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Abstract. Photoacoustic computed tomography (PACT) is a rapidly developing biomedical imaging modality
and has attracted substantial attention in recent years. Image reconstruction from photoacoustic projections
plays a critical role in image formation in PACT. Here we review six major classes of image reconstruction
approaches developed in the past three decades, including delay and sum, filtered back projection, series
expansion, time reversal, iterative reconstruction, and deep-learning-based reconstruction. The principal
ideas and implementations of the algorithms are summarized, and their reconstruction performances
under different imaging scenarios are compared. Major challenges, future directions, and perspectives for
the development of image reconstruction algorithms in PACT are also discussed. This review provides a
self-contained reference guide for beginners and specialists in the photoacoustic community, to facilitate
the development and application of novel photoacoustic image reconstruction algorithms.
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1 Introduction
Photoacoustic tomography (PAT), also referred to as opto-
acoustic tomography, is a cross-sectional or three-dimensional
(3D) biomedical imaging technique. The physical foundation

for PAT is the photoacoustic effect discovered in 1880 by
Alexander Graham Bell[1], who found that modulated light
can excite sound waves in materials. Modern PAT typically uses
a short-pulsed laser to illuminate biological tissues. The laser
energy is absorbed by tissue chromophores and converted into
heat. Under the conditions of stress confinement and thermal
confinement, acoustic signals are generated due to the thermo-
elastic effect and are recorded by ultrasound detectors to recover
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the optical absorption property of tissues[2–5]. By combining op-
tical excitation and acoustic detection, PAT has the advantages
of rich optical contrast and high ultrasonic resolution in deep
tissues and has found unique applications in a range of biomedi-
cal fields[6–9].

PAT has three major embodiments: photoacoustic computed
tomography (PACT), photoacoustic microscopy (PAM), and
photoacoustic endoscopy (PAE). Among them, PACT uses dif-
fused light to illuminate biological tissues and can achieve
hundred-micron-level imaging resolution at centimeter-level
tissue depth[10–13]. Analogous to X-ray computed tomography,
high-quality image formation in PACT relies on sophisticated
image reconstruction procedures, without which the details in
an image may not be able to be properly resolved. In 1981,
Bowen studied thermoacoustic imaging of soft tissues using
ionizing radiation (high-energy electrons, X-ray photons, neu-
trons, and other charged particles) and non-ionizing radiation
(radio waves, microwaves, and ultrasonic waves)[14–16] and
presented one-dimensional (1D) depth-resolved thermoacoustic
signals from a human upper arm using radio-wave excitation.
However, the results are only 1D depth-resolved and have
no lateral resolution. In the mid-1990s, Oraevsky[17–19] and
Kruger[20,21] independently studied laser-induced photoacoustic
imaging of biological tissues and presented experimental 1D
signals and two-dimensional (2D) scan images (see Fig. 1).
The results are depth-resolved but poorly laterally resolved due
to the lack of image reconstruction procedures. To obtain cross-
sectional or 3D images resolved both axially and laterally,
Kruger et al. in 1995 developed an approximate filtered back
projection (FBP) image reconstruction algorithm for laser-
induced PACT analogous to the FBP algorithm used in X-ray
computed tomography[22]. The results suggest that the approxi-
mate FBP algorithm helps resolve imaging targets both in the
axial and lateral directions (see Fig. 1).

High-performance image reconstruction is critical to image
formation in modern PACT imaging systems. Ever since the
publication of the approximate FBP algorithm by Kruger and
colleagues, several novel image reconstruction approaches have
been proposed to reconstruct high-quality PACT images.
According to whether the emerging deep learning technique
is involved, image reconstruction approaches in PACT can be
divided into two main categories: conventional image
reconstruction methods and deep learning (DL)-based image

reconstruction methods. Conventional image reconstruction
methods do not involve deep learning and mainly include five
classes of algorithms: FBP, delay and sum (DAS), series expan-
sion (SE), time reversal (TR), and iterative reconstruction (IR).

FBP is a class of analytical image reconstruction algorithms
originating from X-ray computed tomography that project fil-
tered photoacoustic signals back to target regions according
to the time of flight (TOF) of photoacoustic signals. Kruger
adopted this idea and proposed an approximate version of
FBP for image reconstruction in PACT in 1995, as mentioned
previously[22]. However, this algorithm can only achieve
approximate image reconstruction. To reduce reconstruction er-
ror, Finch et al. developed an exact FBP algorithm for image
reconstruction in a spherical detection geometry in 2004[23],
and Xu and Wang developed a universal FBP algorithm for ex-
act image reconstruction in infinite planar, cylindrical, and
spherical detection geometries in 2005[24]. FBP algorithms are
simple yet efficient and have been widely used for image
reconstruction in PACT.

DAS-based reconstruction is essentially a simplified version
of the FBP algorithm, which directly projects measured photo-
acoustic signals back to target regions without filtering. It is one
of the most widely used beamforming methods in ultrasound
imaging and can potentially be adapted for image reconstruction
in PACT. In 1998, Hoelen et al. first used a simple weighted
DAS algorithm for image reconstruction in PACT and achieved
good reconstruction results[25,26]. Several modified algorithms
were subsequently developed to improve the reconstruction per-
formance of DAS[27–30]. DAS-based reconstruction algorithms
are typically fast and easy to implement. However, they are in-
tuitive and empirical image reconstruction techniques and can
only achieve approximate image reconstruction.

SE is a class of image reconstruction algorithms that use
mathematical series to represent the image to be reconstructed.
In 2001, Köstli et al. derived an exact SE-based inverse formula
in the Fourier domain for image reconstruction in a planar de-
tection geometry[31]. Kunyansky took a step further and derived
SE reconstruction formulas for image reconstruction in circular,
spherical, cylindrical, and cubic geometries[32,33]. Compared with
other image reconstruction algorithms in PACT, SE algorithms
may be computationally efficient for certain detection geom-
etries (e.g., planar geometry) due to the application of the fast
Fourier transform (FFT) algorithm during computation[31].
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Fig. 1 Key events in the development of PACT image reconstruction algorithms.
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TR algorithms recover photoacoustic images by running a
forward numerical acoustic propagation model backward and
re-transmitting the photoacoustic signals measured by each de-
tector in a temporally reversed order. In 2004, Xu and Wang
presented an analytical TR model for image reconstruction in
arbitrary closed detection geometries[34]. Burgholzer et al. devel-
oped a numerical TR algorithm for image reconstruction in ar-
bitrary detection geometries based on the finite difference
method[35]. To improve computational efficiency and image
quality, Treeby et al. further developed a numerical k-space
pseudospectral TR algorithm for image reconstruction in hetero-
geneous media[34]. The TR algorithms can couple the acoustic
properties of media (e.g., SOS, density, dispersion, and absorp-
tion) and can be used for image reconstruction in arbitrary
closed detection geometries. Therefore, they are regarded as
the “least restrictive” image reconstruction algorithms in PACT.

The last class of conventional image reconstruction methods
is IR. It solves the image reconstruction problem by iteratively
seeking the optimal solution that minimizes the error between
measured projection data and the estimate from constructed
mathematical models. In 2002, Paltauf et al. proposed the first
IR method to improve image reconstruction quality under non-
ideal imaging conditions and achieved 3D image reconstruction
with reduced artifacts[36]. After that, much research was con-
ducted by different groups to improve the performance of IR,
such as improving the computational accuracy of the system
matrix in the model[37,38], compensating for the response of de-
tectors[39,40], coupling the acoustic property of the media[41], and
accelerating the reconstruction process[42,43]. Compared with
other algorithms, IR algorithms are typically slow but can
yield high-quality imaging results when only limited projection
data are available. Therefore, they are more suitable for non-
ideal imaging scenarios, such as limited-view imaging,
sparse-view imaging, and imaging in acoustically hetero-
geneous media.

The second major category of image reconstruction ap-
proaches in PACT is fast-developing DL-based methods, which
are inspired by the successful use of DL in a range of fields. DL-
based methods typically train neural networks and use them to
automatically transform input data into output photoacoustic
images. Compared with conventional image reconstruction ap-
proaches, DL methods are more efficient and can handle more
complicated scenarios. In 2018, Antholzer et al. first proposed a
deep convolutional neural network (CNN)-based method for
PACT image reconstruction under sparse-view sampling and
opened new opportunities for intelligent image reconstruction
in PACT[44]. After that, a series of DL-based methods was de-
veloped for image reconstruction using both simulated and ex-
perimental datasets[45–47]. State-of-the-art DL methods are
powerful enough to achieve preprocessing in the data domain,
postprocessing in the image domain, hybrid processing in both
the data and image domains, learned IR, and direct image
reconstruction from the data domain to the image domain[48–50].
They have been used to address a range of image reconstruction
problems in PACT, such as detector bandwidth expansion[51,52],
resolution enhancement[53,54], artifact removal[55], ultralow-
laser-energy imaging[56], reconstruction acceleration[57], and
reconstruction enhancement in sparse-view and limited-view
imaging[44,46,47,58,59].

Over the past three decades, great achievements have been
made in PACT image reconstruction. To date, there have been
a few excellent reviews devoted to summarizing the research

progress in this field[60–63]. However, most review papers in
the literature are from more than 10 years ago and cannot
reflect the latest research advances[60–62]. Moreover, some review
papers cover only particular subjects of the field, such as IR
reconstruction[63,64] or DL-based reconstruction[48–50,65–68]. There
is a pressing need to prepare new work to systematically review
the recent achievements in this field. For the above reasons, we
prepared this review, which differs from other works in the fol-
lowing aspects. First, the review was prepared from a historical
perspective. We surveyed the development of each type of
reconstruction algorithm and put them into the context of
the entire history of PACT. Second, the review is comprehen-
sive. It not only contains the five classes of conventional
reconstruction algorithms (FBP, DAS, SE, TR, and IR) but also
covers the state-of-the-art DL-based reconstruction algorithms.
Third, the review contains comparative studies. A dedicated
part (Sec. 5) was prepared to compare the performance of each
type of image reconstruction algorithm in terms of image
reconstruction quality, reconstruction speed, and memory foot-
print. Finally, the review is expected to be beginner-friendly.
The entire review contains 51 figures, 14 tables, 126 mathemati-
cal equations, and comparative studies of each algorithm and is
easy for novices to understand.

The remainder of this review is organized as follows.
Section 2 describes the forward problem of PACT, including
photoacoustic signal generation, propagation, detection, and
the mathematical foundation (i.e., the Radon transform) for im-
age reconstruction. Section 3 reviews the basic principles of the
five classes of conventional image reconstruction algorithms,
namely, FBP, DAS, SE, TR, and IR. Section 4 surveys the
DL-based image reconstruction methods from the perspective
of preprocessing, postprocessing, hybrid processing, learned
IR, and direct image reconstruction. Section 5 provides compar-
ative studies of major image reconstruction algorithms in
PACT. Section 6 highlights the major challenges and future di-
rections for PACT image reconstruction. Finally, Sec. 7 offers
concluding remarks. Figure 2, Table 1, and Table 2 list major
topics, abbreviations, and symbols used in this review,
respectively.

It is worth pointing out that image reconstruction in PACT
involves two aspects: acoustic inversion for determining the dis-
tribution of initial acoustic pressure and optical inversion for
determining the map of optical absorption[61,62,69]. This review
focuses on the acoustic inversion problem, which is important
for image formation in PACT. Moreover, the mathematical foun-
dation for image reconstruction in PACT is equivalent to that
in thermoacoustic tomography[70–73]. Therefore, the image
reconstruction algorithms discussed in this review can in prin-
ciple be used for thermoacoustic tomography.

2 The Forward Problem

2.1 Photoacoustic Signal Generation

To achieve efficient photoacoustic signal excitation and gener-
ation, two conditions, i.e., thermal confinement and stress con-
finement, should be satisfied. The two conditions are related to
two timescales, i.e., the thermal relaxation time τth and the stress
relaxation time τs. The thermal relaxation time τth characterizes
the diffusion of heat from the region heated by laser pulses,
while the stress relaxation time τs describes the propagation
of acoustic waves from the heated region. τth is given by[74]
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τth �
d2c
αth

; (1)

where dc is the characteristic dimension of the heated region and
αth is the thermal diffusivity (m2∕s). τs is given by[74]

τs �
dc
v0

; (2)

where v0 is the speed of sound (SOS). If the laser pulse du-
ration is less than the thermal relaxation time, i.e., τ < τth, the
thermal diffusion is negligible during laser heating, in which
case the thermal confinement condition can be considered to
be satisfied. Similarly, if the laser pulse duration is less than

the stress relaxation time, i.e., τ < τs, the pressure propagation
can be ignored during pulse heating, in which case the stress
confinement condition can be considered to be satisfied. In
PACT, the thermal and stress confinement conditions should
be satisfied simultaneously. For instance, assuming that in
soft tissues, the SOS is 1500 m/s, the thermal diffusivity is
0.14 mm2∕s, and the dimension of the heated region is 50 μm,
the thermal relaxation time τth is calculated to be 18 ms, and the
stress relaxation time τs is 33 ns. This indicates that the laser
used for imaging should have a pulse duration of less than
33 ns to achieve efficient photoacoustic signal excitation and
generation.

In PACT, the local fractional volume expansion ΔV∕V in-
duced by the photoacoustic effect can be described as[74]

Table 1 Abbreviations Used in this Review

Abbreviation Meaning Abbreviation Meaning

1D One-dimensional 2D Two-dimensional

3D Three-dimensional CF Coherence factor

CNN Convolutional neural network CNR Contrast-to-noise ratio

CT Computed tomography DAS Delay and sum

DMAS Delay multiply and sum DL Deep learning

EIR Electrical impulse response FBP Filtered back projection

FFT Fast Fourier transform GPU Graphics processing unit

IR Iterative reconstruction MV Minimum variance

PACT Photoacoustic computed tomography PAT Photoacoustic tomography

ROI Region of interest SE Series expansion

SIR Spatial impulse response SLSC Short-lag spatial coherence

SNR Signal-to-noise ratio SOS Speed of sound

TOF Time of flight TR Time reversal

PACT image reconstruction

Signal generation

Signal propagation

Signal detection

Radon transform
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projection

Time reversal

Series expansion

Preprocessing

Postprocessing

Hybrid processing

Learned iterative 
reconstruction

Reconstruction 
speed

Memory footprint

Algorithm linearityIterative 
reconstruction

Direct 
reconstruction

Wave equation

Detector property 
correction
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correction
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from sparse data
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Efficient iterative 
reconstruction

Advanced 
simulation tools

Unsupervised 
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Physics-informed 
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Raw-data-based 
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Forward problem Conventional 
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Performance 
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Fig. 2 Major topics discussed in this review.
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Table 2 Symbols Used in this Review

Symbol Meaning Symbol Meaning

Lowercase English letters

b�rd ; t� Back-projection term b�r � The Kaiser–Bessel function

dc Characteristic size of the heated region dσ Element of a detection surface S

dΩ Solid angle subtended by dσ f Frequency

g�s; θ� Radon transform hEIR EIR of a detector

h̃EIR Fourier transform of the EIR of a detector hSIR SIR of a detector

h̃SIR Fourier transform of the SIR of a detector i Imaginary unit

j n The spherical Bessel function of the first
kind of order n

kx , ky , kz Spatial wavenumbers in the x , y , and z
directions

n A general variable p0�x ; y ; z� Initial photoacoustic pressure (image to be
reconstructed)

p�r; t� Photoacoustic signal at position r and time t p�rd ; t� Real photoacoustic signal measured by a
detector

p ideal�rd ; t� Ideal photoacoustic signal measured
by a detector

si �t� Photoacoustic signal measured by the i th
detector at time t

t Time uk �r� Normalized eigenfunctions of the Dirichlet
Laplacian

v0 Sound speed

Uppercase English letters

Cp Specific heat capacity at constant pressure Cv Specific heat capacity at constant volume

F Optical fluence G�rd ; t ; rs ; ts� The Green’s function

H Heat deposited per unit volume H �1�
jk j The Hankel function of the first kind of order k

In The modified Bessel function of the first kind of
order n

J jk j The Bessel function of the first kind of order jk j

K Sampling length M Total number of detectors

N Total number of image grid points Nx , Ny , Nz Numbers of image grids along the x , y , and z
axes

P0�kx ; ky ; kz� Spatial Fourier transform of p0�x ; y ; z� P�rd ;ω� Temporal Fourier transform of p�rd ; t�
PΩ Poisson operator of harmonic extension R�x� Regularization

S A detection surface SDAS Image reconstructed by DAS

T Temperature V Volume

W �ω� Window function in the frequency domain

Lowercase Greek letters

α0 Acoustic absorption coefficient αth Thermal diffusivity

β Thermal coefficient of volume expansion δ Dirac delta function

ϕ�rd ; t� Velocity potential ηth Photothermal conversion efficiency

η�r� Dispersion proportionality coefficient κ Isothermal compressibility

λ2m Eigenvalues of the Dirichlet Laplacian μa Optical absorption coefficient

ρ�r� Distribution of mass density ρ�r; t� Acoustic density

ρ0�r� Ambient density τ Laser pulse duration

τth Thermal relaxation time τs Stress relaxation time

τ�r� Absorption proportionality coefficient ω Angular frequency

ψ�r� Expansion function

(Table continued)
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ΔV
V

� βΔT − κΔp; (3)

where ΔT and Δp represent the changes in temperature and
pressure, respectively, β is the thermal coefficient of volume ex-
pansion, and κ is the isothermal compressibility, which can be
written as

κ � Cp

ρv20Cv

; (4)

where ρ is the mass density and Cp and Cv are the specific heat
capacities at constant pressure and volume, respectively.

Under the conditions of thermal and stress confinement, the
fractional volume expansion in Eq. (3) is negligible (i.e.,
ΔV∕V � 0). The initial photoacoustic pressure p0 � Δp and
can be written as

p0 �
βΔT
κ

; (5)

where the temperature rise can be calculated by[75]

ΔT � ηthH
ρCv

: (6)

Here ηth is the percentage of the laser energy converted into
heat, and H is the heat energy deposited per unit volume, which
is defined as the product of the absorption coefficient μa and the
optical fluence F (i.e., H � μaF). The initial acoustic pressure
p0 can thus be rewritten as

p0 �
�
βv20
Cp

�
ηthH � ΓηthH; (7)

where Γ is the Grüneisen parameter, a dimensionless constant
representing the efficiency of the conversion of heat to pressure.
For water at body temperature (37°C), Γ ≈ 0.2, which indicates
that 20% of the thermal energy deposited by a laser in water
couples into acoustic energy.

The generation of photoacoustic signals can be illustrated us-
ing a numerical example. Assume that the laser employed for
imaging has a fluence of 10 mJ∕cm2 (F � 10 mJ∕cm2), which
is within the American National Standards Institute (ANSI)
safety limit[76], and the biological tissue being imaged has the
following physical parameters: Γ � 0.2, μa � 0.1 cm−1,
ρ � 1.0 g∕cm3, and Cv � 4.0 Jg−1 K−1. The factor ηth can
be set to 1 because the fluorescence and nonthermal absorption
of biological tissues are typically weak. In this way, the temper-
ature rise ΔT is calculated to be 0.25 mK and the initial acoustic
pressure p0 is 200 Pa, which indicates that a 1 mK temperature
rise can produce an acoustic pressure rise of 800 Pa.

2.2 Photoacoustic Signal Propagation

2.2.1 The photoacoustic wave equations

The generation and propagation of photoacoustic waves can be
mathematically modeled by the photoacoustic wave equation[77].
Generally, three first-order equations, including the linearized
equation of motion, the linearized equation of continuity, and
the thermal elastic equation, can be used to model the properties

Uppercase Greek letters

Φλk Free-space rotationally invariant Green’s
function

Γ Grüneisen parameter

Ω Solid angle of a detection surface or domain
defined by a detection surface

Δf Frequency sampling interval

Δp Change in pressure Δt Temporal sampling interval

ΔT Change in temperature ΔV Change in volume

Vectors or matrices

nd Unit normal vector of a detector surface pointing
to a photoacoustic source

p Photoacoustic signal in matrix form

r � �x ; y ; z� Rectangular coordinates in space r � �R ;φ; θ) Spherical coordinates in space

rd Detector position rs Photoacoustic source position

u�r; t� Particle velocity x Photoacoustic image in matrix form

A System matrix A† Pseudo-inverse matrix of A

A� Adjoint matrix of A Ã The Fourier transform of A

AH Conjugate transpose of A AT Transpose of A

D Differential matrix Ẽ Fourier transform of the EIR of a detector

G Spherical Radon transformation matrix I Identity matrix

P The Fourier transform of p R Covariance matrix

Others symbols

A Forward acoustic propagation operator ATR
modify Modified TR operator

F The Fourier transform F−1 The inverse Fourier transform

H�r; t� Heating function ∇ Nabla operator
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of acoustic wave generation and propagation[78]. If the medium
is lossless and the thermal conductivity can be ignored, the three
equations can be written as[79]

∂
∂t
u�r; t� � − 1

ρ�r�∇p�r; t�; (8)

∇ · u�r; t� � − 1

ρ�r�v20�r�
∂
∂t
p�r; t� � β

∂
∂t
ΔT�r; t�; (9)

ρ�r�Cp

∂
∂t
T�r; t� � H�r; t�; (10)

where u�r; t� is the particle velocity, v0�r� is the SOS, ρ�r� is the
mass density, p�r; t� is the acoustic pressure at position r and
time t, T�r; t� and ΔT�r; t� are the temperature and temperature
rise, respectively, and H�r; t� is the heating function that repre-
sents the thermal energy deposited per unit volume and per unit
time. The second-order photoacoustic wave equation can be ob-
tained by eliminating the variable u�r; t� from the three equa-
tions as[78,79]

�
ρ�r�∇ ·

�
1

ρ�r�∇
�
− 1

v20�r�
∂2

∂t2

�
p�r; t� � − β

Cp

∂H�r; t�
∂t

:

(11)

Equation (11) describes the relationship between the acoustic
pressure p�r; t� and the photoacoustic source associated with
the heating function H�r; t�. The source term [right side of
Eq. (11)] is proportional to the first derivative of the heating
function H�r; t�, which indicates that the heating function
H�r; t� should be time-varying to achieve efficient photoacous-
tic signal generation.

When the medium is acoustically homogeneous, the photo-
acoustic wave equation in Eq. (11) reduces to[78,79]

�
∇2 − 1

v20

∂2

∂t2

�
p�r; t� � − β

Cp

∂H�r; t�
∂t

: (12)

2.2.2 Forward Green’s function solution

The forward solution for the wave equation in a homogeneous
medium in Eq. (12) can be obtained using Green’s function[75,80]

as

p�rd; t� �
β

Cp

Z �∞

−∞

Z
V
G�rd; t; rs; ts�

∂H�rs; ts�
∂ts

drsdts; (13)

where p�rd; t� is the acoustic pressure detected at position rd
and time t and rs and ts represent the location and time of
the photoacoustic source, respectively. The Green’s function
G�rd; t; rs; ts� in an infinite 3D space has the following form:

G�rd; t; rs; ts� �
δ�t − ts − jrd − rsj∕v0�

4πjrd − rsj
; (14)

where δ is the Dirac delta function.

Under the condition of stress confinement, the heating func-
tion can be decomposed asH�rs; ts� � H�rs�δ�ts�, where H�rs�
is the heat deposited per unit volume. In this way, Eq. (13)
becomes

p�rd; t� �
β

Cp

Z �∞

−∞

Z
V
G�rd; t; rs; ts�H�rs�δ0�ts�drsdts; (15)

where δ0 is the derivative of the Dirac delta function. Using the
property

R
δ0�t − t0�f�t�dt � −f0�t0�, Eq. (15) becomes

p�rd; t� �
β

Cp

Z
V
H�rs�

∂G�rd; t; rs; ts�
∂t

drs

����
ts�0

: (16)

Applying the relation in Eq. (7) (ηth is set to 1),

p0�rs� � ΓH�rs� �
�
βv20
Cp

�
H�rs�; (17)

and substituting the Green’s function [Eq. (14)] into Eq. (16),
we obtain the general forward solution of the photoacoustic
wave equation, i.e.,

p�rd; t� �
1

4πv20

∂
∂t

Z
V

p0�rs�
jrd − rsj

δ

�
t − jrd − rsj

v0

�
drs: (18)

The measured pressure p�rd; t� is associated with the veloc-
ity potential ϕ�rd; t� via[81]

p�rd; t� � −ρ ∂ϕ�rd; t�
∂t

: (19)

The velocity potential can be written as

ϕ�rd; t� � − 1

4πv20ρ

Z
V

p0�rs�
jrd − rsj

δ

�
t − jrd − rsj

v0

�
drs: (20)

Equations (18) and (20) indicate that the measured pressure
p�rd; t� and velocity potential ϕ�rd; t� are linearly related to the
initial acoustic pressure p0�rs� and are inversely proportional to
the distance between the detector and the source, i.e., jrdrsj.

