing to maintain their size
and shape but considered background for the sake of correlation
such that the points are disregarded from comparison. The
morphed pathology for the fresh tissue outline in Fig. 5(b)
shows these gaps clearly in the cancer, with some small regions
of fat in the lower corners. These gaps are also imposed on the
model results in each case to exclude those points from compari-
son. Shape distortion between the fresh tissue and pathology can
be seen in the THz image and model classification in Figs. 5(c)
and 5(d), where the lower reflection regions in the corners of the
tissue appear approximately the same size as the fat regions in
the pathology but slightly shifted. This results in some challenge
for lining up the pathology with the fresh tissue images. In con-
trast, for FFPE tissue, the THz image in Fig. 5(f) shows very
good agreement with the morphed pathology in Fig. 5(e) and
the model classification in Fig. 5(g) as well. The THz image
of the FFPE tissue in Fig. 5(f) also shows the gaps of the path-
ology as areas of low reflection due to filling the gaps with par-
affin. The image demonstrates good comparison with the
original pathology in Fig. 5(a). This is due to the pathology
being taken from the surface of the FFPE tissue block as dis-
cussed previously. The ROC curves in Fig. 5(h) then show
that the THz imaging of the FFPE tissue has good detection
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of tissue regions while the fresh tissue imaging classification is
diminished due to the tissue distortion.

The ability for the current image morphing to account for
shape change in the tissue is dependent on the specific tumor
sample. As seen for tumor sample 8A, the pathology in
Fig. 5(i) undergoes a significant change in shape compared
to the morphed pathology for the fresh tissue in Fig. 5(j).
However, the THz image in Fig. 5(k) shows good agreement
with the pathology mask in Fig. 5(j) and with the statistical
model in Fig. 5(l). Meanwhile, the results for the FFPE tissue
in Figs. 5(m)–5(o) show good correlation similar to other FFPE
tissue cases. The ROC curves in Fig. 5(p) indicate that both fresh
and FFPE tissues have reasonable detection for the two regions
of tissue.

For comparing the results across several samples, there are a
few ways to quickly describe the ROC curve. These include the
5% or 10% false positive sensitivity (the true positive ratio when
the false positive ratio is 0.05 or 0.1) or the area under the curve.
To relate these two values, an ROC curve with a true positive

ratio of 0.9 when the false positive ratio is 0.1 would generally
have an area under the curve of 0.8 to 0.9, so an ROC area above
0.8 would be considered good correlation. The ROC area for all
tumor samples with two regions is shown in Fig. 6. The FFPE
tissue THz imaging can be seen to have a curve area above 0.8 in
all cases, which is expected due to the pathology being taken
from the exact surface imaged in the FFPE tissue blocks.
THz imaging of fresh tissue can also be seen to have relatively
good detection in most cases. There were some cases where the
detection was lower, such as in tumor sample 1 where the tissue
had been frozen. This was done in an optimal cutting temper-
ature (OCT) medium that could not be cleared for imaging.
Other cases of low detection were tumor samples 3 and 7A,
where significant fluid had accumulated under the tissue, and
tumor sample 4, where there was a difference in the scanned
surface between the pathology and fresh tissue image (see
Fig. 4). In general, THz imaging shows good detection between
distinct regions of fat and cancer tissue in the freshly excised
mice tumors, and the challenges in cases with lower correlation

Fig 5. Correlation results for samples 7B and 8A. For tumor sample 7B, images (b–d) for freshly excised
tumor and images (e–g) for FFPE tissue: (a) pathology image, (b) morphed pathology mask, (c) THz
image, and (d) t -distribution model classification; (e) morphed pathology mask, (f) THz image, and
(g) t -distribution model classification; and (h) the ROC curves. For tumor sample 8A, images (j–l) for
freshly excised tissue and images (m–o) for FFPE tissue: (i) pathology image, the (j) morphed pathology
mask, (k) THz image, and (l) t -distribution model classification; (m) morphed pathology mask, (n) THz
image, and (o) t -distribution model classification; and (p) the ROC curves.

Fig 6. Area under ROC curve for nine samples with two regions.
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are clearly identified. For most cases, the tissue morphing was
able to resolve differences in tissue shape between the fresh tis-
sue and pathology, even for the severe case in sample 8A,
though not all cases were corrected and there is potential to
improve the pathology correlation with a more robust morphing
algorithm.

3.2 Classification of Samples with Three Tissue
Regions

The excision of some larger tumors included muscle tissue from
the abdominal wall of the mouse. Muscle is not anticipated in
human breast cancer excisions but arose in these samples due to
the limited space for the tumors to grow in the fat deposits of the
mice. As such they are examined here to test the statistical
model. In this section, results of unsupervised (nonregression)
and supervised (regression) approaches are shown in Fig. 7.
The regression model used data from tumor sample 9B as an
arbitrary training sample. The training used the regions defined
in the morphed pathology to collect intensity distributions
for each tissue type for building the model. The images of sam-
ple 9B are not shown here but its statistics are shown later
in Fig. 11.

