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1 Introduction
The problem of imaging in the presence of degrading optical
turbulence conditions has been an ongoing area of active
research for many years. Much recent research has focused
on correcting imagery through image processing (dewarping
and/or deconvolution) techniques.1–8 Paralleling this inverse
problem is the direct simulation of turbulence on clear
images to create artificially degraded imagery at known
turbulence levels9–12 for benchmarking purposes. A third
research area involves system intercomparisons for cost-
effectiveness evaluation.13–15 In each case, undergirding the
research is the core issue of establishing the baseline effect of
turbulence on image quality, particularly for short-exposure
(SE) imaging.

The standard method used by systems performance mod-
elers13–17 had been Fried’s SE modulation transfer function
(MTF).18–20 For example, Holst15 devotes an entire chapter to
Fried’s SE MTF. This model was the common choice due to
its simplicity, despite the existence of more accurate (and
numerically intensive) techniques (e.g., Ref. 21).

Critics of Fried’s approach pointed to its high-frequency
response failure when modeling high turbulence degradation
influences.21–23 Nonetheless, the simplicity of Fried’s result
suggested a re-examination of Fried’s approach might yield
new findings. The resulting study24 examined the properties
of an overlooked tilt-phase correlation term and developed
improved expressions for diffraction influences on the turbu-
lent phase structure function (PSF), angle-of-arrival variance,
and therefore on the SE MTF. However, the numerical inte-
gration technique used was not optimal for evaluating the
tilt-phase influence at combined high-angular frequency

and high-turbulence conditions. Consequently, a modeling
compromise was adopted based on Fried’s quadratic correc-
tion to the long-exposure (LE) MTF. This approach was
subsequently critiqued by Charnotskii25–28 who argued its
quadratic term would produce inaccurate results at high
frequency.

This issue is addressed here through a new analysis of
high-frequency turbulence effects and development of a
new SE MTF analytic model. The new model exhibits dif-
fraction-limited behavior at all frequencies while applying to
a wider range of optical scenarios. The resulting model is
compared with published calculations from a path-integral
technique21 and a Markov method.26 The model’s Rytov
approximation (RA)29 is also described, and criteria devel-
oped by Tatarski29 and Dashen30 are examined to determine
the extent of validity of modeled conditions.

The remainder of the paper is designed as follows:
Section 2 describes the propagation model used, its justifi-
cation, and numerical processing techniques developed to
handle high-turbulence conditions. Section 3 describes the
analysis process used to translate the computed database
into the new analytical SE MTF expression. Section 4
presents comparisons with alternative approaches, followed
by conclusions in Sec. 5.

2 Propagation and Imaging Models
The propagation model used is based on the Rytov approxi-
mation,16,29 involving a multiplicative turbulent scattering
effect, using the imaging geometry of Fig. 1. Monochromatic
incoherent light of wavelength λ emerges from the transverse
object plane at z ¼ −L. Photons pass through the system
aperture’s lens at z ¼ 0 to reach the imaging plane at
z ¼ R. The system’s thin lens optics are considered focused*Address all correspondence to: David H. Tofsted, david.h.tofsted.civ@mail.mil
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on the object plane. The main propagation axis is denoted by
z; transverse two dimensional (2-D) vectors are denoted by x.

In general, light from a point rO ¼ ðxO;−LÞ is evaluated
for scatter off the ensemble of turbulent fluctuations at
ðx 0; z 0Þ, passage through the aperture at ðxE; 0Þ and its effect
on the light at image point ðxI; RÞ. Each object point
ðxo;−LÞ will have a reciprocal image point at ðxi;þRÞ fol-
lowing a chief ray through the center of the system entrance
pupil. Due to the incoherent nature of the light, each photon
travels independently, emitted as a quantum event, and arriv-
ing at the image plane based on conditional passage through
the system entrance pupil. The instantaneous point spread
function represents the electro-magnetic equivalent of the
photon’s quantum probability of arrival at image point xI ,
given the current optical turbulence pattern (considered fro-
zen) in the region −L < z < 0.

2.1 Propagation Model

The Rytov approximation considers a propagating scalar
wavefunction

U ≈ U0 expðlþ iϕÞ; (1)

consisting of a zeroth-order free-space solution, U0, plus a
complex turbulence multiplier. U0 contains the primary
longitudinal phasor exp½ikðzþ LÞ�, where i2 ¼ −1 and k ¼
2π∕λ is the wavenumber, plus the phase information neces-
sary to determine the zero-turbulence focal point of the
source point in the image plane, and spherical wave phase
information that will be focused by the system lens effect.