2.2.3 Photoacoustic signal of a spherical absorber

The concept of acoustic pressure and velocity potential can be
illustrated through a simple example[81]. Suppose that the photo-
acoustic source is a uniform sphere and that the detector is a
point detector. We examine the velocity potential and acoustic
pressure received by the point detector in two situations. In the
first situation, the point detector is located at the center of the
photoacoustic source, as shown in Fig. 3(a). The velocity poten-
tial can be obtained as [Eq. (20)]

ϕ�rd; t� �
8<
:−p0�rs�

v0ρ
t; if v0t ≤ ra;

0; if v0t > ra;
(21)

where ra is the radius of the spherical source. In the second
situation, the point detector is located outside the photoacoustic
source, as shown in Fig. 3(d). The velocity potential can be
calculated as
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ϕ�rd; t� �
8<
:
−p0�rs�
4v0ρd

��d− v0t�2− r2a �; if d− ra ≤ v0t≤ d� ra;

0; otherwise;

(22)

where d is the distance between the point detector and the center
of the photoacoustic source. The acoustic pressure p�rd; t� in
these two cases can be accordingly calculated using the relation-
ship in Eq. (19).

To quantify the velocity potential and acoustic pressure mea-
sured by the point detector, we make the following assumptions:
the radius of the spherical source is 4 mm (ra � 4 mm), the
mass density of the medium is 1000 kg∕m3 (ρ � 1000 kg∕m3),
the SOS is 1480 m/s (v0 � 1480 m=s), the Grüneisen parameter
at room temperature is 0.12 (Γ � 0.12), the optical absorption
coefficient μa is 100 cm−1 (μa � 100 cm−1), and the optical
fluence is 10 mJ∕cm2 (F � 10 mJ∕cm2). Therefore, the heat
energy H deposited at time zero is 106 J∕m3, and the initial
acoustic pressure p0�rs� [Eq. (7)] is 1.2 × 105 Pa.

Figures 3(b) and 3(c) show the velocity potential and acoustic
pressure measured by the point detector in the first case (the
point detector is located at the center of the source). The results
show that the negative velocity potential −ϕ�rd; t� measured by
the point detector first linearly increases as the shell of the
integration [Eq. (20)] increases with time and then suddenly
drops to zero due to no energy deposition outside the source.
Consequently, the acoustic pressure p�rd; t� (i.e., the first
derivative of the velocity potential) is a non-zero constant at
the beginning and becomes zero with a negative impulse caused
by the sudden drop of velocity potential to zero. Figures 3(e) and
3(f) show the velocity potential and acoustic pressure measured

by the point detector in the second case (the point detector is
located 10 mm away from the center of the source). The results
show that the negative velocity potential −ϕ�rd; t� measured by
the point detector first increases as the incremental hemispheri-
cal shell of the integration [Eq. (20)] advances to the center of
the source, and then decreases with time as the shell advances to
the rear of the source. Consequently, the acoustic pressure
p�rd; t� is initially positive, passes through zero, then becomes
negative, and has an N-shaped waveform.

Based on the example in Fig. 3, we can also deduce that the
size of a photoacoustic source impacts the characteristics of the
photoacoustic signals received by a detector in the time domain.
To illustrate this, Fig. 4(a) shows three time-domain photo-
acoustic signals measured by a point detector 3 mm away from
the centers of three uniform spherical sources with diameters of
1 mm, 200 μm, and 50 μm. The time-domain photoacoustic sig-
nals all have an N-shaped waveform as expected. However, the
amplitude and duration of the photoacoustic signals are distinct.
The photoacoustic signals produced by sources with a smaller
size have smaller amplitudes and shorter durations, which cor-
respond to higher frequencies and broader bandwidths in the
frequency domain, as shown in Fig. 4(b). The center frequency
of the photoacoustic signals fc generated by a spherical source
can be estimated by fc � v0∕3ra, where ra is the radius of the
spherical source[82]. This indicates that detectors with a high
center frequency should be employed for high-frequency
imaging.

2.2.4 Photoacoustic field visualization: the k-Wave toolbox

Numerical simulation of the forward propagation of photo-
acoustic fields helps visualize the sound fields in complex media
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Fig. 3 Velocity potential and acoustic pressure generated from a 4-mm-diameter spherical
source. The first and second rows show the results when the detector is located at the center of
the source and is 10 mm away from the center of the source, respectively. (a), (d) Schematic
diagrams showing the point detector and the spherical source. (b), (e) Negative velocity potentials
at the point detector. (c), (f) Corresponding acoustic pressures.
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and solve the acoustic inversion problem in PACT. Numerical
simulation can be implemented using the powerful open-source
k-Wave toolbox[83], which was developed by the Photoacoustic
Imaging Group at University College London (UCL). In the k-
Wave toolbox, the propagation of photoacoustic fields is mod-
eled by three coupled first-order partial differential equations[84],
which are fundamentally the same as the three equations in
Eqs. (8)–(10). The propagation model considers the acoustic
properties of media, such as acoustic speed, dispersion, and ab-
sorption, and can characterize the acoustic propagation problem
in heterogeneous media. The k-Wave toolbox solves the propa-
gation model via a k-space pseudospectral method[83,85,86], which
can perform fast and accurate computations with reduced
memory. Figure 5 is an example showing the propagation of
the photoacoustic fields of a 2D disk and a 3D sphere using
the k-Wave toolbox. The results visualize the instant character-
istics of the photoacoustic fields during propagation.

2.3 Photoacoustic Signal Detection

The photoacoustic signals propagating outward from a photo-
acoustic source need to be captured by ultrasound detectors

for image formation. Ideally, for photoacoustic signal detection,
detector arrays that can perfectly record original signals in time
and space should be used. However, perfect detector arrays
never exist in reality. The characteristics of a practical detector
array, such as detector aperture, detector bandwidth, detector
number, and view angle, impact detected photoacoustic signals
and final images.

Aperture and bandwidth are two fundamental characteristics
of an ultrasound detector and have important impacts on mea-
sured photoacoustic signals. An ideal ultrasound detector should
have a point-like aperture, in which way it has an omnidirec-
tional response. Moreover, an ideal ultrasound detector should
also have an infinite bandwidth so that it can respond to all fre-
quency contents of a signal. Neither of the two conditions, how-
ever, is attainable in practice. A practical ultrasound detector
always has a finite aperture size and a finite bandwidth. The
finite aperture averages photoacoustic signals in space, resulting
in a smoothed spatial impulse response (SIR), while the finite
bandwidth affects the conversion of photoacoustic signals to
electrical signals, leading to a degraded electrical impulse
response (EIR). Taking the SIR and EIR of an ultrasound de-
tector into account, the photoacoustic signal measured by a
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practical ultrasound detector can be mathematically formulated
as[4]

p�rd; t� � pideal�rd; t� ∗ hSIR�rd; rs; t� ∗ hEIR�t�; (23)

where pideal�rd; t� is the ideal photoacoustic signal, � represents
temporal convolution, and hSIR�rd; rs; t� and hEIR�t� represent
the SIR and EIR of a detector, respectively. The non-ideal
SIR and EIR of an ultrasound detector distort photoacoustic
signals measured in the time domain, as illustrated in Fig. 6,
which eventually degrades the image quality of photoacoustic
images.

In addition to the aperture and bandwidth of a detector, the
detector number and view angle of a detector array also play
important roles in photoacoustic signal detection. Ideally, the
number of detectors in a detector array used for photoacoustic
signal measurement should meet the spatial Nyquist sampling
theorem for complete signal acquisition[4]. The view angle of
a detector array should be 4π steradian (full 3D view) to record
complete photoacoustic signals in 3D space. However, these
two conditions are actually unattainable in practice due to

the high fabrication cost of a large number of detectors and
the configuration constraints of an imaging system (e.g., a sep-
arate space is required for laser illumination). Violating these
conditions leads to the problems of image reconstruction from
sparse-view and limited-view projections, which are mathemati-
cally challenging and will be discussed later in this review.
Figure 7 showcases commonly used 2D and 3D detection geom-
etries in PACT[87,88], which have limited view angles except for
the closed spherical array.

2.4 Radon Transform

The forward signal propagation and detection processes in
PACT can be described by the well-known Radon transform[89],
which is the mathematical foundation of computed tomogra-
phy (CT).

Before discussing the Radon transform in PACT, we first
introduce the linear Radon transform in X-ray CT, which is
defined as the integral of a function along a straight line.
Specifically, the linear Radon transform in X-ray CT is written
as[90]
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g�s; θ� �
Z

∞

−∞

Z
∞

−∞
f�x; y�δ�x cos θ� y sin θ − s�dxdy;

(24)

where f�x; y� is the original function, g�s; θ� is the sinogram or
projection data of the function f�x; y� along the straight line
defined in the Dirac delta function δ, and �s; θ� are two param-
eters of the normal equation of the straight line in the delta func-
tion. The inverse Radon transform reverses the forward process
and recovers the original function f�x; y� from measured sino-
grams g�s; θ�. A schematic representation of the linear Radon
transform is shown in Fig. 8(a).

In PACT and thermoacoustic tomography, the Radon trans-
form integrates a function along a circle (2D) or a sphere (3D)
instead of a straight line. The 2D circular Radon transform can
be written as[91]

g�s;θ�

�
Z

∞

−∞

Z
∞

−∞
f�x;y�δ

�
s−

																																																											
�x− r cos θ�2��y− r sin θ�2

q �
dxdy;

(25)

where �r; θ� represents the position of the detector in a polar
coordinate system and s is the radius of the integral circle.
Similarly, the 3D spherical Radon transform g�s; θ� can be
mathematically written as[92]

g�s; θ� �
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞
f�x; y; z�δ

h
s −

																																																																																																																												
�x − r sin φ cos θ�2 � �y − r sinφ sin θ�2 � �z − r cos φ�2

q i
dxdydz; (26)

where (r, φ, θ) represents the position of the detector in a spheri-
cal coordinate system and s is the radius of the spherical shell to
be integrated. Schematic representations of the circular and
spherical Radon transforms are shown in Figs. 8(b) and 8(c).
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Using the definition in Eq. (26), the spherical Radon trans-
form in PACT can be obtained from Eq. (18) and has the
following form:

g�rd; t� �
Z

p0�rs�δ
�
t − jrd − rsj

v0

�
drs: (27)

Equation (27) is in the form of the spherical Radon transform
[Eq. (26)], representing the integral over a spherical shell with a
radius of v0t centered at the detector position rd. The projection
data g�rd; t� are related to the measured photoacoustic signal
p�rd; t� via

g�rd; t� � 4πv20jrd − rsj
Z

t

0

p�rd; τ�dτ: (28)

The projection data g�rd; t� have a similar definition as the
velocity potential in Eq. (19) and can be calculated from the
measured photoacoustic signal p�rd; t�. The task of image
reconstruction in PACT is to find the inverse spherical Radon
transform and recover the original function f�x; y� or p0�rs�
from the measured photoacoustic signal p�rd; t�, which is the
focus of the following sections.

3 Conventional Approaches

3.1 DAS-Type Algorithms

Delay and sum (DAS)-based beamforming is a commonly used
image reconstruction technique in ultrasound imaging[93]. Due to
similar image formation processes, DAS-based beamforming is
also widely used in PACT, where it reconstructs an image by
summing the delayed raw photoacoustic signals of each detec-
tor. The time delay between each channel is calculated accord-
ing to the acoustic TOF of the photoacoustic signals from the
point of interest to each ultrasound detector. To yield high-
quality images, preprocessing of raw photoacoustic signals
and/or postprocessing of reconstructed images are usually
needed. Here we review the five most commonly used DAS-
type image reconstruction algorithms: DAS, delay multiply
and sum (DMAS), short-lag spatial coherence (SLSC),

minimum variance (MV), and coherence factor (CF), which
adopt different preprocessing and/or postprocessing strategies.
The basic workflows of these methods are first illustrated in
Fig. 9, and detailed descriptions are presented below.

3.1.1 Delay and sum

DAS is the most basic beamforming algorithm in ultrasound im-
aging due to its simplicity, speed, and robustness[94–96]. Hoelen
et al. introduced a DAS method for 3D PACT imaging of blood
vessels based on a planar detection geometry in 1998[26,97]. Feng
et al. applied a DAS method in linear-scanning thermoacoustic
tomography in 2001[98]. The DAS method can be mathemati-
cally formulated as

SDAS�x; z� �
XM
i�1

si�t�; (29)

where SDAS is the reconstructed image, si�t� is the photoacoustic
signal measured by the ith detector at time t,M is the total num-
ber of detectors, and �x; z� represents the position in a coordi-
nate system. The variable t in si�t� denotes the TOF of the
photoacoustic signals from position �x; z� to the ith detector.
The workflow and principle of the DAS algorithm are illustrated
in Figs. 9(a) and 10, respectively.

The performance of the DAS algorithm was evaluated using
a designed numerical phantom with multiple point sources
equally distributed along the longitudinal centerline [Fig. 11(a)].
In the evaluation, a linear detector array with a width of 200 mm
and 128 elements was placed at the top of the phantom to re-
ceive the photoacoustic signals generated from the sources.
Figure 11(b) shows the image reconstructed by the DAS
method. The results show that DAS can successfully reconstruct
the structural information of photoacoustic sources but fails to
reproduce the correct amplitude. The reconstructed image has
both positive and negative components and is bipolar in mag-
nitude. A unipolar image can be obtained by finding the
envelope of the bipolar image, as shown in Fig. 11(c). Log trans-
formation can be further used to improve the contrast of the re-
constructed image, as shown in Fig. 11(d). Since DAS treats the
delayed photoacoustic signals si�t� from different detectors
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equally and is non-adaptive, significant side lobes are present in
the reconstructed image in Fig. 11(d), which degrades the spatial
resolution of the image.

3.1.2 Delay multiply and sum

Delay multiply and sum (DMAS) is a variant of the DAS algo-
rithm that can provide improved contrast, signal-to-noise ratio
(SNR), and resolution. Similar to DAS, DMAS also sums
photoacoustic signals measured by different detectors according
to calculated time delays. However, the measured photoacoustic
signals in DMAS need to be combinatorically coupled and
multiplied before summation. Therefore, DMAS is essentially
a nonlinear algorithm.

The DMAS algorithm was first proposed by Lim et al. for
confocal microwave detection of breast cancer in 2008 and
showed improved identification of embedded malignant tumors
in a variety of numerical breast phantoms compared with
DAS[99]. In 2015, Matrone et al. modified this method for
B-mode ultrasound imaging and demonstrated that DMAS can
provide higher contrast resolution than DAS[100]. Inspired by the
success of DMAS in confocal microwave imaging and ultra-
sound imaging, several research groups worldwide have con-
ducted in-depth studies of DMAS-based photoacoustic image
reconstruction. For example, Alshaya et al. introduced DMAS
to the field of PACT in 2016 and proposed a filter DMAS to

improve the SNR of reconstructed images[101]. To further im-
prove the performance of DMAS, in 2018, Mozaffarzadeh et al.
developed a double-stage DMAS algorithm that can produce
images with improved quality compared with DAS and DMAS
but at the expense of greater computational cost[27]. In the same
year, Kirchner et al. proposed a signed DMAS algorithm that
can provide linear image reconstruction with increased image
quality[102]. In 2022, Mulani et al. presented a high-order DMAS
method, in which multi-term (e.g., three, four, or five terms)
multiplication is used to replace two-term multiplication in
the original DMAS algorithm[103].

Generally, the original DMAS algorithm can be mathemati-
cally written as[100]

SDMAS�x; z� �
XM−1

i�1

XM
j�i�1

xij�t�; (30)

where SDMAS is the reconstructed image, M is the total number
of detectors, and xij�t� is given by

xij�t� � sign�si�ti�sj�tj��
																									
jsi�ti�sj�tj�j

q
; (31)

where sign�·� denotes the signum function. The workflow of the
DMAS algorithm is illustrated in Fig. 9(b). If the center fre-
quency of the photoacoustic signals si�t� and sj�t� is f0, the
multiplication operation in Eq. (31) shifts the center frequency
of the resultant signal to 0 and 2f0. As a result, the output signal
SDMAS needs to be filtered by a bandpass filter centered at 2f0 to
extract the second harmonic component 2f0 while removing the
direct current (DC) component. Therefore, DMAS is also called
filtered-DMAS. Compared with DAS, DMAS uses both the am-
plitude and spatial correlation of delayed photoacoustic signals
from different detectors for image reconstruction. For this rea-
son, it can partially overcome the drawbacks of DAS and recon-
struct images with improved spatial resolution and reduced side
lobes[100].

A downside of DMAS is that the combinational multiplica-
tion in the algorithm increases the computational complexity. To
solve this problem, in 2019, Jeon et al. proposed a DMAS al-
gorithm with a modified CF, which avoids combinatorial multi-
plication in DMAS and significantly reduces the total number of
multiplication operations[104]. In 2022, Paul et al. proposed a

-10 0 10
Lateral distance (mm)

-5

0

4.9

D
ep

th
 (m

m
)

-10 0 10
Lateral distance (mm)

0

1

D
ep

th
 (m

m
)

(a) (b)

-10 0 10
Lateral distance (mm)

-40

dB

0

D
ep

th
 (m

m
)

-10 0 10
Lateral distance (mm)

-40

-30

-20

-10

0

0

5

D
ep

th
 (m

m
)

(c) (d)
×10-3 ×10-3

-40

-30

-20

-10

0

-40

-30

-20

-10

0

-40

-30

-20

-10

0

Fig. 11 An example showing DAS-based image reconstruction in PACT. (a) Ground truth.
(b) Image reconstructed by DAS. (c) Envelope of (b). (d) Log transform of (c). The detector array
is at the top of the image.

x

z

(x, z)

Detector 
array

Imaging 
region

PA signals

D
el

ay

Fig. 10 Principle of DAS-based image reconstruction.

Tian et al.: Image reconstruction from photoacoustic projections

Photonics Insights R06-13 2024 • Vol. 3(3)



simplified-delay-multiply-and-standard-deviation (SDMASD)
method[105], which is based on the measurement of the standard
deviation of delayed and multiplied signals instead of normal
delayed signals. Compared with native DAS and DMAS algo-
rithms, the SDMASD algorithm can achieve real-time imaging
using graphics processing units (GPUs) and produce improved
image quality.

3.1.3 Short-lag spatial coherence

Short-lag spatial coherence (SLSC) is a beamforming technique
that was initially developed by Lediju et al. for ultrasound im-
aging in 2011[106]. SLSC reconstructs an ultrasound image by
calculating the spatial coherence of measured signals, and the
reconstructed image is thus independent of the amplitude of
the signals. As a result, SLSC can eliminate adverse effects
caused by the different strengths of scatterers in ultrasound im-
aging. It has been demonstrated that compared with the conven-
tional DAS beamforming algorithm, SLSC can achieve image
reconstruction with considerable improvements in terms of res-
olution, contrast-to-noise ratio (CNR), and SNR.

In PACT, Muyinatu Bell et al. applied the SLSC algorithm to
achieve imaging of prostate brachytherapy seeds[28,107] and dem-
onstrated that the SLSC algorithm can enhance photoacoustic
image quality compared with DAS, especially when the inten-
sity of laser illumination is insufficient. Graham and Muyinatu
Bell later developed a spatial coherence theory based on the
van Cittert–Zernike theorem, a classical theorem in statistical
optics, to explore the strengths and limitations of the SLSC
algorithm[108,109]. In 2021, Mora et al. combined SLSC with
DMAS and proposed a generalized spatial coherence algorithm
for PACT, which can preserve relative signal magnitudes and
improve the CNR and SNR of a reconstructed image[110].

Similar to DMAS, the photoacoustic signals in SLSC are also
first delayed according to the TOF from the point of interest to
each ultrasound detector and then combinatorically coupled and
multiplied before summation. The SLSC algorithm can be for-
mulated as[106]

R̂p�l� �
1

M − l

XM−l

i�1

Pt2
t�t1 si�t�si�l�t�																																																		Pt2

t�t1 s
2
i �t�

Pt2
t�t1 s

2
i�l�t�

q ; (32)

where R̂p�l� is the normalized spatial coherence of the signals
measured by a detector, M is the total number of detectors, and
l represents the number of intervals between two detectors used
to calculate the spatial coherence and is called the lag. The final
SLSC image is obtained by summing all R̂p�l� terms, i.e.,

SSLSC�x; z� �
XL
l�1

R̂p�l�; (33)

where L is the total number of lags. A large L helps improve the
lateral resolution but decreases the CNR and SNR. Therefore,
the value of L needs to be elaborately selected to achieve the
best tradeoff between key image quality metrics, such as lateral
spatial resolution, CNR, and SNR. The workflow of the SLSC
algorithm is illustrated in Fig. 9(c).

3.1.4 Minimum variance

Minimum variance (MV) is a weighted DAS method that was
originally devised by Capon in 1969 for narrowband signal

processing applications such as sonar, radar, and wireless com-
munication[111]. In 2002, Mann and Walker used a constrained
adaptive beamformer (the MV method) for medical ultrasound
imaging[112] and demonstrated its effectiveness in spatial resolu-
tion and contrast enhancement. Due to the remarkable improve-
ment in spatial resolution, a large number of MV-based methods
have been developed for ultrasound imaging[113–116].

MV-based image reconstruction has also been studied in
PACT in recent years[30,117–120]. The MV reconstruction formula
can be written as[114,116]

SMV�x; z� �
XM
i�1

wi�t�si�t� � w�t�Hs�t�; (34)

where M is the total number of detectors, wi�t� is the optimal
weight for the photoacoustic signal si�t� measured by the ith
detector, s�t� is a vector containing delayed photoacoustic sig-
nals from all detectors, w�t� is a vector containing optimal
weights for the delayed photoacoustic signals in s�t�, and the
superscript H denotes the conjugate transpose. The workflow
of the MV algorithm is illustrated in Fig. 9(d). The weight
w�t� can be adaptively calculated by minimizing the variance
of the output SMV while maintaining the unit signal gain at
the focal imaging point. The optimization problem can be math-
ematically written as[114]

min
w

wH Rw; subject towHa � 1; (35)

whereR � E�ssH � is the spatial covariance matrix of the delayed
photoacoustic signals s�t�, E denotes the expectation, and a is
the equivalent of the steering vector in narrowband applications
[114,116]. When the photoacoustic signals of each detector are
delayed, a is a simple all-one vector. The optimization problem
in Eq. (35) can be solved by the method of Lagrange multi-
pliers[121], which gives

w � R−1a
aHR−1a

: (36)

By substituting Eq. (36) into Eq. (34), MV-based image
reconstruction can be achieved.

To improve the robustness of the MV method, the covariance
matrix R can be calculated based on a spatial smoothing strat-
egy, where a detector array is divided into a group of overlap-
ping subarrays, and the covariance matrices of all subarrays are
calculated and averaged to form the final covariance matrix[114].
In this way, the covariance matrix R is given as[114]

R � 1

Nd − L� 1

XNd−L�1

l�1

sl�t�sl�t�H; (37)

where L is the number of detectors in a subarray and l is the
index of the detector in the current subarray. To estimate the
covariance matrix more accurately and enhance the contrast
of MV, temporal averaging of multiple samples can be used to-
gether with spatial smoothing[116]. Once the covariance matrix R
is estimated, the optimal weights w can be obtained by Eq. (36).
The final image reconstructed by the MValgorithm can be writ-
ten as[114]
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SMV�x; z� �
1

Nd − L� 1

XNd−L�1

l�1

w�t�Hsl�t�: (38)

Although the MV method can produce narrower main lobes
(i.e., the lobe located at the target) and higher spatial resolution
than algorithms such as DAS and DMAS, its performance in
terms of side lobe (i.e., the lobes adjacent to the main lobe) sup-
pression and image contrast enhancement is limited. Therefore,
many studies have been devoted to the development of MV-
based hybrid beamforming algorithms. In 2008, Park et al.
imposed additional CF weights on MV and achieved enhanced
spatial resolution, contrast, and side lobe suppression[117]. In
2018, Mozaffarzadeh et al. developed an MV-based DMAS
method[118] and an eigenspace-based MVmethod combined with
DMAS for resolution improvement and side lobe reduction[119].
In 2021, Paul et al. proposed an adaptive-weighting-based MV
to address the side lobe issue in MV beamformed images. It was
demonstrated that the weighted MVapproach can improve SNR
while reducing main lobe width and side lobe intensity and has
the potential for use in PACT imaging systems with a limited
number of ultrasound detectors[30].

3.1.5 Coherence factor

The coherence factor (CF) is a pixel-level adaptive weighting
factor that can improve the performance of DAS-based beam-
forming methods in side lobe suppression and spatial resolution
improvement. CF was originally proposed by Mallart and Fink
in 1994 for the evaluation of phase aberration correction tech-
niques in scattering media[122] and was later used as an image
quality metric for ultrasound imaging by Hollman et al.[123].
In 2003, Li et al. presented a generalized CF for ultrasound
beamforming in heterogeneous media and showed that the com-
bination of generalized CF and DAS-based beamformers could
yield improved image quality[124].