For tumor sample 8B, the pathology in Fig. 7(a) shows that
the cancer is mostly along the center and the upper right part of
the tissue. This sample was unique in that the center of the
cancer had mostly fatty tissue with some cancer mixed in.
The other fat deposits and muscle can be seen on the lower
edge. These regions translate more or less directly into the
morphed pathology in Fig. 7(b), with a few small gaps repre-
sented in white color that are imposed to the morphed pathology
and model classification. However, for the THz image of the
fresh tissue in Fig. 7(c), the fat region at the core of the tissue
cannot be seen, and there is a spot of very high reflection over
the fat deposit on the left side. The latter is most likely fluid
pooled beneath the fat, and the inability to see the cancer dis-
tributed through the fat could be from fluid and loose cells being
distributed on the surface during bisection. There is also a pos-
sibility that the surface changed significantly between the fresh
THz image and pathology. The classification model results
using the normal distribution in Fig. 7(d) show a generally
good assignment of fat and cancer regions, but for muscle
regions, it focuses on areas of borderline reflection between
high and low regions rather than a separate broad region.
The classification image is improved somewhat using the regres-
sion model in Fig. 7(e). Here, all higher reflections are

Fig 7. Correlation results for samples 8B and 9A. For tumor sample 8B, images (b–e) for freshly excised
tissue and images (f–i) for FFPE tissue: (a) pathology image, (b) morphed pathology mask, (c) THz
image, (d) normal-distribution model classification, and (e) regression model classification; and the
(f) morphed pathology mask, (g) THz image, (h) normal-distribution model classification, and (i) regres-
sion model classification. For tumor sample 9A, images (k–n) for freshly excised tissue and images (o–
r) for FFPE tissue: (j) pathology image, (k) morphed pathology mask, (l) THz image, (m) t -distribution
model classification, and (n) regression model classification; and the (o) morphed pathology mask,
(p) THz image, (q) t -distribution model classification, and (r) regression model classification.
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considered cancer while the region of fat is mostly unchanged.
However, the region of muscle tissue in the pathology is still not
indicated by the model. Therefore, while there does appear to be
some small difference in the THz image along the lower edge
where the muscle is in pathology, it is not detected for
correlation.

The FFPE tissue results show a similar challenge. The
morphed pathology in Fig. 7(f) and THz image in Fig. 7(g)
both show very close agreement with the pathology in Fig. 7(a).
However, this sample involves both muscle tissue and necrotic
cancer tissue (seen as faded areas in the cancer in pathology or
low-reflection spots in the cancer in the THz image), which both
have reflection in between the cancer and fat and tend to overlap.
The result in Fig. 7(h) indicates that the classification model
classified almost all of the lower reflection areas as fat, with
only the spots of highest reflection being classified as cancer
and the small amount of midrange values considered as muscle.
The regression model in Fig. 7(i) shows significant improve-
ment in this case with accurate detection of the fat and mostly
accurate detection of cancer, though once again the muscle tis-
sue is not classified by the model.

Similar challenges are seen for tumor sample 9A, as shown in
Figs. 7(j)–7(r). In this sample, the region of muscle is relatively
small in the upper left part of the pathology image in Fig. 7(j),
leaving primarily cancer in the center and fat on the left and right
sides. The morphed pathology in Fig. 7(k) is consistent with the
pathology image in Fig. 7(j). Meanwhile, the THz image of the
fresh tissue in Fig. 7(l) once again shows the challenge of clear-
ing fluid from under the tissue. Here, the high reflection of fluid
in the tissue decreases the expected area of fat on the left and
completely covers the fat on the right. As with the previous case,
the classification (nonregression) model in Fig. 7(m) classifies
the tissue regions of high and low reflection as cancer and fat,
respectively, whereas the transition tissue region between them

is classified as the muscle tissue. The regression model in
Fig. 7(n) did not improve the results of Fig. 7(m). The FFPE
tissue results in Fig. 7(o)–7(r) are similar to tumor sample
8A. Here, the reflection of the muscle and some of the necrotic
cancer tissue overlap in the THz image in Fig. 7(p), resulting in
most of the cancer region being classified as muscle in the clas-
sification (nonregression) model results in Fig. 7(q). The regres-
sion model in Fig. 7(r) correctly defines most of the cancer
region but does not classify any noticeable muscle region. In
both samples shown here, the THz images show differentiation
in heterogeneous regions of tissue that can be directly compared
to the original pathology. However, this heterogeneity is lost
when reducing the morphed pathology and classification
model to just three regions.