In PACT, Liao et al. incorporated CF into DAS in 2004 and
demonstrated the superiority of the CF-weighted DAS method
in improving spatial resolution and SNR compared with DAS[29].
Wang and Li considered the local SNR in the formulation of CF
and developed an SNR-dependent CF for ultrasound and photo-
acoustic imaging in 2014[125]. Wang et al. integrated CF with a
focal-line-based image formation method to improve the con-
trast and elevational resolution of 3D photoacoustic imaging
in 2016[126]. Mozaffarzadeh et al. proposed a high-resolution CF
weighting technique and achieved improved resolution, SNR,
and side lobe suppression in 2019[127]. Paul et al. considered
the noise level variations of raw ultrasound data in the for-
mulation of CF and achieved improvements in image resolu-
tion, side lobe reduction, SNR, and contrast in 2021[128]. In
the same year, Mukaddim and Varghese extended CF from
the spatial domain to the spatiotemporal domain[129]. This exten-
sion helps cancel out signals with low spatial and temporal co-
herence and results in higher background noise cancellation
while preserving the main features of interest in reconstructed
images.

Mathematically, the CF is defined as the ratio of the coherent
sum of photoacoustic signals across detectors to the incoherent
sum and can be formulated as[123]

CF�x; z� �
��PM

i�1 si�t�
��2

M
PM

i�1 jsi�t�j2
; (39)

where si�t� is the photoacoustic signal measured by the ith de-
tector at time t andM is the total number of detectors. The value
of the CF ranges from zero to one. A large value means that the
signals at that point are highly focused and that the point can be
reconstructed with high quality. In contrast, a small CF value
indicates that the signals are weakly focused and will result
in lower image quality. The CF-weighted DAS method can
be expressed as

SCF-DAS�x; z� � CF�x; z�SDAS�x; z�; (40)

where SCF-DAS�x; z� is the reconstructed image. The term
SDAS�x; z� can be replaced by the outputs of other beamforming
methods, such as DMAS, SLSC, and MV. The workflow of the
CF algorithm is illustrated in Fig. 9(e).

Each beamforming method mentioned above has advantages
and disadvantages. To improve the performance of image
reconstruction in PACT, they can be combined to yield hybrid
beamforming methods such as DMASD plus DAS/DMAS[105],
SLSC plus filter DMAS[110], MV plus DMAS[118,119], CF plus
DMAS[104,130], and CF plus MV[117,127,131].

Representative work on DAS-based image reconstruction in
PACT is summarized in Table 3. For completeness, Table 3 also
includes relevant work in ultrasound or microwave imaging.

3.2 Filtered Back Projection

DAS-type algorithms can achieve approximate photoacoustic
image reconstruction and are inexact reconstruction techniques.
To achieve exact image reconstruction, advanced algorithms are
needed. Filtered back projection (FBP) is a class of algorithms
that are based on the Radon transform (see Sec. 2.4). It achieves
image reconstruction by first filtering measured photoacoustic
signals and then back-projecting the filtered signals into the im-
age domain. The back-projection operation in FBP is similar to
the reconstruction procedure in DAS-type algorithms.
Therefore, the native DAS algorithm can be regarded as a sim-
plified version of FBP, which achieves image reconstruction by
directly back-projecting original photoacoustic signals into the
image domain.

3.2.1 Approximate filtered back projection

Early FBP algorithms were developed based on the condition of
far-field approximation[35], which states that if the distance be-
tween a detector and a photoacoustic source is much greater than
the size of the photoacoustic source itself (i.e., jrs − rdj ≫ d, d:
source size), the approximation jrd − rsj ≈ jrd − rs · �rd∕jrdj�j
holds (see Fig. 12). Under the condition of far-field approxima-
tion, the photoacoustic integral over a spherical shell can be
approximated by the integral over its tangential plane.
Consequently, image reconstruction in PACT can be achieved
by inverting the linear Radon transform. Kruger et al. proposed
an approximate FBP algorithm in 1995[22], which is the first for-
mal image reconstruction method in PACT. Xu and Wang devel-
oped approximate FBP algorithms from a more rigorous
perspective in 2002[134,135] and 2003[136]. They deduced exact sol-
utions to the image reconstruction problem and proposed
approximate time-domain FBP algorithms for circular[134],
spherical[135], planar, and cylindrical detection geometries[136].

The preceding approximate FBP algorithms were generally
developed for specific detection geometries. In 2007,
Burgholzer and Matt extended the approximate FBP algorithms
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for image reconstruction in arbitrarily closed detection geom-
etries under the assumption of the far-field approximation.
The extended FBP reconstruction formula can be written as[35]

p0�rs� ≅
1

4π

Z
S
b�rd; t�δ

�
t − jrs − rdj

v0

�
dΩ; (41)

where p0�rs� is the reconstructed photoacoustic image, δ is
the Dirac delta function, b�rd; t� is the back-projection term
given by

b�rd; t� � −2t ∂p�rd; t�
∂t

; (42)

and dΩ is the solid angle subtended by the element dσ of a de-
tection surface and can be calculated by

dΩ � dσ

jrs − rdj2
�
nd ·

rs − rd
jrs − rdj

�
: (43)

Here nd is the unit normal vector of the detector surface pointing
to the region of interest (ROI).

The time-domain first derivative in Eq. (42) can be inter-
preted in the frequency domain as

∂p�rd; t�
∂t

� F−1fiωFp�rd; t�g; (44)

where F and F−1 denote the forward and inverse Fourier
transforms, respectively; ω is a ramp filter, which suppresses
the low-frequency contents of the measured photoacoustic sig-
nal p�rd; t� and amplifies high-frequency information. Since
the value of ω extends from −∞ to ∞, the ramp filter is not
integrable, and the inverse Fourier transform in Eq. (44) is un-
defined. To solve this problem, the ramp filter can be band-
limited by a window function and Eq. (44) becomes

Table 3 Representative DAS-Type Algorithms Used for Image Reconstruction in PACT

Method Author Year Variant Source

DAS

Ma et al. 2020 Multiple DAS with enveloping [132]

Hoelen et al. 2000 Modified DAS [97]

Hoelen et al. 1998 Modified DAS [25,26]

DMAS

Mulani et al. 2022 High-order DMAS [103]

Jeon et al. 2019 CF-weighted DMAS [104]

Mozaffarzadeh et al. 2018 Double-stage DMAS [27]

Kirchner et al. 2018 Signed DMAS [102]

Alshaya et al. 2016 Filter DMAS [101]

Lim et al. 2008 DMAS (microwave imaging) [99]

SLSC

Graham et al. 2020 Photoacoustic spatial coherence theory for SLSC [109]

Bell et al. 2013 SLSC (for PACT) [28]

Lediju et al. 2011 SLSC (for ultrasound) [106]

MV

Asl & Mahloojifar 2009 Modified MV (for ultrasound) [116]

Synnevag et al. 2007 MV (for ultrasound) [114]

Mann & Walker 2002 Constrained adaptive beamformer [112]

CF

Mao et al. 2022 Spatial coherence + polarity coherence [133]

Mukaddim et al. 2021 Spatiotemporal CF [129]

Paul et al. 2021 Variational CF [128]

Wang et al. 2014 SNR-dependent CF [125]

Liao et al. 2004 CF-weighted DAS [29]

Li et al. 2003 Generalized CF [124]

Mallart & Fink 1994 CF [122]

Hybrid

Paul et al. 2022 SDMASD + DAS/DMAS [105]

Mora et al. 2021 SLSC + Filter DMAS [110]

Mozaffarzadeh et al. 2019 CF + MV [127,131]

Mozaffarzadeh et al. 2018 CF + DMAS [104,130]

Mozaffarzadeh et al. 2018 MV + DMAS [118,119]
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∂p0�rd; t�
∂t

� F−1fiωW�ω�Fp0�rd; t�g; (45)

where W�ω� represents the window function. In practice, a
smooth window such as the Hanning function is preferred over
a box function because the latter may introduce undesirable
ringing artifacts in the image domain.

One benefit of the far-field approximation in FBP is that it
allows for simplified calculation of the solid angle dΩ. In
other words, under the far-field approximation, dΩ in Eq. (43)
reduces to

dΩ ≅ − dσ

jrdj2
�
nd ·

rd
jrdj

�
: (46)

Compared with Eq. (43), Eq. (46) involves only the detector
position rd when calculating dΩ and is independent of the
source position rs, thereby reducing the computational com-
plexity. For example, assuming that the size of a 3D image to
be reconstructed is Nx × Ny × Nz voxels (Nx � Ny � Nz � n)
and the number of detectors used for imaging is M
(M � n × n), the computational complexity is O�n5� for
Eq. (43) and only O�n2� for Eq. (46). Furthermore, if the de-
tection geometry is spherical, dΩ in Eq. (46) becomes a constant
(dΩ � dσ∕jrdj2), indicating that the computational complexity
is O�1�.

3.2.2 Exact filtered back projection

The approximate FBP algorithms are based on the condition of
far-field approximation. This condition, however, may not be
fully met in practice considering that photoacoustic signals
may attenuate with propagation distance and that signal detec-
tion in space may be restricted. To solve this problem, in
2004, Finch et al. derived an exact FBP formula for image
reconstruction in spherical detection geometries with odd di-
mensions (n ≥ 3)[23]. In 2005, Xu and Wang presented a univer-
sal FBP formula for image reconstruction in infinite planar,
infinite cylindrical, and closed spherical detection geometries[24].
The reconstruction formula is given as

p0�rs� �
Z
Ω
b�rd; t�δ

�
t − jrs − rdj

v0

�
dΩ
Ω

; (47)

where the back-projection term

b�rd; t� � 2

�
p�rd; t� − t

∂p�rd; t�
∂t

�
: (48)

Ω is the solid angle of the detection surface with respect to the
reconstruction point and equals 2π for the infinite planar geom-
etry and 4π for the spherical and cylindrical geometries. FBP is
one of the most commonly used algorithms in PACT.

By comparing Eqs. (47) and (41), we find that the exact FBP
algorithm is very close to the approximate FBP algorithm in the
formulas. They both consist of three reconstruction steps: filter-
ing, back projection (the δ function), and summation. Their ma-
jor difference is in the back-projection terms. The back-
projection term b�rd; t� in the exact FBP algorithm has an extra
term p�rd; t�, which is not present in the approximate FBP al-
gorithm. The reasons are as follows. According to the forward
solution of the photoacoustic wave equation [Eq. (18)], the am-
plitude of the photoacoustic signals received by a detector is
proportional to the size of the source and inversely proportional
to the detection distance, i.e., p�rd; t� ∝ d∕jrd − rsj. Under the
condition of the far-field approximation, i.e., jrd − rsj ≫ d, the
amplitude of p�rd; t� is small enough compared with the deriva-
tive term −t∂p�rd; t�∕∂t in Eq. (48) to be ignored without sig-
nificant loss of reconstruction accuracy. Therefore, the back-
projection term b�rd; t� in the approximate FBP algorithm does
not involve the term p�rd; t�.

Figure 13 presents an example demonstrating the principle of
FBP-based image reconstruction. In this example, the photo-
acoustic source is a 5-mm-diameter uniform spherical absorber,
and the photoacoustic signals generated from the source are re-
corded by a 40-mm-diameter circular detector array [Fig. 13(a)].
Figures 13(b) and 13(c) show the representative photoacoustic
signal p�rd; t� measured by a detector and the corresponding
back-projection signal b�rd; t�, respectively. Figure 13(d) shows
the projection images of detectors at different positions.
Figures 13(e)–13(g) are the reconstruction results obtained by
summing the projection images of four, 16, and 256 detectors,
respectively. The results demonstrate that the FBP algorithm can
effectively reconstruct the structure and amplitude information
of the photoacoustic source. Note that the artifacts in the recon-
structed images are not caused by the FBP algorithm but by the
limited view angle of the circular detector array[137].

To evaluate the performance of the FBP algorithm for differ-
ent detection geometries, a group of image reconstruction sim-
ulations was conducted. In the simulations, a multi-sphere
phantom is used as the photoacoustic source. The phantom con-
tains nine spherical absorbers with unit intensity, among which
eight with diameters uniformly varying from 1 mm to 2 mm are
evenly distributed on a circle with a diameter of 10 mm, while
the ninth one, with a diameter of 1.6 mm, is seated at the origin.
Figures 14(a)–14(c) show the relative positions of the multi-
sphere phantom and a finite planar, finite cylindrical, and closed
spherical detection surface. The planar detection surface is lo-
cated 12 mm below the x–y plane, and the cylindrical and
spherical detection surfaces are centered at the origin. The three
detection surfaces have the same number (32768) of evenly dis-
tributed point-like detectors and approximately equal detection

O rs

rd rs-rd

Detector

p0(rs)

p(rd, t)

Spherical 
shell

Fig. 12 Schematic diagram showing the signal detection and im-
age reconstruction geometry in FBP. The forward problem and
the image reconstruction problem in PACT correspond to the
spherical Radon transform and its inverse, respectively. Under
the condition of the far-field approximation, the integral over
a spherical shell can be approximated by the integral over its tan-
gential plane.
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areas (plane: 150 mm × 150 mm; cylinder: 70 mm base diam-
eter, 100 mm height; sphere: 84 mm diameter). The recon-
structed images of the x–z and x–y cross sections of the
phantom are displayed in Figs. 14(d)–14(f) and 14(g)–14(i), re-
spectively. The results show that the FBP algorithm achieves
stable image reconstruction for all three detection geometries.
However, the image reconstructed in the closed spherical detec-
tion surface has much fewer artifacts than those reconstructed in
the planar and cylindrical detection surfaces. This is because the
spherical detection surface is closer to an ideal detection geom-
etry than the finite planar and finite cylindrical surfaces.

To extend the application scenarios of FBP, many in-depth
studies have also been carried out[138]. For example, in 2007,
Kunyansky proposed a set of FBP-type formulas for image
reconstruction in spherical detection geometries with arbitrary
dimensions (n ≥ 2)[139]. In the same year, Finch et al. also de-
veloped a set of FBP-type inverse formulas for spherical detec-
tion geometries with even dimensions[140]. In 2009, Nguyen
derived a family of inverse formulas for thermoacoustic tomog-
raphy, in which many previously known FBP inverse formulas
can be obtained as special cases[141]. In addition, the exact FBP
algorithms mentioned above are primarily used for planar,
cylindrical, and spherical detection geometries with point-like
detectors. In 2007, Burgholzer et al. developed a two-step
FBP algorithm for integrating line detectors[142]. In 2012,
Natterer proposed a novel FBP algorithm for elliptical detection
geometries[143], which was further developed by Palamodov in
2012[144], Haltmeier in 2014[145,146], and Salman in 2014[147].

Moreover, the FBP algorithm is well suited for parallel com-
puting. GPUs have been used to achieve real-time FBP image
reconstruction in both 2D and 3D imaging[42,148–153]. A field-
programmable gate array (FPGA) was also employed to accel-
erate image reconstruction in low-cost PACT systems[154].

Table 4 summarizes representative work on FBP-based im-
age reconstruction in PACT.

3.3 Series Expansion

The basic principle of series expansion (SE) algorithms is to
approximate the image to be reconstructed using mathematical
series. Compared with other reconstruction algorithms in PACT,
SE algorithms are simple and fast for specific detection geom-
etries such as planar geometries because they can be imple-
mented using FFT.

3.3.1 Series expansion for planar detection geometries

Norton et al. proposed exact SE methods for the reconstruction
of acoustic reflectivity in circular geometries in 1980[156] and in
planar, cylindrical, and spherical geometries in 1981[157]. Several
groups have studied similar ideas for image reconstruction in
PACT. Köstli et al. in 2001 proposed an exact SE algorithm
for image reconstruction in planar detection geometries[31],
and Xu et al. in 2002 reported a similar algorithm[158].

Mathematically, SE-based PACT image reconstruction for
planar detection geometries can be formulated as[31,83]
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Fig. 13 Illustration of the principle of the FBP algorithm. (a) Schematic diagram showing a spheri-
cal photoacoustic source (diameter: 5 mm) and an array of point-like detectors uniformly distrib-
uted over a circle (diameter: 40 mm). (b) N-shaped photoacoustic signal recorded by a detector on
the detection circle. (c) Back-projection signal [Eq. (48)]. (d) Projection images produced by
the detectors at different positions. (e)–(g) Images reconstructed using 4, 16, and 256 detectors,
respectively. Adapted from Ref. [137] with permission.

Tian et al.: Image reconstruction from photoacoustic projections

Photonics Insights R06-18 2024 • Vol. 3(3)



(a) (b) (c)

(d) (e) 1

0

-0.25

0.5

(g) (h)

(f)

(i)

x
z 

x
y

(a) (b) (c)

(d) (e) 1(f)ff

x

y

zz
y

x x

y
z

3 mm

3 mm

Fig. 14 Image reconstruction by FBP in three common detection geometries. (a)–(c) Schematic
diagrams showing a multi-sphere phantom and planar, cylindrical, and spherical detection surfa-
ces. The three detection surfaces have the same number of point-like detectors (32768)
and approximately equal detection areas. Please refer to the text for more simulation settings.
(d)–(f) Reconstructed images in the x–z plane. (g)–(i) Reconstructed images in the x–y plane.
Adapted from Ref. [137] with permission.

Table 4 Representative Work on FBP-Based Image Reconstruction in PACT

Author Year Method Detection Geometry Dimension Source

Haltmeier 2014 FBP Elliptical Arbitrary [145,146]

Salman 2014 FBP Elliptical 2D and 3D [147]

Natterer 2012 FBP Elliptical 3D [143]

Palamodov 2012 FBP Elliptical Arbitrary [144]

Nguyen 2009 FBP Spherical Arbitrary [141]

Burgholzer &

Matt 2007 Approximate FBP Arbitrary 3D [35]

Burgholzer et al. 2007 FBP Arbitrary closed detection curve 2D or 3D [142]

Kunyansky 2007 FBP Spherical Arbitrary [139]

Finch et al. 2007 FBP Spherical Even [140]

Xu & Wang 2005 FBP Planar, cylindrical, and spherical 3D [24]

Finch et al. 2004 FBP Spherical Odd [23]

Xu & Wang 2003 Approximate FBP Planar, cylindrical, and spherical 3D [136]

Xu & Wang 2002 Approximate FBP Circular 3D [134]

Xu & Wang 2002 Approximate FBP Spherical 3D [135]

Xu et al. 2001 Approximate FBP Circular 3D [155]

Kruger et al. 1995 Approximate FBP Circular 3D [22]
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P0�kx; ky;ω� �
v20kz
2ω

F x;y;tfp�x; y; t�g; (49)

P0�kx; ky;ω� 























!ω2�v2
0
�k2x�k2y�k2z �

P0�kx; ky; kz�; (50)

p0�x; y; z� � F−1
x;y;zfP0�kx; ky; kz�g; (51)

where p�x; y; t� is the photoacoustic signal measured by a planar
surface at position �x; y� and time t; kx, ky, and kz are the spatial
wavenumber components in each Cartesian direction; ω is the
temporal frequency; v0 is the SOS; → represents the interpola-
tion operation between the temporal and spatial frequencies ω
and kz; p0�x; y; z� and P0�kx; ky; kz� are the initial photoacoustic
pressure and its spatial Fourier transform; and F and F−1 re-
present the forward and inverse Fourier transforms, respectively.
The reconstruction procedure above involves one interpolation
and two Fourier transforms and has a computational complexity
of O�n3 log n� for a 3D image with a size of n × n × n voxels
by use of FFT[159]. The numerical implementation of the SE al-
gorithm is available in the k-Wave toolbox[83].

Figure 15 is a numerical example showing SE-based PACT
image reconstruction using the k-Wave toolbox. The photo-
acoustic source in the xy plane contains nine spherical absorbers
with unit intensity. Among them, eight absorbers with diameters
uniformly varying from 1 mm to 2 mm are evenly distributed on
a circle with a diameter of 10 mm, while the ninth absorber with
a diameter of 1.6 mm is seated at the origin. The signal detection
geometry is a planar surface 12 mm below the xy plane. The
planar surface has 364 × 364 point detectors uniformly distrib-
uted spanning a physical size of 36 mm× 36 mm. Figures 15(b)
and 15(c) are the xz and xy cross sections of the photoacoustic
source, respectively, and Figs. 15(d) and 15(e) are the corre-
sponding reconstructed images, which show that the SE algo-
rithm can recover major structures of the source. Note that
the distortion and blurring in the reconstructed images are
due to the finite size of the planar detection surface.

3.3.2 Series expansions for circular, cylindrical, and spherical
detection geometries

In 2002, the Wang group reported exact SE algorithms for
PACT image reconstruction in cylindrical and spherical geom-
etries[135,160]. However, the image reconstruction procedures in
these two cases involve complicated mathematical calculations,
preventing their implementations using FFT and are thus time-
consuming[135,160]. Based on Norton’s pioneering work on circu-
lar geometries[156], Haltmeier and Scherzer in 2007 proposed a
3D reconstruction algorithm for cylindrical detection geom-
etries, where photoacoustic signals are recorded by linear
integrating detectors[161]. The proposed algorithm has a compu-
tational complexity of O�n4� for a 3D image with a size of n ×
n × n voxels, which is higher than that of the SE algorithm in
planar geometries [O�n3 log n�][159] but lower than that of FBP
[O�n5�][24].

In 2012, Kunyansky proposed fast image reconstruction al-
gorithms suitable for circular, cylindrical, and spherical detec-
tion geometries[33]. In Kunyansky’s work, image reconstruction
is based on the Fourier transforms of the initial photoacoustic
pressure p0�rs� and the measured photoacoustic signals p�rd; t�,
as summarized below. Suppose that the detection geometry is a
circle, as shown in Fig. 7(c). By expanding the Fourier trans-
form P�rd;ω� of the measured photoacoustic signal p�rd; t�
and the initial photoacoustic pressure p0�rs� in the Fourier series
in φ and θ, we have[33]

P�rd;ω� �
X∞
k�−∞

Pk�ω�eikφ; rd � �rd cos φ; rd sin φ�;

(52)

p0�rs� �
X∞
k�−∞

pk
0�rs�eikθ; rs � �rs cos θ; rs sin θ�; (53)

where i is the imaginary unit, ω is the angular frequency, rd �
jrdj is the radius of the detection circle, rs � jrsj is the distance
from the reconstruction point to the center of the circular

(a) z
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x (d) (e)

(b) (c)

0

1

0

0.5
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Planar detection 
surface

Fig. 15 Example of SE-based image reconstruction in PACT. (a) Schematic diagram of a planar
detection geometry and a multi-sphere photoacoustic source. (b), (c) xz and xy cross sections of
the source. (d), (e) xz and xy cross sections of the reconstructed source. Please refer to the text
for the simulation settings.
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detection geometry, and Pk�ω� and pk
0�rs� are expansion coef-

ficients given by[33]

Pk�ω� � 1

2π

Z
2π

0

P�rd;ω�e−ikφdφ; (54)

pk
0�rs� �

2

π

Z
∞

0

Pk�ω�
H�1�

jkj �ωR�
Jjkj�ωrs�dω; (55)

whereH�1�
jkj is the Hankel function of the first kind of order k and

Jjkj is the Bessel function of the first kind of order jkj[162].
Equation (55) is somewhat similar to an expression in
Norton’s work[156], where the Bessel function Jjkj rather than
the Hankel function H�1�

jkj is in the denominator and a term cor-
responding to the real part of Pk�ω� in the numerator.

By discretizing Eq. (55), we can obtain pk
0�rs� and then the

initial photoacoustic pressure p0�rs� [Eq. (53)]. However,
direct discretization of Eq. (55) results in a computational com-
plexity of O�n2� for each pk

0�rs� and O�n3� for the whole
reconstruction. To achieve fast reconstruction, substituting
Eq. (55) into Eq. (53) yields[33]

p0�rs� �
1

2π

Z
R2

P0�Λ�eirs·ΛdΛ; Λ � �ω cos φ;ω sin φ�;
(56)

where P0�Λ� is given by

P0�Λ� �
8<
:

2
π

P∞
k�−∞

�−i�kpk
0
�ω�

ωH�1�
jkj �ωR�

eikφ; Λ ≠ 0;R
∞
0

2Pk�0�ω�
πωH�1�

0
�ωR�RJ1�ωR�dω; Λ � 0;

(57)

where R is the radius of the circular detection geometry.
Equation (56) indicates that the initial photoacoustic pressure
p0�rs� can be obtained by calculating the 2D inverse Fourier
transform of P0�Λ�, which has a computational complexity
of O�n2 log n�, lower than that of the direct-discretization-
based reconstruction �O�n3��.

For cylindrical detection geometries with linear integrating
detectors, image reconstruction can be readily realized by com-
bining the fast image reconstruction procedure for 2D circular
geometries and the 3D inverse Fourier transform[33]. This pro-
cedure can yield fast reconstruction with a computational com-
plexity of O�n3 log n�. For spherical detection geometries, the
derivation of the image reconstruction procedure is similar to
those for circular geometries [Eqs. (52)–(57)]. A prominent dif-
ference is that p0�rs� and P�rd;ω� are expanded into spherical
harmonics. In addition, the fast spherical harmonics (FSH)
transform is adopted to achieve fast reconstruction[163], which
results in a reconstruction complexity of O�n3 log2 n�[33].