The ROC curves in Fig. 8 show the challenge for the current
statistical model to classify the tissue when three regions are
present (cancer, fat, and muscle). For the fresh tissue images
of tumor sample 8B, the ROC curves in Fig. 8(a) show relatively
lower areas under the curves (0.6551 for cancer, 0.5967 for
muscle, and 0.6244 for fat). This is due to the fact that even
if a classification image meets the decision rule for the three
regions, the certainty of the classified tissue type in the proba-
bility maps of the model may still be low. Meanwhile, the FFPE
tissue results in the same figure show that the cancer and fat are
both reasonably detected while the muscle is not, which agrees
with the visual correlation of the tissue. Using the regression
model for sample 8B provides the ROC curves in Fig. 8(b).
The regression model is shown to not significantly change
the results of the fresh tissue (ROC areas of 0.616 for cancer,
0.6276 for muscle, and 0.6061 for fat), while it improves the
classification of cancer and fat in the FFPE (increased from
0.7507 to 0.7793 for cancer and 0.796 to 0.8238 for fat).
The classification of muscle tissue is decreased (down from
0.5849 to 0.4624). For tumor sample 9A, the ROC curves in

Fig 8. ROC curves for sample 8B using (a) normal-distribution model classification and (b) regression
model classification, and for sample 9A, using (c) t -distribution model classification and (d) regression
model classification.
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Fig. 8(c) denote some effective detection of the tissue regions in
the fresh tissue but with low certainty, whereas the FFPE tissue
has slightly better detection. The regression model results in
Fig. 8(d) show notable improvement in the cancer and fat tissue
regions for the fresh tissue imaging (areas increased from 0.7253
to 0.8272 for cancer and 0.5808 to 0.8121) with some decrease
in muscle classification (down from 0.7512 to 0.6365). For
FFPE tissue, the classification for cancer increases significantly
(up from 0.7874 to 0.9431) while classification of muscle
decreases (ROC area down from 0.7762 to 0.7266) and fat mar-
ginally increases (from 0.9318 to 0.9531). As such, while the
regression model improves some cases its usefulness is not con-
sistent across all samples.

In all implementations of the regression model observed
here, the classification of cancer and fat tended to increase or
stay the same while the classification of muscle tended to
decrease. This is investigated more directly by observing the
probability maps for sample 8B in Fig. 9. Although these prob-
ability maps are generated for every sample, only one is shown
here for the sake of space. For each image, the regions with
higher values (dark red) indicate a larger probability that
pixel being in the described region. For the normal-distribution
model in Figs. 9(a)–9(c), a high probability of cancer [Fig. 9(a)]
is assigned to the areas of highest reflection in the earlier THz
image, whereas an increased probability of muscle [Fig. 9(b)] is
given to the next highest reflections from muscle and necrotic
cancer. It should be noted that the probability of muscle here is
not particularly high, but the regions of higher values in Fig. 9(b)
still possess a greater probability of muscle than cancer or fat
and are, therefore, assigned as such in the classification
image. Meanwhile, the probability of fat in Fig. 9(c) shows
good indication of the fat regions. By informing the regression
model with existing data of cancer, muscle, and fatty tissue, the
probability maps in Figs. 9(d)–9(f) are generated. Here, the full
region of cancer is now shown to have a high probability for
cancer in Fig. 9(d), lending to the improvement seen in the
ROC area of Fig. 8(d). However, there is very little probability
of muscle anywhere in Fig. 9(e). This may be due to using only
one image for training the model, the muscle in all cases being
small, and/or the refractive index and absorption coefficients of
muscle are close to cancer tissue in THz frequency (Fig. 10).40,41

This same effect is the cause for the decreased ROC area for
muscle in the samples in Fig. 8. Meanwhile, the fat classification
in Fig. 9(f) remains mostly unchanged.

The areas under the ROC curves for the four samples with
three tissue regions are given in Fig. 11. In all cases, the FFPE
tissue continued to show good classification of cancer and fat
areas, though the presence of the muscle region did make the

detection of each region less accurate, where the detection of
muscle in all cases was the lowest. For fresh tissue, all samples
investigated showed some challenge in detecting the three
regions except for sample 9B where all ROC areas neared
0.8 except for the detection of muscle in the FFPE tissue (images
not shown here). The accuracy across all fresh tissue samples
was primarily affected by necrosis inside the larger tumors,
which caused higher reflections in the THz imaging due to
excess fluid and loose tissue.