Wang and Anastasio in 2012 demonstrated that a mapping
relationship exists between the spatial frequency components
of initial photoacoustic pressure p0�rs� and the temporal
frequency components of measured photoacoustic signals
p�rd; t�[164]. They thus proposed a Fourier-transform-based im-
age reconstruction algorithm whose computational complexity
is O�n2 log n� for 2D image reconstruction in circular geom-
etries and O�n3 log n� for 3D image reconstruction in spherical
geometries[165]. The reconstruction formula does not involve

series expansion of special functions or multi-dimensional inter-
polation operations in Fourier space, which are commonly used
in previous work.

3.3.3 Series expansion for general detection geometries

Kunyansky in 2007 presented a generalized SE method for im-
age reconstruction in arbitrarily closed detection geometry pro-
vided that the eigenfunctions of the Dirichlet Laplacian are
explicitly known[32].

Assuming that λ2k and uk�r� are the eigenvalues and normal-
ized eigenfunctions of the Dirichlet Laplacian in the interior Ω
of a closed detection surface S, we have[32]

∇2uk�r� � λ2kuk�r� � 0; r ∈ Ω; Ω ⊆ Rn

uk�r� � 0; r ∈ S;

kukk22 ≡
Z
Ω
juk�r�j2dr � 1; (58)

where n denotes the spatial dimension. Since the eigenfunctions
uk�r� are orthogonal, the initial photoacoustic pressure p0�r�
can be formulated in series form as

p0�r� �
X∞
k�0

αkuk�r�; (59)

where the coefficients αk can be obtained from the measured
projection data p�rd; t�, and uk�r� is the known eigenfunctions
of the Dirichlet Laplacian determined by detection geometries.
uk�r� is the solution of the Dirichlet problem for the Helmholtz
equation with zero boundary conditions and has the following
Helmholtz representation[32]:

uk�r� �
Z
S
Φλk�jr − rdj�

∂
∂nd

uk�rd�dS; r ∈ Ω; (60)

where Φλk is a free-space rotationally invariant Green’s func-
tion[166], nd is the unit normal vector of the detector surface
pointing to the ROI, and rd is the position of the detector.
The coefficients αk can be calculated by[32]

αk�r� �
Z
Ω
uk�r�p0�r�dr �

Z
S
I�rd; λk�

∂
∂nd

uk�rd�dS; (61)

where I�rd; λk� is given by

I�rd; λk� �
Z

diam�Ω�∕v0

0

g�rd; t�Φλk�t�v0dt: (62)

Here diam�Ω� denotes the diameter of Ω, and g�rd; t� is the
integral over a spherical shell [Eq. (27)] centered at the detector
position rd, which can be calculated from the measured projec-
tion data p�rd; t�. With the calculated coefficients αk and eigen-
functions uk�r�, the initial photoacoustic pressure p0�r� can be
reconstructed [Eq. (59)].

If the eigenfunctions of the Dirichlet Laplacian of a detection
geometry such as a sphere, a half-sphere, a finite cylinder, or a
cube are explicitly known, the eigenfunction-based SE method
can provide exact reconstruction for any closed detection geom-
etry. In particular, when the detection geometry is a cube, the
reconstruction procedure can be implemented using 3D FFT,
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resulting in efficient computation with a complexity of
O�n3 log n� [32]. Furthermore, unlike the FBP algorithm, this
technique can provide theoretically exact reconstruction within
the region enclosed by the detection geometry even if part of a
photoacoustic source is outside the region.

The image reconstruction procedures discussed for planar,
circular, cylindrical, spherical, and arbitrarily closed geometries
are based on the assumption that the acoustic medium is homo-
geneous[32]. For the image reconstruction problem in hetero-
geneous media, Agranovsky and Kuchment proposed an
analytic reconstruction formula that works for any closed detec-
tion geometry and variable SOS satisfying a non-trapping con-
dition[167]. This algorithm can be regarded as a generalization of
the eigenfunction-based SE method for arbitrary closed detec-
tion geometries [Eqs. (58)–(62)][167].

Table 5 lists representative work on SE-based fast image
reconstruction algorithms and Table 6 summarizes representa-
tive work on SE-based image reconstruction in PACT.

3.4 Time Reversal

Time reversal (TR) is a type of algorithm that involves recov-
ering initial photoacoustic pressure via numerically running a

forward acoustic propagation model backward and re-transmit-
ting the photoacoustic signals measured by each detector into
the image domain in a temporally reversed order. TR algorithms
can couple the acoustic properties of media such as SOS, density,
dispersion, and absorption into the acoustic propagation
model and can be used for image reconstruction in arbitrary
closed detection geometry[170]. They are thus regarded as the ‘least
restrictive’ image reconstruction algorithms in PACT[170,171].

3.4.1 Standard time reversal

In 2004, Xu and Wang proposed a TR algorithm in PACT and
derived an analytical expression for image reconstruction based
on the Green’s function with a homogeneous Dirichlet boundary
condition[34]. Under the condition of the far-field approximation
[see Sec. 3.2.1], the derived analytical expression in[34] is re-
duced to the reconstruction formula in FBP [Eq. (47)].
Subsequent research on TR-based image reconstruction pri-
marily focused on coupling the acoustic properties of hetero-
geneous media into the TR model to improve reconstruction
performance[35,170–172]. For example, Hristova et al. studied
TR-based image reconstruction in heterogeneous media, in even
dimensions, and with partially closed detection surfaces[171].
Treeby et al. considered the effect of acoustic absorption of

Table 5 Representative Work on SE-Based Fast Image Reconstruction in PACT

Author Year Detection Geometry Dimension Complexitya Source

Kunyansky 2012 Circular 2D O�n2 log n� [33]

Spherical 3D O�n3log2n�
Cylindrical 3D O�n3 log n�

Wang et al. 2012 Circular 2D O�n2 log n� [165]

Spherical 3D O�n3 log n�
Kunyansky 2007 Cubic 3D O�n3 log n� [32]

Xu et al. 2002 Planar 3D O�n3 log n� [160]

Köstli et al. 2001 Planar 3D O�n3 log n� [31]
a2D image size: n × n; 3D image size: n × n × n.

Table 6 Representative Work on SE-Based Image Reconstruction in PACT

Author Year Detection Geometry Detector SOS Source

Kunyansky 2012 Circular, spherical,
and cylindrical

Point-like detectors for circles and spheres;
linear integrating detectors for cylinder

Constant [33]

Wang et al. 2012 Circular and spherical Point-like detectors Constant [165]

Zangerl et al. 2009 Cylindrical Circular integrating detectors Constant [168,169]

Haltmeier et al. 2007 Cylindrical Linear integrating detectors Constant [161]

Kunyansky 2007 Arbitrary closed geometry Point-like detectors Constant [32]

Agranovsky &
Kuchment

2007 Arbitrary closed geometry Point-like detectors Constant or
variable

[167]

Xu & Wang 2002 Spherical Point-like detectors Constant [135]

Xu et al. 2002 Planar Point-like detectors Constant [158]

Xu et al. 2002 Cylindrical Point-like detectors Constant [160]

Köstli et al. 2001 Planar Point-like detectors Constant [31]
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media and proposed a TR algorithm for absorbing acoustic me-
dia[170].

The TR algorithms are based on the Huygens principle[171].
When the SOS of a medium is constant and the spatial dimen-
sion of an acoustic field is odd, the Huygens principle indicates
that the acoustic wave field vanishes after a moment T [171] and
TR algorithms enable exact image reconstruction for a suffi-
ciently large T. When the SOS is variable or the spatial dimen-
sion is even, the Huygens principle no longer holds, and TR
algorithms can only provide approximate reconstructions[171].

In a lossy medium, the photoacoustic wave equation can be
formulated as an initial value problem by three coupled acoustic
equations and corresponding initial conditions[170]. The coupled
acoustic equations, including the linearized equation of motion,
the linearized equation of continuity, and the adiabatic equation
of state, are given as[170]

∂
∂t
u�r; t� � − 1

ρ0�r�
∇p�r; t�; (63)

∂
∂t
ρ�r; t� � −ρ0�r�∇ · u�r; t�; (64)

p�r; t�

� v0�r�2
�
1� τ�r� ∂

∂t
�−∇2�y∕2−1� η�r��−∇2��y�1�∕2−1

�
ρ�r; t�;

(65)

which are subject to the following initial conditions:

p�r; t�jt�0 � p0�r�; u�r; t�jt�0 � 0. (66)

Here p�r; t� is the acoustic pressure at time t and position r in-
side the imaging region, u�r; t� is the acoustic particle velocity,
ρ�r; t� is the acoustic density, ρ0�r� is the ambient density, and
τ�r� and η�r� are the absorption and dispersion proportionality
coefficients given by

τ�r� � −2α0v0�r�y−1; η�r� � 2α0v0�r�y tan�πy∕2�; (67)

where α0 is the absorption coefficient (dBMHz−y cm−1) and y is
a real constant representing the power law exponent.

TR-based image reconstruction is achieved by running the
same photoacoustic forward model in temporally reversed order
and thus can be formulated by the same set of equations
[Eqs. (63)–(67)] except that the initial conditions in Eq. (66)
are replaced with

p�r; t�jt�0 � 0; u�r; t�jt�0 � 0;

p�rd; t� � p�rd; T − t�: (68)

Figure 16 illustrates the basic principle of TR-based image
reconstruction.

Generally, there is no explicit analytical solution to the partial
differential equations in Eqs. (63)–(65). Numerical methods are
required to solve these equations. Finite element and finite dif-
ference are two commonly used methods for computing numeri-
cal solutions to partial differential equations due to their
flexibility, accuracy, and rigorous mathematical foundations.
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Fig. 16 Illustration of TR-based image reconstruction. (a) Cross section of a spherical absorber
and a spherical detector array. (b) Photoacoustic signal measured by a detector. (c) Temporal
reversion of the measured signal in (b). (d)–(i) Acoustic wave fields in the detection region at differ-
ent moments during backward propagation of the time-reversed signal.
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However, these approaches require many mesh points per
wavelength and small time steps to achieve accurate calcula-
tions, which is computationally expensive, especially for high-
frequency and large-scale imaging models.

To solve this problem, Cox et al. developed a k-space pseu-
dospectral approach that can achieve accurate computations
using fewer mesh points and more time steps[173]. The k-space-
pseudospectral-method-based TR algorithm has been imple-
mented in the k-Wave toolbox[83] and is based on the discrete
form of the coupled acoustic equations [Eqs. (63)–(65)][170],
which can be written as

∂
∂ξ

p�r; t� � F−1fikξκkFfp�r; t�gg; (69)

uξ�r; t� Δt� � uξ�r; t� − Δt
ρ0�r�

∂
∂ξ

p�r; t�; (70)

∂
∂ξ

uξ�r; t� Δt� � F−1fikξκkFfuξ�r; t� Δt�gg; (71)

ρξ�r; t� Δt� � ρξ�r; t� − Δtρ0�r�
∂
∂ξ

uξ�r; t� Δt�; (72)

p�r; t� Δt� � v0�r�2
�X

ξ

ρξ�r; t� Δt� � abs� disp

�
; (73)

where i is the imaginary unit, ξ denotes the Cartesian coordi-
nates [ξ � x represents 1D space, ξ � �x; y� represents 2D
space, ξ � �x; y; z� represents 3D space], kξ is the spatial wave-
number component, Δt is the time step, κk � sinc�v0�r�kΔt∕2�
is a k-space adjustment to the spatial derivative[170], and F and
F−1 represent the forward and inverse Fourier transforms, re-
spectively. Equations (69) and (71) are equations for gradient
calculation and Eqs. (70) and (72) are update equations.
Equation (73) is an equation of state, including the absorption
and dispersion of a medium, which is given by

abs � τ�r�F−1
�
�kξκk�y−2F

�
ρ0�r�

X
ξ

∂
∂ξ

uξ�r; t� Δt�
��

;

(74)

disp � η�r�F−1
�
�kξκk�y−1F

�X
ξ

ρξ�r; t� Δt�
��

: (75)

The above equations are calculated iteratively and the entire
acoustic field is updated for each time step.

One of the most prominent features of the TR algorithm is
that it is well-suited for image reconstruction in acoustically
heterogeneous media. To demonstrate this, a simulation is pre-
sented. Figure 17(a) shows an acoustically heterogeneous
phantom consisting of a uniform background, several blood ves-
sels, and a bone mimicking the cross section of a human finger.
The background and blood vessels have a mass density of
1000 kg∕m3 and an SOS of 1500 m/s. In contrast, the acous-
tically heterogeneous region (i.e., the bone) has a density of
1850 kg∕m3 and an SOS of 3800 m/s. A 512-element full-ring
detector array with a diameter of 50 mm enclosing the phantom
is used for imaging. Figure 17(b) shows the image reconstructed
by the TR algorithm under the assumption that the media are
homogeneous. A typical SOS of 1505 m/s and a density of
1050 kg∕m3 are used. In this case, extensive image artifacts
are present in the reconstructed image due to the inaccurate set-
ting of the SOS and density for the TR model. As a comparison,
Fig. 17(c) presents the image reconstructed by the TR algorithm
coupling the true SOS and density of the heterogeneous media.
The results show that by incorporating the acoustic properties
of media, the TR algorithms can achieve improved image
reconstruction in PACT.

Another important feature of TR is that it can address the
image reconstruction problem in arbitrary closed detection
geometry. Figures 18(a)–18(c) show an imaging example,
where a 2D multi-disk phantom is enclosed by three different
closed detection geometries, including a square, an octagon, and
a circle. The octagon and the circle in Figs. 18(b) and 18(c) can
be circumscribed by the square in Fig. 18(a). Figures 18(d)–
18(f) show the corresponding images reconstructed by the
TR algorithm, which shows that TR can produce good results
for all three detection geometries.

(a)

Bone

5 mm
0

1(c)(b)

vessels

Fig. 17 TR-based image reconstruction in acoustically heterogeneous media. (a) A numerical
phantom consisting of multiple blood vessels and a bone mimicking the cross section of a human
finger. A 512-element full-ring detector array (dashed circle) with a diameter of 50 mm enclosing
the phantom is used for imaging. (b) Image reconstructed by TR using a constant SOS (1505 m/s)
and a constant density (1050 kg∕m3). (c) Image reconstructed by TR coupling the true SOS and
density of the media. Please refer to the text for the simulation settings.
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3.4.2 Modified time reversal based on the Neumann series

The standard TR algorithms discussed above are unable to find
analytical solutions for the wave equations when the SOS is var-
iable or the spatial dimension of an acoustic field is even. To
address this problem, a Neumann-series-based TR algorithm
was proposed by Stefanov and Uhlmann[174] and further devel-
oped by Qian et al.[175]. The basic idea of the Neumann series-
based TR algorithm is to first modify the measurement data at
t � T using a harmonic extension operator, perform TR
reconstruction, and then repeat the TR process[175]. The
Neumann series-based TR algorithm can yield exact
reconstruction if the detected pressure p�rd; t� is known on
the whole boundary Ω0 and the measurement time T is greater
than a stability threshold[175].

In the Neumann-series-based TR algorithm, the initial con-
ditions [Eq. (68)] for the coupled wave equations are modified
to[63,175]

p�r; t�jt�0 � PΩp�r; T�; u�r; t�jt�0 � 0;

p�rd; t� � p�rd; T − t�;
(76)

where PΩ denotes the Poisson operator of the harmonic exten-
sion defined as PΩh�r; T� � ϕ�r�, and ϕ�r� is the solution of
the elliptic boundary value problem

∇2ϕ�r� � 0; ϕ�r�jr∈Ω0
� h�r; T�jr∈Ω0

; (77)

where Ω is the domain defined by a detection surface and Ω0 is
the boundary of the domain.

By introducing a forward acoustic propagation operator A
and a modified TR reconstruction operator ATR

modify, the photo-
acoustic forward problem and the modified TR reconstruction
can be expressed as

p�rd; t� � Ap0�r�; (78)

p0�r� � ATR
modifyp�rd; t�: (79)

The Neumann-series-based TR reconstruction can be ex-
pressed as[175]

p0�r� �
X∞
j�0

�I −ATR
modifyA�jATR

modifyp�rd; t�; (80)

where I is an identity operator. Theoretically, Eq. (80) can pro-
vide an exact reconstruction if the variable j varies from zero to
�∞. However, in practice, j is always finite, and exact
reconstruction is impossible. If j is cut off at a particular value
m, the reconstruction formula in Eq. (80) can be written as

pm
0 �r� �

Xm
j�0

�I −ATR
modifyA�jATR

modifyp�rd; t�: (81)

Equation (81) can be further formulated in the form of iter-
ative TR reconstruction[176], i.e.,

pm�1
0 �r� � pm

0 �r� �ATR
modify�p�rd; t� −Apm

0 �r��: (82)

The estimated initial photoacoustic pressure pm
0 �r� usually

contains pixels with negative intensity due to non-ideal imaging
conditions, such as finite detector bandwidth and limited view
angle. To improve reconstruction results, non-negative con-
straints can be imposed on the solutions during iteration.
Moreover, the Poisson operator of harmonic extension can be
neglected in some cases, e.g., when the spatial dimension of an
acoustic field is even and the medium is homogeneous or when
the time T is large enough to guarantee that acoustic waves in-
side a detection region decay sufficiently. Figure 19 shows an

(a) (b) (c)

(d) (e) (f)

5 mm
0

1

Fig. 18 TR-based image reconstruction under different detection geometries. (a)–(c) Schematic
diagrams showing a phantom and three different detection geometries. The square detection
geometry has a side length of 50 mm, the octagonal geometry has a side length of 20.7 mm,
and the circular geometry has a diameter of 50 mm. (d)–(f) Corresponding images reconstructed
by TR.
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example illustrating Neumann-series-based TR reconstruction
in limited-view imaging.

Table 7 summarizes representative work on TR-based image
reconstruction in PACT.

3.5 Iterative Reconstruction

The last class of conventional image reconstruction algorithms
in PACT is iterative reconstruction (IR), which achieves image
reconstruction through iteration. IR algorithms construct a set of
linear equations based on a discrete photoacoustic imaging

model and iteratively seek numerical solutions by minimizing
the error between measured projection data and their estimates
(see Fig. 20). Compared with the aforementioned DAS, FBP,
SE, and TR algorithms, IR algorithms can yield improved
photoacoustic image quality under non-ideal imaging scenarios,
such as spare-view and limited-view imaging. They can also in-
corporate the physical models of an imaging system, such as
transducer responses and acoustic heterogeneity, to achieve im-
proved imaging. The downside of IR algorithms is that they are
slow and computationally expensive due to the numerical opti-
mization involved.

Table 7 Representative Work on TR-Based Image Reconstruction in PACT

Author Year Solution Media Source

Qian et al. 2011 Numerical Heterogeneous (exact solution) [175]

Treeby et al. 2010 Numerical Heterogeneous, absorptive, and dispersive [170]

Stefanov & Uhlmann 2009 Numerical Heterogeneous (exact solution) [174]

Hristova et al. 2008 Numerical Heterogeneous [171]

Burgholzer et al. 2007 Numerical Heterogeneous [35]

Xu & Wang 2004 Analytical Heterogeneous [34]

Fig. 20 Principle of the IR-based image reconstruction model.
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1
(c) (d)

Fig. 19 Iterative TR-based image reconstruction for limited-view imaging. (a) Schematic diagram
of a phantom and a limited-view detector array. The detector array has 455 detectors uniformly
distributed over a 50-mm-diameter partial circle with a view angle of 3∕4π. (b)–(d) Images recon-
structed by the Neumann-series-based TR algorithm after 3, 5, and 10 iterations.
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3.5.1 Discrete forward imaging model

The basic idea of IR algorithms is to establish a mapping rela-
tionship between the photoacoustic image to be reconstructed
and projection data using a set of linear equations and then solve
them iteratively. To determine the relationship, a discrete photo-
acoustic imaging model was established and is illustrated in
Fig. 21. In the discrete model, the 2D photoacoustic image is
represented by n × n evenly distributed grid points, and the
value of the jth grid point is xj. The photoacoustic signal
p�rd; t� measured by a detector is discretely sampled, and the
sampling length isK. The kth sampling point of the photoacous-
tic signal, denoted as pk, relates to the spherical shell integral of
the photoacoustic image over the kth detection shell, whose ra-
dius equals the TOF of the photoacoustic signal (kΔt, where Δt
is the temporal sampling interval) multiplied by the SOS v0. The
goal of IR-based image reconstruction is to solve for xj from the
projection data pk.

Based on the discrete imaging model, the relationship be-
tween the unknowns xj and the projection data pk can be de-
scribed by the following set of linear equations:

8>><
>>:

a1;1x1 � a1;2x2 � 	 	 	 � a1;NxN � p1;
a2;1x1 � a2;2x2 � 	 	 	 � a2;NxN � p2;

..

.

aK;1x1 � aK;2x2 � 	 	 	 � aK;NxN � pK;

(83)

which can be written as

XN
j�1

akjxj � pk; k � 1; 2;…; K; (84)

where akj is a weighting factor representing the contribution of
the jth grid point to the kth detection shell, N � n × n is the
total number of grid points, and K is the total number of sam-
pling points of a detector. If we consider the projection data
measured by all M detectors and denote

A �

2
6666666666666664

a1;1
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…
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.
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.

…

…

..

.
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; x �
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x1
x2
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.
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.

xN
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7777777777775

;

p �

2
66666666666664

p1

p2

..

.

pK

pK�1

..

.

pMK

3
77777777777775

; (85)

Eq. (83) can be written in matrix form as

Ax � p; (86)

where A is the system matrix that transforms the initial photo-
acoustic pressure x to the measured projection data p. To solve
Eq. (86), the system matrix A should be constructed first.

3.5.2 System matrix construction

A. System matrix construction for acoustically homo-
geneous media

If the imaging medium is acoustically homogeneous, the
photoacoustic wave equations have an explicit analytical solu-
tion, as presented in Eq. (18). The solution describes how the
measured photoacoustic signal p�rd; t� relates to a photoacous-
tic source p0�rs�. Discretizing the solution [Eq. (18)], the sys-
tem matrix A can be constructed as

�p��m−1�K�k �
�

1

4πv20

∂
∂t

Z
p0�rs�
jrs − rmd j

δ

�
t − jrs − rmd j

v0

�
drs

�
t�kΔt

;

(87)

where rmd denotes the position of themth detector, Δt is the tem-
poral sampling interval, and �p��m−1�K�k is the photoacoustic
signal measured by the mth detector at time kΔt. To calculate
Eq. (87), p0�rs� can be expanded using a set of basis functions
as[38]

p0�rs� ≈
XN
j�1

x�rjs�ψ�rjs�; (88)

where rjs represents the position of the jth grid point in the dis-
crete image x, and ψ�rjs� is the basis function at the jth grid
point. Substituting Eq. (88) into Eq. (87), a discrete imaging
model can be obtained as

xN

x1 x2 xn

kth detection shell

Detector

xn+1 x2npk

xj

Fig. 21 Discrete photoacoustic imaging model in IR. The photo-
acoustic image is discretely represented by n × n evenly distrib-
uted grid points. The projection data pk measured by a detector
correspond to the spherical shell integral of the photoacoustic im-
age over the k th detection shell.
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�p��m−1�K�k

�
�XN

j�1

�
1

4πv20

∂
∂t

Z
ψ�rjs�

jrs − rmd j
δ

�
t − jrs − rmd j

v0

�
drs

�
x�rjs�

�
t�kΔt

:

(89)

Comparing Eqs. (84) and (89), the elements of the system
matrix A can be obtained as

�A��m−1�K�k;j �
�

1

4πv20

∂
∂t

Z
ψ�rjs�

jrs − rmd j
δ

�
t − jrs − rmd j

v0

�
drs

�
t�kΔt

;

(90)

where �A��m−1�K�k;j denotes the element in the ��m−1�K�k�th
row and jth column of the system matrix A.

To construct a system matrix with sufficient accuracy, it is
necessary to choose a suitable expansion function ψ . Several
expansion functions are available for this purpose. Among them,
a spherical-voxel function[36,177–179], Kaiser–Bessel functions[38],
and linear interpolation functions[37,40,42,178,180] are the most com-
monly used. Figure 22 shows a schematic of the three expan-
sion-function-based discrete grid models.

The expansion function ψ can help interpret the meaning of
the system matrix A. Suppose that a photoacoustic image in-
cludes only a source defined by an expansion function ψ at grid

point j. The element �A��m−1�K�k;j of the system matrix A is the
response of themth detector at time kΔt, as illustrated in Fig. 23.
This implies that to construct the system matrix A, we can sim-
ply compute the photoacoustic signals measured by each detec-
tor and arrange the signals in a way according to Fig. 23. Since
the system matrix A is only associated with the discrete photo-
acoustic imaging model (Fig. 21) and the expansion function ψ
[Eq. (90)], it can be used for different experiments once con-
structed for a particular imaging system.

A1. Spherical-voxel-based system matrix
A spherical voxel function is defined as[181]

ψ�rj� �
�
1; for jr − rjj ≤ ε∕2;
0; for jr − rjj > ε∕2; (91)

where ε is the spacing between two grid points, and
rj � �xj; yj; zj�T denotes the coordinate of the jth grid point.
In a spherical-voxel-based discrete imaging model, each grid
point in the image to be reconstructed is regarded as a uniform
spherical source[36,177–179]. It is possible to directly construct the
system matrix A based on the definition of the spherical voxel
function. However, there may be problems. This is because a
spherical voxel is typically small in radius. The photoacoustic
signals are short in time and require a high sampling rate, which
leads to an increase in computational complexity or aliasing

a2K,N

(a)

D
et

ec
to

r 1
D

et
ec

to
r 2

x1 x2 xj xN... ...

a11 a12 a1N

aK1 aK2 aKN

... ...

... ...

.........

.........

... ...a2K,1 a2K,2

Detector 1

Detector 2

(b)

xj

Fig. 23 Schematic diagram illustrating the meaning of the elements in a system matrix.
(a) Spherical-voxel-function-based discrete imaging model. The photoacoustic signals generated
from the spherical voxel at the j th grid point are recorded by detectors. (b) Elements of the system
matrix. The j th column of the system matrix corresponds to the photoacoustic signal of the j th
spherical voxel in (a).

(a) (b) (c)

Fig. 22 Illustration of the discrete grid models based on different expansion functions. (a) Discrete
grid model based on a spherical voxel. (b) Discrete grid model based on the Kaiser–Bessel func-
tion. (c) Discrete grid model based on the bilinear interpolation. The red dot in (c) represents the
point to be interpolated.
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artifacts[181]. To address this problem, a spherical-voxel-based
system matrix can be constructed in the frequency domain[181].

Define P and Ã as the discrete Fourier transforms of the mea-
sured projection data p and the system matrix A. The matrix
form of the imaging model in Eq. (86) can be rewritten as[38,42]

Ãx � P; (92)

and the elements of the system matrix are given by[38,42]

�Ã��m−1�K�k;j � P0�f�h̃mSIR�rjs; f�jf�kΔf; (93)

where f denotes the frequency, Δf is the frequency sampling
interval, h̃mSIR�rjs; f� is the Fourier transform of the SIR of the
mth detector and can be written as[38,42]

h̃mSIR�rjs; f� �
1

2πjrjs − rmd j
exp

�
−i2πf jr

j
s − rmd j
v0

�
; (94)

and P0�f� is the Fourier transform of the signal generated from a
photoacoustic source defined by a spherical voxel and is given
as[38,42]

P0�f� � −i v0
f

�
ε

2v0
cos

�
πfε
v0

�
− 1

2πf
sin

�
πfε
v0

��
: (95)

Combining Eqs. (93)–(95), the spherical-voxel-based system
matrix A can be constructed in the frequency domain. This fre-
quency domain approach can solve the sampling problem of
high-frequency photoacoustic signals and make it easier to in-
corporate detector responses (see Sec. 3.5.3).

A2. Kaiser–Bessel-function-based system matrix
The Kaiser–Bessel (KB) functions are radially symmetric

functions defined as[182,183]

b�r� �
8<
:
� 																					

1 − r2∕a2
p �

n In
�
γ

													
1−r2∕a2

p �
In�γ� ; if 0 ≤ r ≤ a;

0; otherwise;

(96)

where In represents the modified Bessel function of the first
kind of order n[184], a is the radius of support, and γ is a shape
parameter governing the width of the radial profile. When

n � 0, a � ε∕2, and γ � 0, the KB function reduces to the
spherical voxel function [Eq. (91)]. The KB-function-based ex-
pansion function can be expressed as

ψ�rj� � b�jr − rjj�; (97)

where rj � �xj; yj; zj�T denotes the coordinate of the jth
grid point.

The elements of the KB-function-based system matrix have
an analytical solution and can be calculated in the frequency
domain[38]. The derivation is similar to that of the spherical-
voxel-based system matrix described in Eqs. (92)–(94) except
that Eq. (95) should be replaced with

P0�f� � − i4π2fa3

v20In�γ�
jn�1

 																																			
4π2a2f2∕v20 − γ2

p �
�4π2a2f2∕v20 − γ2��n�1�∕2 : (98)

Here f denotes the frequency, P0�f� is the Fourier transform of
the signal generated from the photoacoustic source defined by a
KB function, and jn�1 is the spherical Bessel function of the
first kind of order n� 1[184].

In the spherical-voxel-based imaging model, the expansion
function ψ is a sphere with uniform intensity, which is not differ-
entiable at the boundary. Therefore, generated photoacoustic
signals have an infinite bandwidth and may induce numerical
instabilities when calculating the system matrix using Eq. (90).
In the KB-function-based imaging model, the expansion func-
tion ψ is also a sphere but with a smoothly varying intensity. It is
differentiable at any position and thus can avoid numerical
instabilities encountered by the spherical-voxel-based imaging
model.

The shape of the KB function can be adjusted as needed. The
parameter n affects the differentiability of the KB function and
is typically set to a value greater than 2 (n ≥ 2) to guarantee the
continuity of derivatives at the boundary. The parameter a de-
termines the effective size of a voxel and can be selected accord-
ing to the desired spatial resolution. The parameter γ describes
the smoothness of the KB function and impacts the width of the
radial profile. It typically has a value of 10.4 for image
reconstruction in PACT but may vary depending on application
scenarios. Figure 24 illustrates the profiles of a family of KB
functions for a given set of parameters. More details about
the KB functions can be found in[185].

A3. Interpolation-function-based system matrix
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Fig. 24 KB functions with different parameters. (a) Profiles of the KB functions with four groups of
parameters. (b) 3D visualization of the KB function with a � 1, n � 2, and γ � 10.4.
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In addition to the spherical-voxel- and KB-function-based ap-
proaches, the system matrix can also be constructed using linear
interpolation functions. Several different interpolation functions
can be used as the expansion function to describe the mapping
relation between a continuous image and its discrete counterpart.
Generally, a high-order interpolation function helps produce
high-accuracy results, which, however, involves more calcula-
tions. Considering the trade-off between accuracy and efficiency,
bilinear and trilinear interpolation functions are commonly used
for 2D[43] and 3D[38,40,42] IR models, respectively. Specifically,
when the trilinear interpolation method is employed in 3D space,
the expansion function can be expressed as[42]

ψ�rj� �

8><
>:
�
1 − jx − xjj

ε

��
1 − jy − yjj

ε

��
1 − jz − zjj

ε

�
; for jx − xjj; jy − yjj; jz − zjj ≤ ε;

0; otherwise;
(99)

where rj � �xj; yj; zj�T denotes the coordinate of the jth grid
point, and ε is the spacing between two grid points. The equation
implies that the non-zero values of the expansion function ψ ex-
ist only in the ε-neighborhood of position rj. The image value at
any position can be interpolated from its four neighbors in 2D
space or eight neighbors in 3D space.

The interpolation-function-based system matrix A can be
constructed in two steps as[42]

p � Ax ≡ DGx; (100)

where the matrix G represents the spherical Radon transform in
3D [Eq. (27)], and the matrix D represents the differential op-
eration in Eq. (18). The matrix G can be obtained by accumu-
lating all image grid points intersecting with an integrating
spherical shell and satisfies the following relationship[42]:

�Gx��m−1�K�k � ε2
XN
j�1

�x�j
XNp

p�1

XNq

q�1

ψ�rjk;p;q� ≡ �g��m−1�K�k;

(101)

where �g��m−1�K�k ≈ g�rmd ; t � kΔt� is the approximation of the
spherical Radon transform in Eq. (27), and Np and Nq are the
numbers of angular divisions over the polar and azimuth direc-
tions, respectively, on a local spherical coordinate system

centered at rmd
[42]. The differential matrix D can be obtained us-

ing a difference operation and satisfies the following relation-
ship[42]:

�Dg��m−1�K�k �
1

8πv20Δt2

��g��m−1�K�k�1

k� 1
− �g��m−1�K�k−1

k − 1

�

≡ �p��m−1�K�k: (102)

The preceding procedure implies that the system matrix A
can be constructed via the two matrices G and D, while the ma-
trix elements in A do not need to be explicitly calculated.

In addition to the implicit method discussed above, the
interpolation-function-based system matrix can also be con-
structed by explicitly calculating its elements via analytical
methods[37,40,42,43]. The analytical methods typically have better
computational stability due to more accurate calculations of
derivatives.

B. System matrix construction for acoustically hetero-
geneous media

The system matrix discussed above is primarily constructed
based on the analytical solution of the photoacoustic wave equa-
tions [Eq. (18)], where the acoustic medium is assumed to be
homogeneous. When the acoustic media are heterogeneous,
the photoacoustic discrete imaging model can still be described
by the coupled photoacoustic wave equations [Eqs. (63)–(67)],
which, however, have no analytical solutions. Based on the k-
space pseudospectral method (see Sec. 3.4.1), Huang et al. pro-
posed a method for constructing the system matrix A in acous-
tically heterogeneous media[41], which is briefly reviewed below.

Define a vector containing all photoacoustic field variables at
the time step kΔt as[41]

vk � �u1k; u2k; u3k; ρ1k; ρ2k; ρ3k; pk�T; (103)

where vk is a 7N × 1 vector, N is the total number of grid points
in an image, uik and ρik (i � 1, 2, 3) denote the particle velocity
and acoustic density in the ith direction on a 3D Cartesian grid at

a

b

a

b

(a) (b) (c)

Fig. 25 Detector models for building SIR. (a) Detector model under the condition of far-field
approximation. (b) Detector model based on patches (n � 2). (c) Detector model based on dis-
crete detection elements.
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the kth time step, pk is the acoustic pressure at the grid points,
and the superscript T denotes the matrix transpose. The
update of the field variables from t � 0 to t � �K − 1�Δt is de-
scribed by

�v0; v1;…; vK−1�T � TK−1TK−2 	 	 	T1�v0; 07N×1; 	 	 	 ; 07N×1�T;
(104)

where T is a 7NK × 7NK matrix, and K is the total number of
time steps. The vector �v0; 07N×1; 	 	 	 ; 07N×1� represents the val-
ues of the field variables at t � 0 and can be calculated from the
initial photoacoustic pressure p0 as

�v0; 07N×1; 	 	 	 ; 07N×1�T � T0p0; (105)

where T0 is a 7NK × N matrix that maps the initial pressure p0
to the initial value of the field variables at time t � 0[41]. Since
detectors generally do not coincide with image grid points, the
measured photoacoustic projection data p can be related to the
field quantities via interpolation as[41]

p � S�v0; v1; 	 	 	 ; vK−1�T; (106)

where S denotes the interpolation operation, such as the
Delaunay triangulation-based interpolation. Combining
Eqs. (104)–(106), we have

p � STK−1 	 	 	T1T0p0: (107)

By comparing Eq. (107) with Eq. (86), the system matrix can
be obtained as

A � STK−1 	 	 	T1T0: (108)

As mentioned above, the jth column of system matrix A cor-
responds to the response of a detector to the source defined by
an expansion function ψ at grid point j. Therefore, the system
matrix A in heterogeneous media can be constructed by com-
puting the response of a detector when the photoacoustic source
defined by an expansion function ψ traverses all image grid
points, which can be calculated using the k-Wave toolbox[186].

In a homogeneous medium, the construction of the system
matrix A can be simpler. The response of a detector to an ex-
pansion-function-defined source at the first (reference) image
grid point is computed and serves as the first column of A.
The remaining columns of A can be obtained by time-shifting
the elements in the first column while taking into account the
signal attenuation according to the relative position between the
current and the reference grid points. This can greatly improve
the construction speed of the system matrix A.

3.5.3 Transducer response modeling

The IR model discussed above is established based on the
assumption that an ultrasound detector is point-like in shape
and has an infinite bandwidth. However, a real ultrasound de-
tector always has a finite aperture size and a limited bandwidth,
which makes the IR model less accurate. To address this prob-
lem, it is necessary to incorporate the SIR and EIR of an ultra-
sound detector (see Sec. 2.3) to make the system matrix A as
realistic as possible.

A. EIR modeling

When the system matrix is constructed in the time domain,
the discrete photoacoustic imaging model [Eq. (86)] incorporat-
ing the EIR of a detector can be written as[37]

F−1ẼFAx � p; (109)

where the matrix Ẽ denotes the Fourier transform of the EIR of a
detector, and F and F−1 represent the forward and inverse
Fourier transforms, respectively. In contrast, when the system
matrix is constructed in the frequency domain using the spheri-
cal voxel or the KB function, the EIR of a detector can be in-
corporated into a system matrix via[39]

�Ã��m−1�K�k � P0�f�h̃mSIR�rjs; f�h̃EIR�f�jf�kΔf: (110)

Here, P0 is the Fourier transform of the acoustic pressure gen-
erated from the photoacoustic source defined by the spherical
voxel or the KB function, f is the frequency,Δf is the frequency
sampling interval, k is the index of sampling points, and h̃mSIR
and h̃EIR are the Fourier transforms of the SIR and EIR of a
detector, which can be modeled or measured in practice.

B. SIR modeling
B1. Far-field SIR
Several SIR models have been proposed and used for image

reconstruction in PACT[187,188]. When a detector has a flat and
rectangular surface with an area of a × b [see Fig. 25(a)] and
the condition of far-field approximation[189] is met, the temporal
Fourier transform of the SIR of a detector can be expressed as[187]

h̃mSIR�rjs; f� �
ab exp


−i2πf jrjs−rmd j

v0

�
2πjrjs − rmd j

sinc

�
πf

axjmdet
v0jrjs − rmd j

�

× sinc

�
πf

byjmdet
v0jrjs − rmd j

�
; (111)

where xjmdet and yjmdet represent the coordinates of the jth grid in a
local coordinate system at themth detector. Other variables have
the same meanings as those defined in Eq. (90). With Eq. (111),
the system matrix A can be constructed according to Eq. (93).

B2. Patch-based SIR
When the far-field approximation condition does not hold,

the far-field SIR model may lead to inaccurate reconstruction
results. To address this problem, the surface of a detector can
be divided into small patches [Fig. 25(b)]. For each small patch,
the aforementioned far-field assumption is approximately met.
The SIR of each small patch can be characterized by Eq. (111),
and the SIR of the whole detector is obtained by summing the
SIRs of all small patches. Suppose that a detector has an area of
a × b and is divided into n × n patches. Denoting a0 and b0 as
the length and width of each small patch (i.e., a0 � a∕n,
b0 � b∕n), we have

h̃mSIR�rjs; f� ≈
1

n2
Xn2
l�1

h̃m;l
SIR�rjs; f�: (112)

Here h̃m;l
SIR�rjs; f� is the SIR of the lth patch, which can be

calculated using Eq. (111).
B3. Discrete-detection-element-based SIR
The far-field and patch-based SIR models are easy to incor-

porate into the system matrix based on the spherical voxel
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function or the KB function but are difficult to incorporate into
the system matrix based on linear interpolation or the k-space
pseudospectral method. Huang et al.[41] and Ding et al.[40] solved
this problem by dividing the entire detector surface into a set of
detection elements with equal areas, as shown in Fig. 25(c). In
this case, the acoustic pressure p�rd; t� recorded by a detector
can be approximately written as[40]

p�rd; t� ≈
XL
l�1

p�rld; t�σ; (113)

where L is the total number of detection elements, σ is the area
of a detection element (dimensionless), and rld is the position of
the lth detection element. p�rld; t� is the acoustic pressure re-
corded at position rld and time t and can be written in matrix
form as [Eq. (86)]

Alx � pl; (114)

where pl is the acoustic pressure recorded by the lth detection
element, and Al is the system matrix for the lth detection
element. Substituting Eq. (114) into Eq. (113), we have

XL
l�1

Alxσ ≈ p: (115)

The system matrix A in the discrete imaging model in
Eq. (86) is replaced with a weighted summation of L system
matrices Al in the detection-element-based SIR model. To
achieve accurate representation, the size of the discrete detection
element should be small, preferably much less than the acoustic
wavelength[41]. Therefore, the discrete-detection-element-based
SIR model involves more computations and is generally more
time-consuming than the far-field- and patch-based SIR models.

3.5.4 Iterative reconstruction

Once the system matrix A of a PACT imaging system is con-
structed, the initial photoacoustic pressure x can be recovered
from the measured projection data p by solving Eq. (86). In
principle, the linear photoacoustic imaging model in Eq. (86)
can be solved by the pseudo-inverse matrix method, i.e.,

x � A†p; (116)

where A � �AHA�−1AH is the Moore–Penrose pseudo-inverse
matrix of A, and the superscript H denotes the conjugate trans-
pose. However, the pseudo-inverse method is not commonly
used in practice because the system matrix A is generally too
large to be inverted[61]. Alternatively, the imaging model can
be solved iteratively. In this way, the image reconstruction prob-
lem is equivalent to solving the least-square problem

x̂ � arg min
x≥0

1

2
kp − Axk22; (117)

where k·k2 represents the L2-norm, and x̂ is the approximate
solution of the least-square problem. Since the initial acoustic
pressure is non-negative, a non-negativity constraint is imposed
on Eq. (117). Generally, the optimization problem in Eq. (117)
is ill-posed under non-ideal imaging conditions. To address this

problem, Eq. (117) is typically regularized by a penalty function
and can be rewritten as

x̂ � arg min
x≥0

1

2
kp − Axk22 � λR�x�; (118)

where kp − Axk22 is the data fidelity term, R�x� is a regulariza-
tion term, and λ is a regularization coefficient controlling the
weight of regularization, which can be automatically optimized
by methods such as the generalized cross-validation (GCV)
method[190] and the L-curve method[191,192].

One popular regularization technique used in Eq. (118) is
Tikhonov regularization, which can be expressed as[63]

R�x� � kΓxk22; (119)

where Γ is the Tikhonov matrix. In many cases, the Tikhonov
matrix is chosen as the identity matrix (Γ � I), giving prefer-
ence to solutions with smaller norms. When the regularization
term R�x� is convex and differentiable, such as in Tikhonov
regularization, the optimization problem in Eq. (118) can be
solved by optimization methods such as stochastic gradient
descent (SGD)[193,194], least-square QR (LSQR)[195], and conju-
gate gradient (CG)[196]. When a gradient descent method[197] is
used, the optimization problem in Eq. (118) can be solved by

xk�1 � xk − α

�
A��Axk − p� � λ

∂R�xk�
∂xk

�
; (120)

where k is the iteration number, α is the step size controlling the
update rate, A��Axk − p� is the gradient of the fidelity term
kAx − pk22, and A� is the adjoint of the matrix A.

Tikhonov regularization emphasizes the smoothness of an
image and tends to produce images with blurred edges. An al-
ternative to Tikhonov regularization is sparse regularization,
which is non-smooth and aims to find a solution with the
minimum number of non-zero elements in certain transform do-
mains[198–200]. L1-norm-based regularization is one of the most
commonly used sparse regularization methods and has the fol-
lowing form[63,201]:

R�x� �
��Φx

��
1
; (121)

where Φ is a transformation matrix that can be constructed us-
ing sparse basis functions, such as the wavelet function and fi-
nite difference operators. When a finite difference operator is
employed, the L1-norm regularization becomes total variation
(TV) regularization[181], which can be written as

R�x� �
��x��

TV

�
XN
j�1

																																																																																																										
��x�j − �x�jx−1�2 � ��x�j − �x�jy−1�2 � ��x�j − �x�jz−1�2

q
;

(122)

where jx − 1, jy − 1, and jz − 1 are the neighboring grids of the
jth grid along the x-axis, y-axis, and z-axis, respectively, andN is
the total number of image grid points. Sparse regularization in-
volves non-smooth cost functions and can be solved using proxi-
mal point algorithms, such as the iterative shrinkage thresholding
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algorithm (ISTA) and its accelerated version fast ISTA
(FISTA)[202], the iteratively reweighted least squares (IRLS)[203],
and the alternating direction method of multipliers (ADMM)[204].
Specifically, the optimization problem in Eq. (118) can be solved
by a proximal-gradient-descent scheme[45]:

xk�1 � proxR;λ�xk − αA��Axk − p��; (123)

where proxR;λ is a proximal operator related to the regularization
term R�x� and the parameter λ. From Eqs. (120) and (123), we
know that the update process of an IR algorithm is related to the
current reconstructed image xk, the regularization termR�x�, and
the gradient term A��Axk − p�, as shown in Fig. 20.

Combining different regularization strategies may help
achieve improved image quality compared with using only a
single type of regularization[205]. When dual regularization is im-
posed, the regularization term can be written as

R�x� � λ1R1�x� � λ2R2�x�; (124)

where R1�x� and R2�x� represent two types of regularization,
and λ1 and λ2 are the corresponding coefficients. Based on this
idea, Li et al. proposed non-local means and sparse-wavelet-
based dual regularization and achieved image reconstruction
with enhanced SNR and contrast[205].

Figure 26 shows an example of IR-based image
reconstruction in PACT. Figure 26(a) shows a numerical blood
vessel phantom. The photoacoustic signals generated from the
phantom are received by a 50-mm-diameter full-ring detector
array with 64 elements enclosing the phantom. Figure 26(b)
is the image reconstructed by FBP [Eq. (47)]. Severe streak ar-
tifacts are present in the reconstructed image due to the limited
number of ultrasound detectors. Figure 26(c) is the image recon-
structed by TV-based IR. The results show that the IR algorithm
can produce images with fewer artifacts, demonstrating its supe-
rior performance under non-ideal imaging scenarios. The inten-
sity profiles of the reconstructed images indicated by the white
arrow are shown in Fig. 26(d) for comparison of the results of IR
and FBP.

Table 8 summarizes representative work on IR-based image
reconstruction in PACT.

4 Deep Learning Approaches
The aforementioned conventional approaches can achieve high-
quality image reconstruction under ideal imaging conditions.
However, they may face challenges under non-ideal imaging
conditions, such as limited detector bandwidth, finite detector
aperture, limited view angle, sparse detector arrangement,
and inhomogeneous acoustic media. Inspired by the successful
applications of DL across industries such as computer vision[212],
natural language processing[213], and biomedical engineering[214],
DL-based image reconstruction in tomography has drawn con-
siderable attention in recent years[215–217]. DL has been success-
fully used for image reconstruction in CT, magnetic resonance
imaging (MRI), positron emission tomography (PET), ultra-
sound, and other imaging modalities[215,217,218]. It can achieve
tomographic image reconstruction with improved image
quality and computational efficiency. In PACT, DL has been
used to address a range of image reconstruction problems[48,50],
such as detector bandwidth expansion[51,52], resolution enhance-
ment[53,54], low-power/cost imaging[219,220], artifact removal[55],
reconstruction acceleration[57], and reconstruction enhancement
in sparse-view and limited-view imaging[44,46,47,58]. Specifically,
the applications of DL in PACT image reconstruction are mainly
reflected in five aspects, including signal preprocessing in the
data domain, image postprocessing in the image domain, hy-
brid-domain processing in both the data and the image domains,
learned iterative reconstruction, and direct reconstruction.

4.1 Preprocessing in the Data Domain

Under non-ideal imaging conditions, the raw photoacoustic pro-
jection data measured by a detector array may be incomplete
and contain noise. Data-domain signal preprocessing attempts
to transform incomplete photoacoustic projection data to nearly
complete projection data using neural networks before image
reconstruction, as shown in Fig. 27.

Many related studies have emerged based on this idea[221].
Gutta et al. proposed a simple five-layer fully connected net-
work to expand the bandwidth of measured photoacoustic pro-
jection data and achieved image reconstruction with improved
contrast and quality[51]. Awasthi et al. developed a UNet-based
model for super-resolution, denoising, and bandwidth enhance-
ment of photoacoustic projection data in sparse-view imaging
and achieved improved image reconstruction, as shown in
Fig. 28[52]. Here, UNet is a specially designed U-shaped
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Fig. 26 Image reconstruction in sparse-view imaging by IR. (a) Numerical blood vessel phantom.
The photoacoustic signals generated from the phantom are received by a full-ring detector array
with 64 elements enclosing the phantom. (b) Image reconstructed by FBP [Eq. (47)]. (c) Image
reconstructed by TV-based IR. (d) Intensity profiles of the reconstructed images indicated by the
arrow in (a). GT: ground truth.
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convolutional neural network, which has been widely used in
various image processing tasks such as image denoising, image
deconvolution, and image reconstruction. Zhang et al. designed
a network based on a channel-wise attention mechanism to
extract feature relations between sparse data channels and
achieved full-channel projection data recovery from sparse in-
put[222]. Zhang et al. proposed a UNet-based network to correct

photoacoustic projection data with skull-induced aberration in
brain imaging and demonstrated that the aberration could be ef-
fectively removed after preprocessing[223]. These studies show
that preprocessing projection data in the data domain can help
enhance image reconstruction quality.

Table 9 lists representative work on DL-based signal prepro-
cessing in PACT.