A summary of the areas under the ROC curves for all cases
discussed in Figs. 6 and 11 is given in Table 2. Here, the strong
correlation can be shown in all FFPE cases, except the cases that
involved muscle or moderate to advanced necrosis. The primary
challenge in fresh tissue is clearing the fluid from the imaging
surface, which is often compounded in cases with necrosis.

4 Discussion and Conclusion
Over the 13 samples handled in this work, THz images are seen
to have statistically good discrimination between tissues with
two regions (cancer and fat), with a few exceptions due to fac-
tors outside of imaging performance. The primary challenges in
classifying THz images of tissue in this work are (i) the presence

Fig 9. Probability maps generated by the statistical model for sample 8B FFPE. Maps using normal
distribution for regions of (a) cancer, (b) muscle, and (c) fat and using regression model for regions
of (d) cancer, (e) muscle, and (f) fat.

Fig 10. Published refractive index and absorption coefficient values
for human breast cancer40 and rat muscle.41

Fig 11. Area under ROC curve for four samples with three regions.
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of fluids, including water and necrotic blood, on the underside of
the fresh tissue, (ii) the correlation with pathology obtained after
fixing the tissue in formalin and embedding it in paraffin, and
(iii) the morphed pathology (digitized pathology) using an inter-
polation algorithm to reduce the resolution of the original path-
ology. The presence of fluid occurred to some extent in samples
3 and 7 and in all three-tissue region samples except sample 9B.
This resulted in some cases of fat tissue being classified as
cancer in the statistical model. In correlating the pathology to
the THz images of fresh tissue, a change in tissue shape occurred
going through histopathology processing. These concerns can
be addressed in future work by drying the tissue thoroughly
using a lint-free filter paper, using tissue marking ink for ori-
enting tissue between imaging and pathology, and mounting tis-
sue sections on a rigid surface (i.e., cardboard) for formalin
fixation. Additional challenges in shape comparison of THz
images of fresh tissue to pathology can be improved with
more rigorous morphing techniques, such as adopting a
mesh-based morphing (ongoing research) instead of the interpo-
lation used in this work. However, there is still a need for a true
comparison against THz imaging of fresh tissue to determine
accuracy, and future work will look into other common imaging
techniques (e.g., CT, radiography, etc.) to have a direct compari-
son for fresh tissue imaging.

For the 4 samples where muscle tissue is present, overlap
between muscle and cancer tissue reflections in the THz
image creates some challenge in correctly classifying these
regions. While muscle is unlikely to be present in surgical sec-
tions of human breast cancer, other kinds of fibrous tissue may
be present and thus it requires investigating more advanced
models for three tissue regions. Ongoing research is focusing
on spontaneously generated breast cancer tumors from trans-
genic mice, which have natural tumor structures and fibrous

tissue more comparable to human tissue for more accurate
assessment of THz imaging. Another area in which the approach
could be improved is the classification model. The statistical
models used here show success when handling samples with
two regions but tend to miss areas of a third region of tissue.
In general, the models presented here can classify three tissue
regions if the reflection from the regions is distinct. It was
observed in human tumors that the model was not able to
fully classify cancer and fibroglandular tissue for the same rea-
son where cancer and fibrous tissue have close properties.42

Future work will focus on detection methods and advanced
models to address this challenge. The obtained results demon-
strate promise for THz imaging of freshly excised tumors and
shed the light on the main challenges that need to be resolved
before it can be implemented on human tissue.
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Table 2 Area under ROC curve results for all cases in Figs. 6 and 11.

Mouse No.

FFPE Fresh

NotesCancer Fat Muscle Cancer Fat Muscle

1 0.84 0.94 N/A 0.61 0.55 N/A Frozen in OCT before fresh imaging

2 0.91 0.91 N/A 0.91 0.91 N/A —

3 0.92 0.92 N/A 0.76 0.76 N/A Excess fluid and minor necrosis

4 0.93 0.93 N/A 0.76 0.76 N/A Difference in pathology surface

5A 0.98 0.98 N/A 0.91 0.91 N/A —

5B 0.96 0.96 N/A 0.91 0.91 N/A —

6B 0.90 0.91 0.67 0.51 0.53 0.58 Excess fluid and minor necrosis

7A 0.96 0.96 N/A 0.63 0.63 N/A Excess fluid and minor necrosis

7B 0.90 0.90 N/A 0.81 0.81 N/A Advanced necrosis

8A 0.94 0.94 N/A 0.90 0.90 N/A Significant shape change in pathology

8B 0.75 0.80 0.58 0.66 0.62 0.60 Excess fluid and advanced necrosis

9A 0.79 0.93 0.78 0.73 0.58 0.75 Excess fluid and moderate necrosis

9B 0.85 0.84 0.58 0.81 0.78 0.78 Moderate necrosis
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