Table 8 Representative Work on IR-Based Image Reconstruction in PACT

Author Year
System Matrix

Model Media
Detector
Response Regularization Optimization Dim Source

Yalavarthy et al. 2021 k-space PSTD Heterog EIR Non-local means + TV IRLS 3D [206]

Biton et al. 2019 Interpolation Homog – Adaptive anisotropic TV Chambolle-Pock 2D [201]

Li et al. 2019 Interpolation Homog – Non-local means +
L1 - norm

GD, FISTA 2D [205]

Prakash et al. 2019 Interpolation Homog – Second-order TV CG 2D [207]

Ding et al. 2017 Interpolation Homog SIR – LSQR 3D [40]

Ding et al. 2016 Interpolation Homog – – LSQR 2D [43]

Liu et al. 2016 Curve-driven Homog – – LSQR 2D [208]

Javaherian&
Holman

2016 k-space PSTD Homog – TV Multi-grid ISTA,
FISTA

2D [209]

Wang et al. 2014 KB function Homog EIR, SIR Quadratic smoothness
penalty/Tikhonov

Linear CG 3D [38]

Mitsuhashi et al. 2014 Spherical voxel Homog EIR, SIR Quadratic smoothness
penalty

Fletcher-Reeves
CG

3D [189]

Huang et al. 2013 k-space PSTD Heterog EIR, SIR TV FISTA 2D [41]

Wang et al. 2012 Spherical voxel Homog EIR, SIR Quadratic smoothness
Laplacian/TV

Fletcher-Reeves
CG, FISTA

3D [181]

Deán-Ben et al. 2012 Interpolation Heterog
(Weak)

– Second-order Tikhonov LSQR 2D [210]

Deán-Ben et al. 2012 Interpolation – – Tikhonov LSQR 3D [178]

Rosenthal et al. 2011 Interpolation Homog SIR – Pseudo-inverse,
LSQR

2D [211]

Wang et al. 2011 Spherical voxel Homog EIR, SIR Quadratic smoothness
penalty

Fletcher-Reeves
CG

3D [39]

Rosenthal et al. 2010 Interpolation Homog EIR – Pseudo-inverse,
LSQR

2D [37]

Provost & Lesage 2009 – Homog EIR L1-norm LASSO 2D [198]

Paltauf et al. 2002 Spherical voxel Homog – – Algebraic iteration 3D [36]

Note: PSTD: pseudospectral time-domain; Homog: homogeneous; Heterog: heterogeneous; Dim: dimension; GD: gradient descent; LASSO: least
absolute shrinkage and selection operator.
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Fig. 27 DL-based projection data preprocessing in the data domain.
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Backpropagation

Fig. 28 DL-based preprocessing helps correct photoacoustic projection data and enhances im-
age reconstruction quality. The photoacoustic projection data in this case were recorded by
sparsely distributed detectors with finite bandwidths. (a) Architecture of the UNet used for signal
preprocessing. (b) Reconstructed image of a living rat brain using the raw bandwidth-limited pro-
jection data of 100 detectors. (c) Reconstructed image using the interpolated projection data of
200 detectors. (d) Reconstructed image using the interpolated projection data denoised by auto-
mated wavelet denoising (AWD). (e) Reconstructed image using the interpolated projection data
(c) processed by the super-resolution CNN (SRCNN). (f) Reconstructed image using the interpo-
lated projection data (c) processed by the UNet in (a). Adapted from Ref. [52] with permission.

Table 9 Representative Work on DL-Based Signal Preprocessing in PACT

Author Year Problem Network Dataset Source

Zhang et al. 2023 Skull-induced aberration correction UNet Simulation [223]

Zhang et al. 2022 Sparse-view imaging Transformer Simulation [222]

Awasthi et al. 2020 Bandwidth expansion and
sparse-view imaging

UNet Simulation, phantom (test),
in vivo (test)

[52]

Gutta et al. 2017 Detector bandwidth expansion Five fully connected layers Simulation, phantom (test) [51]
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4.2 Postprocessing in the Image Domain

In addition to signal preprocessing in the data domain, another
application of DL in PACT is image postprocessing in the image
domain, which indicates that deep neural networks can be used
as postprocessing tools for image enhancement (see Fig. 29).
This approach is especially useful for image artifacts removal
in non-ideal imaging scenarios.

To mitigate the image artifacts that often appear in sparse-
view or/and limited-view PACT images, a variety of DL-based
postprocessing methods have been proposed. For example,
Antholzer et al. proposed a UNet-based architecture to process
images reconstructed by FBP in sparse-view imaging and dem-
onstrated the effectiveness of the model in artifact removal[44].
Farnia et al. developed a UNet-based network to process images
reconstructed by TR and achieved artifact suppression with lim-
ited projection data[224]. Davoudi et al. proposed a UNet-based
framework for image quality recovery from sparse and limited
projection data and demonstrated its performance with whole-
body mouse imaging in vivo, as shown in Fig. 30[46].

In addition to the classic UNet, its variants are also com-
monly used as postprocessing tools in PACT. Guan et al. devel-
oped a fully dense UNet (FD-UNet) for image artifact removal
in sparse-view PACT imaging and demonstrated its superiority
over the conventional UNet[225]. Zhang et al. proposed a dual-
domain UNet (DuDoUNet) with a specially designed informa-
tion-sharing block, which takes both time-domain DAS images
and k-space images as inputs, and verified its superiority with a
public clinical database[226]. Guan et al. proposed a 3D modified
UNet called dense dilation UNet (DD-UNet) and demonstrated
its effectiveness in improving the imaging quality in 3D sparse-
view and limited-view imaging[227]. Choi et al. reported a 3D
progressive UNet for multi-parameter dynamic volume imaging
and demonstrated that it could improve imaging speed and re-
duce image artifacts in limited-view PACT imaging, as shown in
Fig. 31[47].

In addition to UNet and its variants, generative adversarial
networks (GANs) are another deep neural network commonly
used for image postprocessing in PACT[228]. GAN shows excel-
lent image processing capabilities and has been successfully
used in many applications, such as image style conversion, im-
age enhancement, and image restoration. A GAN network con-
sists of two sub-networks, i.e., a generator and a discriminator,
which are adversarially trained until the discriminator cannot
distinguish the result produced by the generator and the ground
truth. Vu et al. explored the application of a Wasserstein
GAN with gradient penalty (WGAN–GP) in limited-view
and limited-bandwidth PACT imaging and achieved image ar-
tifact removal[229]. Lu et al. proposed a GAN-based DL approach
(LV-GAN) to recover high-quality images in limited-view

imaging and achieved artifact removal and high recovery accu-
racy under a view angle of less than 60°[58]. Shahid et al. devel-
oped a residual-network-based GAN (ResGAN) to improve
image quality by denoising and removing image artifacts in
sparse-view imaging[230]. The deep neural networks in the above
studies generally require supervision and need a large number of
paired images for training, which are often difficult to obtain,
especially in experiments. To address this problem, Lu et al.
proposed an unsupervised cyclic GAN network (CycleGAN)
that only needs unpaired training and successfully achieved ar-
tifact removal in sparse-view and limited-view PACT images[231].

In addition to solving the image enhancement problem in
sparse-view and limited-view imaging, DL-based postprocess-
ing has also been used to address a variety of other imaging
problems, such as reflection artifact removal and aberration mit-
igation. For example, Shan et al. incorporated a deep neural net-
work into conventional iterative algorithms and successfully
corrected reflection artifacts caused by planar echogenic struc-
tures outside imaging tissues[232]. Jeon et al. developed a hybrid
deep neural network based on SegNet and UNet and achieved
SOS aberration mitigation, streak artifact removal, and temporal
resolution improvement in sparse-view imaging[233]. Gao et al.
proposed a modified encoder-decoder UNet to learn the map-
ping relationship between speckle patterns and target images
in thick porous media and solved the scattering problem in
transcranial photoacoustic brain imaging[234]. Shijo et al. pro-
posed a shifted-window transformer to restore artifact-free im-
ages from artifact-heavy images reconstructed using a TR
algorithm[235].

Deep neural networks have also been used to improve the
spatial resolution of PACT images. For example, Rajendran
and Pramanik employed a fully dense U-Net termed TARES
to improve the spatially variant tangential resolution in circular
scanning PACT imaging systems[53]. Zhang et al. exploited a
fully dense UNet named Deep-E to improve the elevational
resolution of linear-detector-array-based PACT imaging[54].
Based on this work, the same research group proposed a new
Deep-E combining a 2D Deep-E and a 3D Deep-E and demon-
strated its performance in elevational resolution improvement
and deep vessel recovery in linear-detector-array-based PACT
imaging[236].

In addition, DL can also be used to reduce noise in low-
fluence light emitting diode (LED)-based PACT imaging. For
example, Anas et al. designed a deep neural network consisting
of a CNN and a recurrent neural network (RNN) to improve
the SNR of noise-corrupted images in LED-based PACT
imaging[219]. Hariri et al. proposed a multi-level wavelet CNN
(MWCNN) model to enhance image contrast in low-fluence
PACT imaging[220]. The above work demonstrates that DL-based
postprocessing can enhance photoacoustic images in different
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projection data Enhanced image

Deep neural network

Intermediate 
image

Conventional image
reconstruction  

Fig. 29 DL-based image postprocessing in the image domain.
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aspects, including artifact removal, contrast boost, resolution
improvement, and aberration mitigation.

In addition to the above problems, DL-based postprocessing
methods have also been used to address other problems in
PACT, such as quantitative imaging[237–242], image fusion[243], im-
age classification and segmentation[244–246], and band-frequency
separation[247]. Table 10 summarizes representative work on DL-
based image postprocessing in PACT.

4.3 Hybrid-Domain Processing

Data-domain preprocessing and image-domain postprocessing
can only extract feature information from one domain. To
achieve improved imaging results, hybrid-domain processing
attempting to extract feature information from both the data
domain and the image domain (Fig. 32) is also commonly
used.

Based on this idea, Lan et al. proposed a hybrid deep neural
network termed knowledge-infused GAN (Ki-GAN) for image
enhancement in sparse-view PACT imaging[253]. The Ki-GAN

employs raw photoacoustic signals and DAS-reconstructed
photoacoustic images as input and can produce images with bet-
ter quality than conventional DAS-type algorithms and a UNet-
based postprocessing method for both fully and sparsely
sampled data. Based on this work, the authors further developed
a new hybrid-domain DL model named Y-Net for image en-
hancement in limited-view PACT imaging[254]. The Y-Net con-
sists of two encoders and one decoder. The two encoders are
used to separately process raw photoacoustic signals and
DAS-reconstructed photoacoustic images, while the decoder
is employed to fuse the outputs of the two encoders to generate
final images. Davoudi et al. developed a hybrid-domain CNN
model using both time-resolved photoacoustic signals and re-
constructed images as input to enhance the image quality in
limited-view PACT imaging[255] and achieved excellent results
as shown in Fig. 33. Moreover, Guo et al. proposed a hybrid-
domain attention steered network (AS-Net) for image enhance-
ment in sparse-view PACT imaging[256]. The AS-Net also takes
raw photoacoustic signals and DAS-reconstructed images as in-
puts, but the photoacoustic signals are first transformed into
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Fig. 30 DL-based postprocessing for image quality improvement in spare-view PACT.
(a) Modified UNet for image postprocessing. (b) Reference images reconstructed using 512-
channel projection data and their close-ups. (c) Images reconstructed with 32-channel projection
data and their postprocessed versions by the modified UNet. (d) Images reconstructed with
128-channel projection data and their postprocessed versions by the modified UNet. Adapted from
Ref. [46] with permission.
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Fig. 31 DL-based postprocessing for imaging quality enhancement in limited-view 3D PACT.
(a) Architecture of the 3D progressive UNet. (b) Reconstructed images in full-view imaging, cluster
(limited) view imaging, and DL-enhanced cluster imaging. Adapted from Ref. [47] with permission.

Table 10 Representative Work on DL-Based Image Postprocessing in PACT

Author Year Problem Network Dataset Source

Image enhancement from incomplete projection data

Choi et al. 2022 Limited-view imaging 3D progressive UNet In vivo [47]

Shahid et al. 2022 Sparse-view imaging ResGAN In vivo (public
dataset)

[230]

Shahid et al. 2021 Sparse-view imaging 3-layer CNN, UNet, ResUNet In vivo [248]

Zhang et al. 2021 Sparse-view imaging DuDoUNet Simulation [226]

Guan et al. 2021 Sparse-view and
limited-view imaging

DD-UNet Simulation [227]

Godefroy et al. 2021 Limited-view and
finite-bandwidth

imaging

UNet Simulation, phantom [249]

Lu et al. 2021 Limited-view imaging LV-GAN Simulation, phantom,
in vivo (test)

[58]

Lu et al. 2021 Sparse-view imaging CycleGAN Simulation, phantom,
in vivo

[231]

Guan et al. 2020 Sparse-view imaging FD-UNet Simulation [225]

Farnia et al. 2020 Sparse-view imaging UNet Simulation, in vivo
(test)

[224]

(Table continued)
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a 3D square matrix before being fed into the network to ensure
compatibility with the input of the AS-Net. The AS-Net adopts a
self-attention mechanism for semantic feature extraction and fu-
sion and is very efficient.

In addition to exploiting raw projection data directly, pre-
processed projection data can also be used as the input of a
hybrid-domain network. For example, Li et al. proposed a
hybrid-domain CNN model called PRNet to improve the quality
of sparse-view photoacoustic images[257]. The PRNet uses not

only raw photoacoustic projection data but also their derivatives
as input. Lan et al. proposed a joint feature fusion framework
(JEFF-Net) to enhance photoacoustic images from limited-view
projection data[258]. The JEFF-Net uses the sub-DAS images
generated from each-channel raw projection data and the whole
DAS images generated from all projection data as input, as
shown in Fig. 34.

Table 11 lists representative work on DL-based hybrid-
domain processing in PACT.

Vu et al. 2020 Limited-view and
finite-bandwidth

imaging

WGAN-GP Simulation, phantom
(test), in vivo (test)

[229]

Zhang et al. 2020 Sparse-view and
limited-view imaging

RADL-Net(10-layer CNN) Simulation, phantom
(test), in vivo (test)

[250]

Antholzer et al. 2018 Sparse-view imaging UNet Simulation [44]

Davoudi et al. 2019 Sparse-view and
limited-view imaging

UNet Simulation, phantom,
in vivo

[46]

Inhomogeneous acoustic media

Gao et al. 2022 Thick porous media UNet Simulation, phantom,
ex vivo

[234]

Jeon et al. 2020 SOS aberration SegUNet Simulation, phantom,
in vivo (test)

[233]

Shan et al. 2019 Reflection artifact
correction

UNet Simulation [232]

Resolution enhancement

Zheng et al. 2022 Elevational resolution
enhancement

Deep-E (2D and 3D FD-UNet) Simulation, phantom
(test), in vivo (test)

[236]

Zhang et al. 2021 Elevational resolution
enhancement

Deep-E (2D FD-UNet) Simulation, phantom
(test), in vivo (test)

[54]

Rajendran & Pramanik 2020 Tangential resolution
enhancement

TARES (FD-UNet) Simulation, phantom
(test), in vivo (test)

[53]

Low-energy imaging

Hariri et al. 2020 Low-fluence imaging Multi-level wavelet UNet Phantom, in vivo
(test)

[220]

Anas et al. 2018 LED imaging RNN Phantom, in vivo
(test)

[219]

Image classification and segmentation

Lafci et al. 2021 Segmentation UNet In vivo [246]

Chlis et al. 2020 Segmentation Sparse UNet In vivo [245]

Zhang et al. 2019 Classification and
segmentation

AlexNet and GoogLeNet Simulation [244]

Others

González et al. 2023 Band-frequency
separation

FD-UNet Simulation [247]

Rajendran & Pramanik 2022 Imaging speed
improvement

UNet Simulation, phantom
(test), in vivo (test)

[251]

Rajendran & Pramanik 2021 Radius calibration RACOR-PAT(FD-UNet) Simulation, phantom,
in vivo

[252]

Awasthi et al. 2019 Image fusion PA-Fuse (DeepFuse) Simulation, phantom
(test), in vivo (test)

[243]
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4.4 Learned Iterative Reconstruction

Conventional DL approaches generally employ deep neural net-
works as independent modules for signal preprocessing, image
postprocessing, or hybrid processing. In contrast, learned iter-
ative reconstruction (IR) algorithms attempt to fuse deep neural
networks into an IR model to improve the quality and efficiency
of image reconstruction. Specifically, learned IR algorithms em-
ploy deep neural networks to learn the regularization term or
regularizer R�x�[259,260] or learn an entire iteration process[45,261],
as shown in Fig. 35.

A regularizer is important for IR-based image reconstruction,
especially for limited projection data. Conventional regularizers

such as Tikhonov and TV may not necessarily be optimal. Data-
driven DL-based regularizers were thus proposed to replace
conventional regularizers. Li et al.[259] and Antholzer et al.[260]

used a neural network to learn the Tikhonov regularizer to im-
prove the image quality in sparse-view PACT imaging.
However, the Tikhonov regularizer is trained before the IR loop
and is not updated during iteration. Therefore, the learned
Tikhonov regularizer may not be optimal for the image
reconstruction problem in PACT. Wang et al. considered the en-
tire IR process and proposed a learned IR model based on
Eq. (120)[197], as shown in Fig. 36. The learned IR model takes
the current reconstructed image xk and the gradient term

Neural network 2

Raw
projection data

Neural network 1

Neural network 3

Final Image

Intermediate
image

Preprocessing 

Conventional 
image

reconstruction  

Fig. 32 DL-based hybrid-domain processing. The neural networks 1 and 2 are used to extract
feature information from the signal domain and the image domain, while the neural network 3
is used to fuse the outputs of the preceding two networks to generate the final images.

Fig. 33 DL-based hybrid-domain processing for enhancing the imaging quality in limited-view
PACT imaging. (a) Architecture of the dual-domain CNN. (b) Reconstructed results of an in vivo
human finger. Adapted from Ref. [255] with permission.
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AT�Axkp� as inputs and updates the regularizer and the hyper-
meters α and λ in each iteration. The experimental results show
that the learned IR model is effective at improving the quality of
sparse-view PACT images and has a faster convergence speed

than conventional IR algorithms. Moreover, Lan et al. proposed
a novel untrained CNN-based compressed sensing regularizer
for sparse-view PACT imaging and achieved improved image
quality compared with conventional IR algorithms[262].

Fig. 34 JEFF-Net for image enhancement in limited-view PACT imaging. RGC-Net: residual
global context subnetwork; SCTM: space-based calibration and transition module; GT: ground
truth. Reprinted from Ref. [258] with permission.

Table 11 Representative Work on DL-Based Hybrid-Domain Processing in PACT

Author Year Problem Network Dataset Source

Inputs: raw data + reconstructed image

Guo et al. 2022 Sparse-view imaging AS-Net Simulation, in vivo [256]

Davoudi et al. 2021 Limited-view imaging CNN In vivo [255]

Lan et al. 2020 Limited-view imaging Y-Net Simulation, ex vivo (test), in vivo (test) [254]

Lan et al. 2019 Sparse-view imaging Ki-GAN Simulation [253]

Inputs: preprocessed raw data + reconstructed image

Lan et al. 2023 Limited-view imaging JEFF-Net Simulation, in vivo [258]

Li et al. 2021 Sparse-view imaging PR-Net Simulation, phantom [257]

Neural network 3

Neural network 1

Neural network 2

+

IR loop 

Gradient

+DL-based regularizer

* 1( )k + –A Ax p
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Fig. 35 Learned IR method in PACT.
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In addition to learning a regularizer, it is also possible to learn
an entire iteration process [Eqs. (120) and (123)] using deep
neural networks. For example, Hauptmann et al. proposed a
deep gradient descent (DGD) algorithm to reconstruct high-
resolution 3D images from restricted photoacoustic projection
data in limited-view PACT imaging[45]. In the DGD algorithm,
a CNN model was designed to learn the proximal operator in
Eq. (123), which yields high-quality images at a fast conver-
gence speed, as shown in Fig. 37. Similarly, Yang et al.
proposed using recurrent inference machines (RIMs) to learn an
iteration process in IR and achieved accelerated reconstruc-
tion[261]. Lan et al. developed a CNN network combining a
variational model to learn an iteration process and achieved
robust and accelerated reconstruction in limited-view PACT im-
aging[263]. Shan et al. proposed a simultaneous reconstruction
network (SR-Net) to update the initial pressure x and the sound
speed v0 at each iteration of IR reconstruction for PACT imag-
ing in acoustically heterogeneous media[264]. Moreover, Boink
et al. proposed a learned primal-dual (L-PD) framework to
learn an iteration process in IR and achieved simultaneous
high-quality image reconstruction and segmentation in limited-
view and sparse-view PACT imaging[265]. Recently, diffusion
models in DL have attracted great attention in the field of bio-
medical image processing because of their powerful generative
capabilities[266,267]. In PACT, some studies have incorporated dif-
fusion models into iterative optimization frameworks, which
show superior performance compared with conventional IR
algorithms[268–271].

Generally, compared with conventional IR algorithms,
learned IR methods can improve reconstruction efficiency by
reducing the number of iterations. However, they are still
time-consuming because the reconstruction model [Eqs. (120)
and (123)] needs to be solved repeatedly. To accelerate the con-
vergence of learned IR algorithms, Hsu et al. proposed a fast
iterative reconstruction (FIRe) algorithm that simultaneously
learns the discrete forward photoacoustic imaging model
in Eq. (86) and an entire iteration process to reduce the
reconstruction time[57]. Results showed that the FIRe algorithm
can produce images with a quality comparable to that of learned
IR and conventional IR algorithms but with reconstruction time
reduced by nine and 620 times, respectively.

Table 12 lists representative work on DL-based IR in PACT.

4.5 Direct Reconstruction

In the aforementioned DL-based approaches, deep neural net-
works generally perform only certain functions, such as prepro-
cessing, postprocessing, and regularizer learning, and cannot
independently reconstruct images from raw projection data
without the use of conventional algorithms. Nevertheless, deep
neural networks can perform direct image reconstruction alone
by learning the mapping relationship between raw photoacous-
tic projection data and reconstructed images (see Fig. 38).

In 2018, Waibel et al. used a UNet-like model to reconstruct
images from limited-view photoacoustic projection data and
demonstrated the feasibility of neural-network-based direct

(b)

(a)

Tikhonov TV Learned regularizer Reference

Fig. 36 Learning a regularizer. (a) Dual-path network for regularizer learning. (b) Cross-sectional
images of a mouse reconstructed by IR with Tikhonov, TV, and learned regularizers. The learned
regularizer has the highest image quality in terms of detail preservation and artifact suppression.
Adapted from Ref. [197] with permission.
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Table 12 Representative Work on DL-Based IR in PACT

Author Year Problem Network Dataset Source

Regularizer learning

Wang et al. 2022 Sparse-view imaging CNN Simulation, in vivo [197]

Lan et al. 2021 Sparse-view imaging Untrained CNN
(deep image prior)

Simulation (test), phantom
(test), in vivo (test)

[262]

Antholzer et al. 2019 Sparse-view imaging ResUNet Simulation, phantom (test) [260]

Li et al. 2018 Sparse-view imaging Encoder-decoder Simulation [259]

Entire IR learning

Hsu et al. 2023 Reconstruction acceleration FIRe Simulation [57]

Lan et al. 2022 Limited-view imaging CNN Simulation, in vivo (public
dataset)

[263]

Boink et al. 2020 Image reconstruction and
segmentation

CNN Simulation, phantom [265]

Yang et al. 2019 Reconstruction acceleration RIM Simulation [261]

Shan et al. 2019 Joint reconstruction SR-Net Simulation [264]

Hauptmann et al. 2018 Limited view and
acceleration

CNN Simulation, phantom, in vivo [45]

Diffusion model

Guo et al. 2024 Limited-view imaging UNet Simulation, in vivo [268]

Dey et al. 2024 Limited-view and sparse-
view imaging

CNN Simulation, in vivo [270]

Fig. 37 Learning 3D IR based on DGD. (a) Structure of the CNN representing one iteration of
DGD. (b) From left to right: initialization of the network, DGD result with five iterations, TV result
with 50 iterations, and reference image. The proposed learned IR has a faster convergence speed
than the conventional TV-based IR algorithm. Adapted from Ref. [45] with permission.
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image reconstruction through numerical simulation[272]. Lan
et al. proposed a UNet-based deep neural network (DUNet) to
reconstruct PACT images from multi-frequency photoacoustic
projection data and demonstrated its superiority over conven-
tional image reconstruction algorithms[273]. Feng et al. developed
a residual-block-based end-to-end UNet (Res-UNet) to recon-
struct PACT images from raw photoacoustic projection data and
achieved high-quality image reconstruction with sharp edges
and suppressed artifacts[274]. Lan et al. designed an encoder-
decoder network to transform superimposed four-channel
photoacoustic projection data into reconstructed images and
achieved real-time PACT imaging with a single-channel data ac-
quisition (DAQ) system[275]. Recently, Shen et al. developed a
physics-driven DL-based filtered back projection (dFBP) frame-
work for direct image reconstruction from raw projection

data[276]. The dFBP network is constructed based on the physical
model of the analytical FBP algorithm [Eq. (47)] and consists
of a filtering module, a back-projection module, and a fusion
module, as shown in Fig. 39. The proposed dFBP is robust
and flexible, can achieve direct signal-to-image transformation
with enhanced accuracy, and reconstruct high-quality, artifact-
suppressed images from sparse-view, limited-view, and acoustic
heterogeneity-contaminated projection data. Moreover, Lan
et al. designed a self-supervised deep-learning framework for
image reconstruction from extremely sparse projection data.
The success of the network can be mainly attributed to the adop-
tion of a transformer-based self-attention mechanism[277].

To reduce the complexity of network training, raw photo-
acoustic projection data can be preprocessed to produce high-
level features before being fed into an image reconstruction

(a)

(b)

Back-projectionFiltering Summation

Signal ImageBack-projection term Projection images

Filtering module Back-projection module Fusion module

Transformation Decomposition

mmation

Image

module Fusion module

mposition

(c) (d) (e) (f)

Fig. 39 Direct image reconstruction using dFBP. (a) Physical model of the analytical FBP [Eq. (47)].
(b) Architecture of the dFBP, which consists of a filtering module, a back-projection module, and a
fusionmodule. (c), (d) Images separately reconstructed by FBP and dFBP using 128-channel photo-
acoustic projection data. (e), (f) Images separately reconstructed by FBP and dFBP from limited-
view photoacoustic projection data (view angle: 3π∕4). Reprinted from Ref. [276] with permission.

Neural network

Raw 
projection data

Image

Preprocessing

Fig. 38 DL-based direct image reconstruction in PACT.
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network. Guan et al. proposed UNet-based pixel-wise deep
learning (Pixel-DL) that uses pixel-interpolated data as input
and realized direct image reconstruction in limited-view and
sparse-view PACT imaging[278]. Similarly, Kim et al. developed
a deep convolutional network (upgUNet), which takes multi-
channel features extracted from raw photoacoustic projection
data as input, and achieved direct image reconstruction in lim-
ited-view PACT imaging[279], as shown in Fig. 40(a). Inspired by
the principle of FBP, Tong et al. designed a feature projection
network (FPNet) that takes raw photoacoustic projection data
and their first-order derivative as input [Fig. 40(b)] and achieved
high reconstruction quality from limited-view data with sparse
measurements[280]. Recently, Dehner et al. proposed a deep
neural network named DeepMB for real-time IR image
reconstruction with adjustable SOS[281,282]. DeepMB learns con-
ventional IR algorithms using domain-transformed projection
data as input and can reconstruct high-quality images 3000

times (less than 10 ms per image) faster than conventional
IR algorithms.

Table 13 lists representative work on DL-based direct image
reconstruction in PACT.

5 Performance Comparisons
Thus far, we have reviewed the principles of the six classes of
image reconstruction algorithms in PACT, namely, DAS, FBP,
SE, TR, IR, and DL. To choose the most appropriate algorithm
in practice, it is necessary to understand the characteristics and
performance of each method under different imaging scenarios.
In this section, we discuss and compare the six classes of algo-
rithms, focusing on image reconstruction quality and image
reconstruction speed. Table 14 first summarizes the overall char-
acteristics and performance of each algorithm when evaluated
under different circumstances, which will be discussed in detail
below.

Fig. 40 DL-based direct image reconstruction using high-level features extracted from raw photo-
acoustic projection data. (a) Architecture of the upgUNet proposed by Kim and coworkers.
Reprinted from Ref. [279] with permission. (b) Architecture of the FPNet + UNet proposed by
Tong and coworkers (top) and representative reconstruction results (bottom). Adapted from
Ref. [280] with permission.

Tian et al.: Image reconstruction from photoacoustic projections

Photonics Insights R06-45 2024 • Vol. 3(3)



5.1 Image Reconstruction Quality under Various
Imaging Scenarios

5.1.1 Ideal imaging conditions

To achieve perfect image reconstruction or acoustic inversion in
PACT, photoacoustic signal detection should be performed
under ideal conditions: (1) the ultrasound detectors used for sig-
nal detection should have an infinite bandwidth; (2) the ultra-
sound detectors should have a point-like aperture; (3) the
ultrasound detectors should be densely arranged in space;
(4) the detector array formed by individual detectors should
have a full view angle with respect to a sample; and (5) the

acoustic media should be homogeneous. When these conditions
are satisfied, all six classes of image reconstruction algorithms
are expected to produce high-quality images.

However, practical photoacoustic signal detection is unlikely
to be ideal. In the following section, we discuss and compare the
performances of the image reconstruction algorithms under non-
ideal imaging scenarios.

5.1.2 Limited detector bandwidth

The ultrasound detectors used for photoacoustic signal detection
should ideally have an infinite bandwidth so that they can

Table 13 Representative Work on DL-Based Direct Signal-to-Image Reconstruction in PACT

Author Year Problem Network Dataset Source

Input: raw data

Shen et al. 2024 Sparse-view/limited-view
imaging

Learned FBP Simulation, in vivo [276]

Lan et al. 2023 Channel data decoupling Encoder-decoder Simulation, in vivo [275]

Feng et al. 2020 Direct image reconstruction Res-UNet Simulation, phantom (test) [274]

Lan et al. 2019 Multi-frequency image
reconstruction

DUNet Simulation [273]

Allman et al. 2018 Image reconstruction with
source detection and

reflection artifacts removal

Deep fully convolutional
network + Fast R-CNN

Simulation, phantom [283]

Waibel et al. 2018 Limited-view imaging UNet Simulation [272]

Input: high-level features extracted from raw data

Dehner et al. 2022 IR algorithm acceleration DeepMB Simulation, in vivo (test) [281]

Guan et al. 2020 Sparse-view and limited-view
imaging

FD-UNet Simulation [278]

Kim et al. 2020 Limited-view imaging upgUNet Simulation, phantom (test),
in vivo (test)

[279]

Tong et al. 2020 Sparse-view & limited-view
imaging

FPNet +UNet Simulation, phantom,
in vivo

[280]

Table 14 Comparison of Different Image Reconstruction Algorithms in PACTa

Circumstance DAS FBP SE TR IR DL

Detector EIR modelingb Difficult Difficult Difficult Difficult OK OK

Detector SIR modelingc Difficult Difficult Difficult Difficult OK OK

Performance in sparse-view imaging Poor Poor Poor Poor Good Excellent

Performance in limited-view sampling Poor Poor Poor Poor Good Excellent

Media property coupling Difficult Difficult Difficult OK OK OK

Speed Fast Fast Very fast Slow Very slow Fast

Memory footprint Very low Very low Low High Very high High or very high
aThe comparisons in this table are based on typical situations. The variants of some algorithms may have distinct characteristics. For example,

modified FBP algorithms may be able to incorporate the SIR of a detector[284,285], modified SE algorithms can be used for image reconstruction in
heterogeneous media[167], and iterative DL may be slow[45].

bThe DAS, FBP, SE, and TR algorithms are generally not ready to incorporate the non-ideal EIR of a detector. However, the raw photoacoustic signals
measured by a detector can be first deconvolved to correct the non-ideal EIR and then fed into the algorithms to obtain good results.

cThe DAS, FBP, SE, and TR algorithms are generally not ready to incorporate the non-ideal SIR of a detector. However, the images reconstructed by
these algorithms can be deconvolved to correct the non-ideal SIR.
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respond to all frequency contents of a signal[4]. However, a
practical detector always has a limited bandwidth and a non-
ideal EIR, which distorts measured photoacoustic signals and
blurs reconstructed images. To deal with this problem, a
reconstruction algorithm should consider the non-ideal EIR.
The six classes of algorithms reviewed in this paper have differ-
ent characteristics in addressing this problem. It is generally dif-
ficult for DAS, FBP, SE, and TR algorithms to incorporate the
non-ideal EIR of a detector into their reconstruction models but
easy for IR- and DL-based algorithms, as summarized in
Table 14. Specifically, IR algorithms can easily solve the
non-ideal EIR problem by incorporating it into the system ma-
trix A [Eq. (110)], and DL algorithms can solve the problem by
training a reconstruction network with EIR-corrected signal-
image datasets.

To understand how different image reconstruction algorithms
behave in the case of non-ideal EIR, an example is given in
Fig. 41. In this example, the photoacoustic source is a numerical

blood vessel phantom distributed in the x–y plane [Fig. 41(a)].
The detector array used for imaging is a full ring with a diameter
of 50 mm and has 512 evenly distributed elements, each of
which has a point-like shape. To simulate the limited bandwidth
case, the detector array is assigned a center frequency of 2 MHz
and is assumed to have a Gaussian-like EIR with a fractional
bandwidth of 80%. Figures 41(b)–41(d) show the images recon-
structed by the FBP-, TR-, and EIR-corrected IR algorithms,
respectively. Figures 41(e)–41(g) are the images of Figs. 41(b)–
41(d) with negative values removed (negative values in a photo-
acoustic image have no physical meaning). The results show
that the images reconstructed by FBP and TR have apparent ar-
tifacts, while the images reconstructed by IR have much fewer
artifacts due to the correction of the detector EIR. Note that
since DAS and SE typically have similar performance to
FBP and are commonly adopted in PACT systems with linear
and planar detector arrays, they are not compared in this
example.
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Fig. 41 Performance comparison of FBP, TR, and IR when the detectors used for signal detection
have a limited bandwidth. (a) A full-ring detector array in 3D space and a numerical blood vessel
phantom used for simulation. (b)–(d) Images reconstructed by FBP, TR, and EIR-corrected IR
algorithms, respectively. (e)–(g) Images in (b)–(d) with negative values removed and close-up
views of the images in the red dashed box. In this example, the detector array is assumed to have
a Gaussian-like EIR with a bandwidth of 80%. Other simulation settings can be found in the text.
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Although DAS, FBP, SE, and TR algorithms are generally
not ready to incorporate the EIR of a practical detector, their
input signals can be preprocessed by deconvolution or DL to
correct the non-ideal EIR. In deconvolution, the EIR of a detec-
tor is first experimentally measured using a point object and then
incorporated into the signal detection model [Eq. (23)] for cor-
rection. In DL-based preprocessing, the EIR of a detector can
be compensated for by training a neural network using EIR-
corrected photoacoustic signals. Figure 42 shows an example
demonstrating that signal preprocessing helps correct the non-
ideal EIR of a detector and improves image reconstruction re-
sults[51]. In this example, the photoacoustic source is a numerical
blood vessel, as shown in Fig. 42(a). Photoacoustic signals were
measured by a full-ring detector array consisting of 100 elements
with a radius of 37.02 mm, a center frequency of 2.25 MHz,
and a fractional bandwidth of 70%. Figures 42(b) and 42(c)
are images reconstructed using full and limited-bandwidth
photoacoustic signals, respectively. Figures 42(d) and 42(e)
are images reconstructed using signals separately preprocessed
by deconvolution and a deep neural network, which were both
designed to compensate for the EIR effect of the detector array.
Figures 42(f)–42(j) show the corresponding results for a
Derenzo phantom. The simulation results show that deconvolu-
tion and DL-based signal preprocessing can effectively correct
non-ideal EIRs and improve image reconstruction quality.

5.1.3 Finite detector aperture size

In addition to having an infinite bandwidth, an ideal ultrasound
detector used for photoacoustic signal detection should also
have a point-like shape so that it can respond to photoacoustic
signals from all directions[4]. However, a practical detector al-
ways has a finite aperture size and a non-ideal SIR, which dis-
torts measured photoacoustic signals and blurs reconstructed
images. To address this problem, a reconstruction algorithm
should consider the non-ideal SIR. The six classes of algorithms
reviewed in this paper have different characteristics in address-
ing this problem. It is generally difficult for DAS, FBP, SE, and
TR algorithms to incorporate the non-ideal SIR of a detector
into their reconstruction models but easy for IR- and DL-
based algorithms, as summarized in Table 14. Specifically,

IR algorithms can easily solve the non-ideal SIR problem by
incorporating it into the system matrix A [Eq. (93)], and DL
algorithms can solve this problem by training a reconstruction
neural network with SIR-corrected signal-image datasets.

To understand how different image reconstruction algorithms
behave in the case of non-ideal SIRs, a simulation from[286] is
adapted and shown in Fig. 43. In this example, the photoacous-
tic source has six-point absorbers located at different distances
from the origin. Photoacoustic signals were recorded by a
detector with a 6-mm-diameter aperture size and a center fre-
quency of 5MHz. The detector rotated around the photoacoustic
source to record signals at different positions. Figures 43(a) and
43(b) show the images reconstructed by a model-based algo-
rithm and DAS, respectively. The model-based algorithm uses
a similar discrete imaging model [Eq. (86)] as IR and couples
the SIR of the detector in its system matrix. The results show

Ground truth

(a)

(f)

(b) (c) (d) (e)

(g) (h) (i) (j)

Full bandwidth 70% bandwidth Deconvolution Deep neural network

Fig. 42 Signal preprocessing helps correct the non-ideal EIR of a detector and improves image
reconstruction quality. First row: (a) numerical blood vessel used for the test. (b), (c) Images re-
constructed using full and limited-bandwidth photoacoustic signals, respectively. (d), (e) Images
reconstructed using signals preprocessed by deconvolution and a deep neural network, respec-
tively. Second row: (f)–(j) a Derenzo phantom and corresponding results. Detailed simulation set-
tings can be found in the text. Adapted from Ref. [51] with permission.

(a) Model-based (b) DAS

Fig. 43 Performance comparison of a model-based algorithm
and DAS when the detector used for signal detection has a finite
aperture size. (a), (b) Images reconstructed by the model-based
algorithm and DAS, respectively. The model-based algorithm
uses a similar discrete imaging model [Eq. (86)] as IR but couples
the detector SIR in its system matrix. Reprinted from Ref. [286]
with permission.
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that the image reconstructed by DAS has significant distortions
while the image recovered by the model-based algorithm has
much fewer distortions due to the correction of the detector SIR.

Although DAS, FBP, SE, and TR algorithms are generally
not ready to incorporate the SIR of a practical detector, their
output images can be postprocessed by deconvolution or DL
to correct the non-ideal SIR. In deconvolution, the SIR of a de-
tector is first modeled using linear acoustics[39,287,288] and then
incorporated into a non-blind image deconvolution model for
SIR correction. Alternatively, the SIR can be unknown and a
blind deconvolution algorithm is employed to correct the non-
ideal SIR. In DL-based postprocessing, the SIR of a detector can
be compensated for by training a neural network using SIR-cor-
rected photoacoustic images. Figure 44 shows an example dem-
onstrating that DL-based image postprocessing helps correct the
non-ideal SIR of a detector and improves image quality[53]. In
this example, the photoacoustic source contains four-point tar-
gets. The detector used for signal detection has a finite aperture
size and a center frequency of 2.25 MHz. The detector rotates
around the photoacoustic source to measure signals at different
positions. Figures 44(a) and 44(b) are images reconstructed us-
ing DAS without and with DL-based image postprocessing, re-
spectively. The results show that the DAS-reconstructed image
without postprocessing has significant distortions, while the im-
age with postprocessing has much fewer distortions. This indi-
cates that DL-based image postprocessing can effectively
correct non-ideal SIRs and improve image reconstruction
quality.

Although here we independently discuss the EIR and SIR of
a detector, they are never separable and together constitute the
total impulse response (TIR) of a detector. To address the TIR of
a detector, methods similar to those used for EIR and SIR cor-
rection can be used. In other words, the TIR of a detector can be
experimentally measured and incorporated into IR or DL mod-
els for improved image reconstruction[289]. Alternatively, non-
blind deconvolution, blind deconvolution, and DL-based image
postprocessing techniques can also be adopted to correct the
non-ideal TIR of a detector[290–292].

5.1.4 Sparse-view imaging

Ideally, the ultrasound detectors used for photoacoustic signal
detection should be densely arranged in space to satisfy the spa-
tial Nyquist sampling theorem[4]. However, the detectors in a
practical detector array are often sparse due to high fabrication

costs, leading to the ill-posed problem of image reconstruction
from sparse projection data. The six classes of algorithms re-
viewed in this paper have different performances when dealing
with this problem. Generally, analytical algorithms such as
DAS, FBP, SE, and TR have similar performance and require
more projection data to reconstruct an image with reasonable
image quality than do IR algorithms, which solve the image
reconstruction problem in the sense of least squares; IR algo-
rithms require more projection data than DL-based algorithms,
which are data-driven and can realize complicated signal-to-
image mapping using sparse projection data. In other words,
DL-based algorithms have better performance than IR algo-
rithms in sparse-view PACT imaging, and IR algorithms have
better performance than DAS, FBP, SE, and TR algorithms,
as summarized in Table 14.

To evaluate the performance of different image
reconstruction algorithms in sparse-view imaging, an example
is presented in Fig. 45. The simulation settings in this example
are similar to those in Fig. 41 except that the circular detector
array has a varying number of elements from 32 to 512 and all
detector elements have infinite bandwidth. Figure 45 shows the
images reconstructed by the FBP-, TR-, and TV-regularized IR
algorithms using 32-, 128-, and 512-channel projection data. As
expected, the image reconstruction quality of each algorithm
improves with the increase of detector number. However,
FBP and TR suffer from streak artifacts more significantly than
TV-regularized IR in sparse-view cases (e.g., 32 and 128 views),
although the three algorithms yield similar image quality when
the detection views are dense (e.g., 512). Since DAS and SE
typically have similar performance to FBP and are commonly
adopted in PACT systems with linear and planar detector arrays,
they are not compared in this example.

Compared with IR algorithms, DL-based algorithms may
have better image reconstruction performance in sparse-view
imaging[276,293]. To illustrate this, Fig. 46 shows an example com-
paring the performance of conventional algorithms such as TR,
back projection, and TV-based IR, and two DL-based image
reconstruction algorithms, namely, Pixel-DL[278] and model-
based learning (MBLr)[45], for image reconstruction using
sparsely sampled projection data[293]. In this example, the imag-
ing target is mouse cerebral vasculature [Fig. 46(a)], and photo-
acoustic signals were received by an 8-mm-diameter full-ring
array with 32 evenly distributed detectors. Figures 46(b)–46(f)
are the images reconstructed by TR, back projection, TV-
regularized IR, Pixel-DL, and MBLr, respectively. The results
show that the TV-regularized IR algorithm has higher image
reconstruction quality than the TR and back-projection algo-
rithms, which suffer from severe artifacts due to the sparseness
of the projection data, while the two DL-based reconstruction
methods, especially MBLr, yield improved quality compared
with all conventional algorithms in this case.

Although conventional image reconstruction algorithms
suffer from artifacts in sparse-view imaging, they can be im-
proved[221,294–296]. For example, Sandbichler et al. achieved en-
hanced image reconstruction using conventional algorithms by
transforming sparse projection data into dense data using com-
pressed sensing in sparse-view imaging[297]. Meng et al. devel-
oped a principal component analysis (PCA)-based method and
achieved high-quality 3D image reconstruction with sparsely
sampled data without involving an iterative process[298]. Hu et al.
analyzed the aliasing problem caused by spatial undersam-
pling and proposed a temporal low-pass-filtering and spatial

(a)

(b)

Fig. 44 Image postprocessing helps correct the non-ideal SIR of
a detector and improves image quality. In this example, a detec-
tor with a finite aperture size rotates around the four-point
sources for signal detection. (a), (b) Images reconstructed by
DAS without and with DL-based postprocessing, respectively.
Adapted from Ref. [53] with permission.
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interpolation method for aliasing mitigation and artifact sup-
pression[299,300]. Cai et al. analyzed the relationship between
streak artifacts and sparse projection data and developed an
adaptive FBP algorithm named contamination-tracing back-
projection (CTBP) for image artifact suppression in sparse-view
imaging[301]. Hakakzadeh et al. proposed a spatial-domain factor

for sparse sampling circular-view PACT and achieved artifact
suppression and resolution improvement compared with con-
ventional algorithms[302]. Moreover, Wang et al. proposed an
iterative scheme combining virtually parallel projecting and
spatially adaptive filtering and achieved enhanced image
reconstruction in sparse-view PACT imaging[303].

(a) (b) (c)

(d) (e) (f)

Back projectionTRGround truth

TV-regularized IR Pixel-DL MBLr

Fig. 46 Performance comparison of DL and conventional image reconstruction algorithms
in sparse-view PACT imaging. (a) Mouse cerebral vasculature and local close-up image.
(b)–(f) Images reconstructed by TR, back projection, TV-regularized IR, Pixel-DL, and MBLr, re-
spectively. DL-based algorithms (MBLr and Pixel-DL) are superior to conventional algorithms in this
case. The simulation settings can be found in the text. Adapted from Ref. [293] with permission.
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Fig. 45 Performance comparison of FBP, TR, and IR in sparse-view PACT imaging. First–third
columns: images reconstructed by FBP, TR, and TV-regularized IR, respectively. First–third row:
images reconstructed using (a)–(c) 32-, (d)–(f) 128-, and (g)–(i) 512-channel projection data, re-
spectively. The simulation settings can be found in the text.
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5.1.5 Limited-view imaging

Ideally, the detector array used for PACT imaging should have a
full view angle (4π steradians in 3D space) with respect to the
sample being imaged[4]. However, a practical detector array al-
ways has a limited view angle, leading to the ill-posed problem
of image reconstruction from limited-view projection data. The
six classes of algorithms reviewed in this paper have different
performances when dealing with this problem. Generally, ana-
lytical algorithms such as DAS, FBP, SE, and TR have similar
performance and require a larger view angle to reconstruct an
image with reasonable image quality than do IR algorithms,
which solve the image reconstruction problem in the sense of
least squares; IR algorithms require a larger view angle than
DL-based algorithms, which are data-driven and can realize
complicated signal-to-image mapping using limited-view pro-
jection data. In other words, DL-based algorithms have better
performance than IR algorithms in limited-view PACT imaging
and IR algorithms have better performance than DAS, FBP, SE,
and TR algorithms, as summarized in Table 14.

To evaluate the performance of different image reconstruction
algorithms in limited-view imaging, an example is presented in

Fig. 47. The simulation settings in this example are similar to
those used in Fig. 41 except that the circular detector arrays used
for imaging have limited view angles ranging from π∕2 (quarter
circle) to 2π (full circle), and all detector elements have an infinite
bandwidth. Figure 47 shows the images reconstructed by the
FBP, TR, and TV-regularized IR algorithms when the view angles
of the detector arrays are π∕2, π, and 2π. As expected, the image
reconstruction quality of each algorithm improves with the in-
crease of the view angles of the detector arrays. However, FBP
and TR suffer from artifacts more significantly than does TV-
regularized IR in limited-view cases (e.g., π∕2 and π), although
the three algorithms yield similar image quality when the view
angle is 2π.

Compared with conventional algorithms, DL-based methods
may have better image reconstruction performance in limited-
view imaging[276]. To illustrate this, Fig. 48 shows a simulation
comparing the performance of FBP and a DL-based FBP algo-
rithm (dFBP) for image reconstruction using limited-view
projection data[276]. In this example, the imaging target is a
numerical zebrafish, and photoacoustic signals are collected
by a circular detector array, which has a diameter of 80 mm
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Fig. 47 Performance comparison of FBP, TR, and TV-regularized IR in limited-view PACT imag-
ing. (a) A partial-ring detector array in 3D space and a numerical blood vessel phantom used for
simulation. (b) Images reconstructed by FBP, TR, and TV-regularized IR under different imaging
angles. The simulation settings can be found in the text.
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and 512 evenly distributed detectors, as shown in Fig. 48(a). To
simulate limited-view imaging scenarios, the shape of the detec-
tor array is reduced from a full circle to partial circles with cen-
tral angles of π∕4, π∕2, 3π∕4, and π. Figures 48(b) and 48(c)
show the corresponding images reconstructed by FBP and dFBP
under different view angles. The dFBP method can achieve bet-
ter image reconstruction quality than FBP, which suffers from
severe artifacts due to the incompleteness of the projection data.

Although image reconstruction in limited-view imaging is
challenging, the reconstruction procedure can be improved.
First, limited-view raw projection data can potentially be aug-
mented to achieve improved reconstruction. In 2004, Patch de-
rived the consistency conditions for projection and estimated
missing data from measured data[304]. Gamelin et al. employed
a single-stage Wiener optimal filter to augment measured pro-
jection data by interpolation between measurement locations[305].
Second, conventional algorithms can be modified to adapt to the
image reconstruction problem. For example, Paltauf et al. pro-
posed a modified FBP algorithm that uses a weight factor to
improve the image reconstruction quality in limited-view imag-
ing[306]. Third, DL-based methods can be used as postprocessing
tools for image enhancement. For example, Lu et al. proposed
a GAN-based image postprocessing method and achieved
high-quality image recovery from limited-view photoacoustic
images[58].

5.1.6 Heterogeneous media

Many image reconstruction algorithms in PACT, such as DAS
and FBP, are derived based on the assumption that the acoustic
media are homogeneous, lossless, and non-dispersive. However,
this is not true for biological tissues, in which strong acoustic

heterogeneities, such as bones and air cavities, may be
present[296,307]. To address this problem, an image reconstruction
algorithm should consider the properties of an acoustic medium.
The six classes of algorithms reviewed in this paper have differ-
ent characteristics in addressing this problem. DAS and FBP
algorithms can employ dual SOS[308] or jointly reconstruct initial
photoacoustic pressure and SOS[309] to reduce image artifacts
caused by acoustic heterogeneity. Modified SE algorithms
can incorporate variable SOS into reconstruction models to ac-
count for acoustic heterogeneity[167]. In comparison, TR-, IR-,
and DL-based algorithms can more easily incorporate acoustic
properties of a medium into their reconstruction models, as sum-
marized in Table 14. Specifically, TR algorithms can solve the
acoustic heterogeneity problem by incorporating the properties
of acoustic media such as SOS, density, dispersion, and absorp-
tion into their acoustic propagation model (see Sec. 3.4.1). IR
algorithms can solve this problem by incorporating the
properties of acoustic media into the system matrixA by solving
coupled photoacoustic wave equations (see Sec. 3.5.2). DL al-
gorithms can solve this problem by training a reconstruction net-
work with heterogeneity-corrected signal-image datasets.
Certainly, incorporating the properties of acoustic media
into a reconstruction model requires prior knowledge about
the media.

To understand how different image reconstruction algorithms
behave in the case of acoustic heterogeneity, an example is pre-
sented in Fig. 49. The simulation settings in this example are
similar to those used in Fig. 41 except that the sound speeds in
the background and the ROI [the white dashed box in Fig. 49(a)]
are assumed to be 1500 and 1520 m/s, respectively, and all de-
tector elements have an infinite bandwidth. Figure 49(b)

Ω  = π/4

(a)

Ω = 2π

Limited view

Ω < 2π

0

3π/2

π/2

0

π/2

π

3π/2

π

Ω  = π/2 Ω  = 3π/4 Ω  = π
(b)

3 mm

π0ππ

3333333333333 mmmmmmmmmmmmmmmmmmmmmmmmmm

Full view

(c)

Ground truth

Fig. 48 Performance comparison of DL and conventional image reconstruction algorithms in lim-
ited-view PACT imaging. (a) Imaging configuration. (b), (c) Images reconstructed by FBP and
dFBP under different view angles. Adapted from Ref. [276] with permission.
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shows the image reconstructed by FBP with a constant SOS of
1505 m/s, which is the optimal SOS for reconstruction.
Figures 49(c) and 49(d) show the images reconstructed by
TR- and TV-regularized IR by coupling the actual SOS distri-
bution into their reconstruction models. The images recon-
structed by TR and IR with a correct SOS distribution have
better image quality than that of FBP, which contains splitting
artifacts at the end of the vessel.

Although algorithms such as DAS, FBP, and SE are generally
not ready to incorporate the properties of acoustic media into
their reconstruction models, their output images can be postpro-
cessed for image enhancement. Figure 50 shows a simulation
demonstrating that image postprocessing helps correct acoustic
heterogeneity and improves image reconstruction results[233].
The photoacoustic source in this example contains multiple el-
liptical and line absorbers and has three SOS regions with values
of 1480, 1450, and 1575 m/s at different depths. The detector
array used for imaging is a linear array located at the top of the
image. Figure 50(a) shows the image reconstructed by a multi-
stencil fast marching (MSFM) approach, which is regarded as
the ideal result. The MSFM approach estimates the acoustic
TOF based on the eikonal equation and the known SOS distri-
bution and can achieve high-quality beamforming. Figure 50(b)
shows the images reconstructed by a conventional Fourier
beamformer using a constant SOS of 1540 m/s. Figure 50(c)
shows the image in Fig. 50(b) processed by an automatic

SOS selection method, which attempts to maximize the sharp-
ness of the photoacoustic image with an optimal SOS (1480 m/s
in this case). Figure 50(d) shows the image of Fig. 50(b) proc-
essed by a deep neural network called SegUNet. The results
show that the image produced by a conventional Fourier beam-
former has significant distortions, which can be partially cor-
rected by the automatic SOS selection method and fully
corrected by the DL-based postprocessing method.

5.1.7 Other aspects

In addition to the qualitative reconstruction discussed above,
quantitative image reconstruction is another important aspect
to consider in certain imaging scenarios, such as quantitative
photoacoustic imaging. Under ideal conditions, most algorithms
can achieve accurate amplitude reconstruction of initial photo-
acoustic pressure. However, real imaging scenarios are never
ideal, which makes quantitative image reconstruction very chal-
lenging. Generally, IR[41,64] and DL[293] algorithms can achieve
more accurate image reconstruction compared to other methods
and are more suitable for quantitative photoacoustic imaging.
Additionally, negative artifacts that have no physical meanings
often occur in reconstructed photoacoustic images under non-
ideal conditions[137]. In this case, IR algorithms with non-
negative constraints can be used to reconstruct photoacoustic
images free from negative components[207].

Fig. 50 DL-based postprocessing enhances image quality in acoustically heterogeneous media.
In this example, the imaging media consist of three layers in the depth direction (z direction), and
their SOSs are 1480, 1450, and 1575 m/s. (a) Image reconstructed using the MSFM method,
which is regarded as the ideal result. (b) Image reconstructed by a conventional Fourier beam-
former with a constant SOS of 1540 m/s. (c) Postprocessed image of (b) using an autofocus ap-
proach. (d) Postprocessed image of (b) using a DL-based method (SegUNet). Adapted from
Ref. [233] with permission.
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Fig. 49 Performance comparison of FBP, TR, and IR in acoustically heterogeneous media. (a) A
numerical blood vessel phantom with a nonuniform SOS distribution. The SOSs in the background
and the white dashed box are 1500 and 1520 m/s, respectively. (b) Image reconstructed by FBP
with a constant SOS of 1505 m/s. (c), (d) Images reconstructed by TR and TV-regularized IR by
coupling the actual SOS distribution into their reconstruction models. Detailed simulation settings
can be found in the text.
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5.2 Image Reconstruction Speed and Memory Footprint

5.2.1 Image reconstruction speed

In addition to image quality, image reconstruction speed and
computational complexity are other critical indicators for meas-
uring the performance of an algorithm. An ideal image
reconstruction algorithm should be fast enough to allow a
PACT imaging system to capture transient biodynamic proc-
esses such as heartbeat and blood flow in a living subject.

The computational complexity of image reconstruction algo-
rithms in PACT varies from algorithm to algorithm. For non-
iterative methods, such as DAS, FBP, SE, and TR, SE is the
most computationally efficient due to the application of FFT.
Assuming that a 3D image to be reconstructed has a size of
Nx × Ny × Nz (Nx � Ny � Nz � n) and the detector number
M � n × n[32], SE algorithms have a computational complexity
of O�n3 log�n�� for 3D image reconstruction and O�n2 log�n��
for 2D image reconstruction for the specific detection geom-
etries listed in Table 5. To perform the same reconstruction
tasks, TR algorithms have computational complexities of
O�n4 log�n�� for 3D and O�n3 log�n�� for 2D[310], while back-
projection-type algorithms, such as DAS and FBP, have compu-
tational complexities of O�n5� for 3D and O�n3� for 2D[62,310].
One may notice that TR algorithms have lower complexity than
back-projection-type algorithms for 3D image reconstruction
but seem to be slower in practice. This is because TR algorithms
need to compute an entire acoustic field [Eqs. (69)–(73)] step by
step, which is time- and memory-consuming, especially for
large-scale 3D imaging models. In contrast, back-projection-
type algorithms can directly reconstruct the ROI instead of a
whole imaging region and can be implemented with parallel
computing. Compared with non-iterative methods, IR algo-
rithms usually have a much greater computational complexity
due to the repeated calculation of the image reconstruction
model in Fig. 20.

The computational complexity of DL-based algorithms de-
pends on the specific method. Generally, non-iterative DL algo-
rithms, such as data-, image-, and hybrid-domain processing
algorithms and direct reconstruction algorithms, can process
an image in roughly the same amount of time as conventional
non-iterative algorithms, such as FBP and TR. Iterative DL al-
gorithms, such as learned IR, are generally faster than conven-
tional IR algorithms because they normally require fewer

iterations and because the discrete forward imaging model
[Eq. (86)] can be learned by neural networks. Figure 51(a)
shows a qualitative comparison of the speed of different image
reconstruction algorithms.

The speed of an image reconstruction algorithm in PACT can
be accelerated by GPUs[42,152,311]. For example, Wang et al. de-
veloped a comprehensive GPU-based framework for PACT im-
age reconstruction that achieved an ∼871-fold increase in speed
when reconstructing extremely large-scale 3D images compared
to a central processing unit (CPU)-based implementation[152].
Liu et al. reported an ultrafast GPU-based FBP implementation
for PACT image reconstruction[311]. The implementation
requires only 0.38 ms to reconstruct a 2D image with a size
of 512 pixel × 512 pixel and 6.15 ms to reconstruct a 3D image
with a size of 160 voxel × 160 voxel × 160 voxel. Wang et al.
proposed GPU-based parallelization strategies to accelerate the
FBP algorithm and a penalized least-square and interpolation-
based IR (PLS-Int-IR) algorithm[42] and improved the
image reconstruction speeds of FBP and PLS-Int-IR by factors
of 1000 and 125, respectively. Although most image
reconstruction algorithms can, in principle, be accelerated by
GPUs, the speedup ratios may vary. Back-projection-type algo-
rithms, such as DAS and FBP, inherently support parallel com-
puting and thus can achieve a high speedup ratio. In contrast,
TR and IR algorithms either need to compute an entire photo-
acoustic field [Eqs. (69)–(73)] or need to update the image
reconstruction model (Fig. 20) step by step, thus offering limited
acceleration performance.

5.2.2 Memory footprint

Memory footprint is also a critical indicator for measuring the
performance of an algorithm. Generally, the memory footprint
of an image reconstruction algorithm in PACT depends on the
size of the image to be reconstructed Nx × Ny × Nz and the size
of the measured photoacoustic signals M × K (M: detector
number, K: signal sampling length). For DAS, FBP, SE, and
TR algorithms, the memory footprint can be approximately es-
timated as

Memory1 ∝ NxNyNz �MK: (125)

Similarly, the memory footprint of IR algorithms can be ap-
proximately estimated to be
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FBP

Non-iterative DL

DAS

TR
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Fig. 51 Qualitative comparison of different image reconstruction algorithms in terms of (a) image
reconstruction speed and (b) memory footprint.
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Memory2 ∝ NxNyNzMK �MK; (126)

where NxNyNzMK is the size of the system matrix A
in Eq. (86).

According to Eqs. (125)–(126), back-projection-type algo-
rithms, such as DAS and FBP, require the least amount of
memory, while IR algorithms require the most memory.
Moreover, back-projection-type algorithms can reconstruct only
a portion of an imaging region (i.e., ROI) rather than the whole
region, which can further reduce the amount of memory needed.
IR algorithms can also achieve direct image reconstruction of
ROIs but the memory footprint is still high due to the extremely
large size of the system matrix A, which is sparse and can be
compactly represented to reduce the memory footprint[36]. In
contrast to that of conventional image reconstruction algo-
rithms, the memory footprint of a DL algorithm depends on
its network structure. In general, the memory footprint of
non-iterative DL algorithms is greater than that of conventional
non-iterative algorithms, but less than that of IR algorithms. The
memory footprint of learned IR algorithms is comparable to
that of conventional IR algorithms and is also very high.
Figure 51(b) shows a qualitative comparison of the memory
footprints of different image reconstruction algorithms.

6 Challenges and Discussion
The six classes of algorithms reviewed in this paper, namely,
DAS, FBP, SE, TR, IR, and DL, can achieve high-quality image
reconstruction under ideal imaging conditions. However, they
may face challenges under non-ideal imaging conditions, espe-
cially in the following scenarios: (1) the bandwidths and aper-
ture sizes of the detectors used for imaging are limited and finite;
(2) the elements and view angle of the detector array used for
imaging are sparse and limited; and (3) acoustic media are
strongly heterogeneous.

The bandwidth and aperture size of an individual ultrasound
detector in a detector array are important for high-quality photo-
acoustic image reconstruction. An ideal detector should have
infinite bandwidth and a point-like aperture to respond to all
frequency contents of a photoacoustic signal from all directions.
However, practical ultrasound detectors always have limited
bandwidths and finite aperture sizes, which distort measured
photoacoustic signals and blur reconstructed images.
Researchers typically first measure the impulse response of a
detector and then couple it to IR algorithms[37,39] or use decon-
volution approaches[291,292,312] to remove the impacts of detector
bandwidth and aperture size. However, these methods lead to
solving optimization problems, which are typically slow, ill-
posed, and sensitive to noise. How to build more efficient mod-
els to compensate for the impact of detector bandwidth and
aperture size is a subject worth studying.

The element number and view angle of a detector array are
important for high-quality photoacoustic image reconstruction.
Ideally, the element number of a detector array should be large
enough to satisfy the spatial Nyquist sampling criteria for per-
fect sampling, and the view angle should be 4π steradian (full
3D view) to record complete photoacoustic signals in 3D space.
However, practical detector arrays such as linear and planar ar-
rays typically have a limited number of elements and a limited
view angle, which eventually results in the challenging problem
of image reconstruction from sparse-view and limited-view pro-
jections. IR and DL are two classes of algorithms that are com-
monly used to address image reconstruction problems in these

scenarios[211,276,278,313]. However, these methods typically involve
intensive calculations and/or require huge amounts of training
data that are difficult to obtain in practice. How to develop more
accurate and efficient algorithms to better address the image
reconstruction problem in sparse-view and limited-view imag-
ing is also worth studying.

The acoustic homogeneity of a medium is also important for
high-quality photoacoustic image reconstruction. Most current
image reconstruction algorithms used in PACT assume that the
acoustic media are homogeneous. However, this does not hold
in biological tissues, especially when strong heterogeneities,
such as bones and air cavities, are present[307]. Current methods
for image reconstruction in heterogeneous tissues include
half-time[314] or partial-time[315] reconstruction, autofocus
reconstruction by optimizing the SOS[316], joint reconstruction
of optical absorption and SOS[317], and ultrasound-guided adap-
tive reconstruction[296]. However, these methods can only miti-
gate the acoustic heterogeneity problem to a certain extent and
have limited improvements in reconstruction accuracy, espe-
cially in complex imaging scenarios such as transcranial imag-
ing. An alternative method is full-waveform-based algorithms,
such as TR[170] and IR[41], which are based on solutions to
exact photoacoustic wave equations. These algorithms can con-
sider the acoustic properties of the media such as SOS, absorp-
tion, dispersion, and density, and achieve accurate image
reconstruction in acoustically heterogeneous media. However,
these algorithms are not widely used thus far, especially in prac-
tical applications. The main reason is that they require prior in-
formation on media such as SOS maps, which can be measured
using other imaging techniques such as ultrasound CT[318–320] but
at the expense of introducing additional imaging facilities and
computing resources. Therefore, how to better tackle the acous-
tic heterogeneity problem and achieve high-quality image
reconstruction deserves further investigation.

In addition to image reconstruction quality, image
reconstruction speed is also important for an algorithm.
Currently, many algorithms such as DAS, FBP, SE, and non-
iterative DL algorithms can achieve real-time reconstruction
when accelerated with GPUs[33,104,152,279,311], which, however, is
a great challenge for IR-based algorithms. The IR algorithms
in PACT need to compute a large-scale system matrix A and
perform image reconstruction iteratively. Therefore, they require
huge amounts of computational resources, which makes real-
time reconstruction difficult. This is especially true for 3D IR
reconstruction, in which the computational time is typically
on the order of hours[42]. DL-based IR reconstruction has been
reported to help reduce the number of iterations[45] and improve
computational efficiency[57]. Nevertheless, developing new strat-
egies to improve the computational speed of IR algorithms and
reduce the memory footprint still has important practical sig-
nificance.

DL-based image reconstruction has superior performance
over conventional image reconstruction algorithms and is an
emerging technique in PACT. It has been used to solve a variety
of non-ideal image reconstruction problems in PACT, such as
detector bandwidth expansion and IR acceleration. Nonetheless,
DL-based image reconstruction faces multiple challenges. First,
the performance of DL methods heavily relies on the quality and
quantity of training data. The training data are usually required
to be paired, and the acquisition of large amounts of paired data
is difficult in practice. Training neural networks using simulated
datasets and/or small-scale experimental datasets may limit the
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performance of the networks in terms of reconstruction accu-
racy, robustness, and generalizability in practical applications.
Second, reference images such as full-bandwidth photoacoustic
images for network training in DL methods are often difficult to
obtain. In these situations, networks can only be trained using
simulated datasets. Since experimental conditions are typically
much more complex than simulations, training a network using
only simulated datasets leads to degraded reconstruction perfor-
mance and poor robustness. Third, there are currently few pub-
licly available datasets for the comparison of the performances
of different DL methods. Using private datasets to compare dif-
ferent DL methods may lead to biased conclusions. Finally,
DL-based image reconstruction methods in PACT lack inter-
pretability, which is also a long-standing problem in the field
of DL. In response to the above issues, it is necessary to research
the following aspects: (1) building large-scale publicly available
datasets for the construction of networks with good generaliza-
tion properties and performance comparisons of different net-
works; (2) developing unsupervised DL-based reconstruction
methods that do not need paired data for training; (3) developing
more powerful simulation platforms to generate reference data
closely resembling real experimental data[321]; and (4) developing
physics-informed networks to improve the interpretability of
DL methods.

One important goal of image reconstruction from photo-
acoustic projections is disease diagnosis. The current diagnostic
route from photoacoustic signals to photoacoustic images to
knowledge is straightforward but can potentially lead to infor-
mation loss and distortion during image reconstruction, which
can decrease the accuracy of disease diagnosis. Artificial intel-
ligence (AI) can mine knowledge from vast amounts of data
and offer opportunities for disease diagnosis directly from raw
data[322]. The use of raw-data-based diagnostic technology in-
stead of image-based diagnostic technology may facilitate the
development of fully automated scanning and diagnostic proce-
dures and become an important direction in the future.

This review mainly discusses advanced image reconstruction
algorithms in PAT for high-performance imaging. In addition to
advanced algorithms, emerging technologies such as metamate-
rials and nanomaterials can be leveraged to enhance the imaging
performance of PAT. For example, metamaterials can be appro-
priately designed to influence the propagation of electromag-
netic waves or acoustic waves in a manner not observed in
bulk materials. By tailoring the amplitude, phase, or polarization
of light, optical metamaterials can emulate conventional optical
lenses, waveplates, or holograms to achieve multidimensional
light-field modulation in PAT[323–329]. Metamaterials can also
be designed for photoacoustic signal sensing to address the sen-
sitivity and bandwidth problem of conventional piezoelectric
sensors[330–333] and provide a sensitive method for ultrasound de-
tection in PAT.

Nanomaterials that often exhibit unique optical, electronic, or
physicochemical properties are another emerging technology
that can be used to enhance the imaging performance of
PAT. Nanoparticles are a common type of nanomaterial used
as molecular contrast agents in PAT[334] and can be generally di-
vided into two categories: inorganic nanoparticles and organic
nanoparticles. Inorganic nanoparticles, such as noble metal
nanoparticles, iron oxide nanoparticles, semiconductor nanopar-
ticles, magnetic nanoparticles, and carbon nanoparticles, pos-
sess versatile properties and have been investigated for various
applications in biomedical imaging and therapeutics[335,336].

Among them, noble metal nanoparticles are the most commonly
used contrast agents in PAT due to their high optical absorption
cross section and biocompatibility[337]. Gold nanoparticles, such
as gold nanospheres, nanorods, nanoshells, and nanostars, are
particularly popular because of their high extinction coefficient
in the near-infrared range and their high photoacoustic conver-
sion efficiency[334,338,339]. In addition to inorganic nanoparticles,
organic nanoparticles such as polymer nanoparticles and encap-
sulations are also increasingly being used in PAT[334,340,341].
Polymer nanoparticles usually have a molar extinction coeffi-
cient lower than that of gold nanoparticles but higher than that
of small-molecule dyes and have an absorption peak in the near-
infrared range. They typically possess high structural and func-
tional flexibility, high biodegradability and biocompatibility,
and have a high translational potential. Furthermore, polymer
nanoparticles usually have stable surfaces that can be modified
with specific targeting and therapeutic moieties for molecular
imaging and targeted therapy, which enables the imaging of bio-
logical events and functionalities at multiple scales.

7 Conclusions
In this work, we systemically review the image formation prob-
lem in PACT over the past three decades, including the forward
problem, conventional reconstruction methods, DL-based
reconstruction methods, and the comparisons of different
reconstruction methods.

The photoacoustic forward problem involves multiple
physical processes, including photoacoustic signal generation,
signal propagation, and signal detection. The generation of
photoacoustic signals is based on the thermoelastic effect and
should satisfy the conditions of thermal confinement and stress
confinement. The propagation of photoacoustic signals is
governed by the photoacoustic wave equation, which can be
analytically solved by the method of Green’s functions and nu-
merically visualized by the k-Wave toolbox. The detection of
photoacoustic signals typically involves the use of ultrasound
detector arrays, whose properties such as detector bandwidth,
aperture size, element number, and view angle impact detected
photoacoustic signals and final images. The photoacoustic
forward problem can be described by the spherical Radon
transform. The task of image reconstruction in PACT can be
regarded as finding the inverse of the spherical Radon
transform.

Conventional reconstruction methods in PACT typically
achieve image formation via analytical derivations or numerical
computations and mainly include five classes of algorithms, i.e.,
DAS, FBP, SE, TR, and IR. The DAS-type algorithms recon-
struct an image by summing the delayed photoacoustic signals
of each detector and have many variants, such as native DAS,
DMAS, SLSC, and MV. The DAS-type algorithms are simple in
principle and fast in speed but lack mathematical rigor. FBP-
type algorithms reconstruct an image by back-projecting the fil-
tered photoacoustic signals of each detector to the image domain
and can achieve accurate image reconstruction under ideal con-
ditions. They are rigorously deduced from the photoacoustic
wave equation and can be regarded as advanced versions of
DAS. The SE-type algorithms reconstruct an image by repre-
senting it using a mathematical series. They are computationally
efficient and super-fast for special detection geometries such as
the planar geometry. The TR-type algorithms reconstruct an im-
age by running a forward numerical acoustic propagation model
backward and can be used for any closed detection geometry.
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They are well suited for image reconstruction in heterogeneous
media since the acoustic propagation model can couple acoustic
properties of media, such as SOS, density, dispersion, and ab-
sorption of a medium. The IR-type algorithms reconstruct an
image by minimizing the energy error between measured pro-
jection data and estimated projection data. They can incorporate
various physical factors into reconstruction models, suppress
image artifacts caused by incomplete projections, and are
well-suited for non-ideal imaging scenarios.

DL achieves tomographic image reconstruction in PACT by
learning the photoacoustic imaging model from big data using
designed networks and thus is network-based, data-driven, and
learning-oriented. DL techniques can be applied to photoacous-
tic image reconstruction from multiple aspects, including signal
preprocessing in the data domain, image postprocessing in the
image domain, hybrid-domain processing, direct signal-to-
image reconstruction, and IR reconstruction learning. DL-
based signal preprocessing employs a network to enhance
raw photoacoustic projection data in the data domain and deliv-
ers the enhanced projection data to conventional reconstruction
algorithms as input. DL-based image postprocessing employs a
network to enhance photoacoustic images output from conven-
tional reconstruction algorithms for artifacts and noise suppres-
sion. DL-based hybrid-domain processing employs a network
to make full use of the information of raw projection data
and reconstructed images and can yield images with enhanced
quality. In contrast, DL-based direct reconstruction employs
a network to form photoacoustic images directly from raw pro-
jection data and does not involve any conventional image
reconstruction algorithms. Training such a direct transformation
network, however, requires large-scale datasets. DL-based IR
reconstruction employs a network to learn the reconstruction
process of conventional IR algorithms and can also achieve di-
rect signal-to-image reconstruction. This method typically has
better robustness and generalizability but consumes more time
and memory than other DL methods.

The image reconstruction algorithms discussed in this review
have distinct characteristics. In terms of image reconstruction
quality, most image reconstruction algorithms work well under
ideal imaging conditions and can yield high-quality images.
However, they behave differently under non-ideal imaging sce-
narios, such as sparse-view imaging, limited-view imaging, im-
aging with bandwidth-limited and/or finite-aperture detectors,
and imaging in the presence of acoustic heterogeneity.
Generally, the DAS, FBP, and SE algorithms have relatively
poor performance in these scenarios. The TR and IR algorithms
can yield improved results because they can incorporate the
physical models of an imaging system, such as the SOS of me-
dia, the EIR, and the SIR of a detector. The DL algorithms can
produce surprisingly good results that are unattainable for con-
ventional algorithms due to their network-based data-driven
nature. In terms of image reconstruction speed and memory
footprint, DAS, FBP, SE, TR, and non-iterative DL algorithms
are generally faster than IR and iterative DL methods. TR, IR,
and iterative DL algorithms generally require more memory
than DAS, FBP, and SE methods.

This review is expected to help general readers better under-
stand the image formation problem in PACT, provide a self-
contained reference guide for beginners as well as specialists,
and facilitate further developments and applications of novel
image reconstruction algorithms.
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