Turbulent amplitude (l) and phase (ϕ) effects are imposed
on the propagating wave via weak scattering from position-
varying refractive index fluctuations

n1ðx; zÞ ¼ nðx; zÞ∕hni − 1; (2)

where hni ≈ 1 is the expectation (mean) of the refractive
index nðx; zÞ. Turbulent fluctuations will be modeled (excep-
tions noted) assuming Kolmogorov turbulence, characterized
by the power spectrum26

ΦnðC2
n; κÞ ¼ 0.033C2

nκ
−11∕3; (3)

where κ is the turbulent spatial frequency m−1. For natural
turbulence, n1 ≪ 0.001, such that the refractive index struc-
ture parameter, C2

n, is typically less than 10−11 m−2∕3, lead-
ing to forward scattering (in the þz direction), and use of the
parabolic wave equation

2ik∂zU þ ∇2
⊥U þ 2k2n1U ¼ 0; (4)

with ∂z the on-axis derivative operator, and ∇2
⊥ the transverse

Laplacian.
Using Eq. (1)’s model propagating wave, the RA meth-

od’s single-scattering approximation is used to evaluate l
and ϕ instantaneous amplitude and phase perturbations for
radiation emerging from a source at rO ¼ ðxO;−LÞ at system
entrance pupil points, rE ¼ ðxE; 0Þ,
�
lðrO; xEÞ
ϕðrO; xEÞ

�

¼
�
Re

Im

��
k2

2π

ZZZ
TV

GðrO; r 0Þn1ðr 0ÞGðr 0; rEÞ
GðrO; rEÞ

dr 0
�
: (5)

This equation reflects scattering from turbulence at points
r 0 ¼ ðx 0; z 0Þ, −L < z 0 < 0, using free-space Green’s function
propagators16

Gðr1; r2Þ ¼
1

ðz2 − z1Þ
exp

�
ik

�
ðz2 − z1Þ þ

jx2 − x1j2
2ðz2 − z1Þ

��
;

(6)

with ri ¼ ðxi; ziÞ and z2 > z1, to propagate the field from the
source, through the scattering point, to the observation point.
The Green’s function in the denominator normalizes the
results according to the free space effect. Note, particularly,
that l and ϕ are source and observation point dependent
quantities; therefore they are anisoplanatic.

2.2 Modulation Transfer Function

Following the methodology of Ref. 24, we analyze the wave
perturbations at the system’s entrance pupil associated with
the instantaneous SE MTF for the source point rO

M̂Sðω; rOÞ ¼
4

π

Z
dxEŨðrO; xEÞŨ�ðrO; xE −DωÞ: (7)

Here, the field variables reflect the situation just after
truncation by the aperture

ŨðrO; xEÞ ¼ WDðxEÞ expflðrO; xEÞ
þ i½ϕðrO; xEÞ − aðrOÞ · xE�g; (8)

and have had the mean U0 wavefront tilt and curvature
removed. The system entrance pupil is modeled using a uni-
formly transparent window function

WDðxÞ ¼
�
1; jxj < D∕2;
0; jxj > D∕2: (9)

According to Fried’s SE theory, the instantaneous turbu-
lent phase tilt is removed, based on variable a denoting the
linear moment of the instantaneous phase perturbation

aðrOÞ ¼
64

πD4

Z
dxEWDðxEÞϕðrO; xEÞxE: (10)

Vector variable ω ¼ Ω∕Ω0 is a normalized angular fre-
quency, where Ω0 ¼ D∕λ denotes the diffraction-limited

xO

xo

xE xI

xi

x’

z = L- z = z’ z = 0 z = R

Fig. 1 Imaging scenario geometry. 2-D vectors x oriented transverse
to main z optical axis.
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maximum angular frequency16 passed by a circular aperture,
such that 0 < jωj < 1. D is the entrance pupil diameter,
dimensionalizing ω temporarily, before u ¼ xE∕D is used
to transform integral (10) to dimensionless form.

The mean SE MTF sought is then evaluated by taking the
expectation of Eq. (7), and ω ¼ jωj

MSðωÞ ¼ hM̂Sðω; rOÞi ¼
4

π

Z
dxWDðxÞWDðx −DωÞ

expð−P0 − P1 − P2 þ P3Þ; (11)

where the turbulent effects are expressed as the P0: : : P3

terms. The expectation operator was passed inside the inte-
gral, as it affects only the turbulence terms. It is worth noting
that this averaging process transforms the anisoplanatic
instantaneous MTF into an isoplanatic second-order func-
tion, consistent with Goodman’s16 analysis (pp. 395–407).

For brevity of presention, only results are shown here,
based on more complete descriptions in Refs. 20 and 24.
First, amplitude and phase perturbations are considered in-
dependent, permitting the expectation of the amplitude term
to be evaluated as

expð−P0Þ ¼ hexpflðxÞ þ lðx −DωÞgi

¼ exp

�
−
1

2
DlðDωÞ

�
; (12)

using Dl, the amplitude structure function.31 The remaining
three terms are phase related, involving phase variance, tilt
variance, and tilt-phase terms. The second term is the phase
variance term, appearing as

expð−P1Þ ¼ hexp½iϕðxÞ − iϕðx −DωÞ�i

¼ exp

�
−
1

2
DϕðDωÞ

�
; (13)

where DϕðxÞ is the PSF. This term combines with DlðxÞ to
form the wave structure function (WSF), DðxÞ, shown in
path-integral form as Eq. (11) of Ref. 24. This combined
term quantifies the turbulence LE effect. While the instanta-
neous perturbation effects were source specific (rO),
therefore anisoplanatic, satisfying an energy conservation
constraint,32 the second-order WSF is source independent,
evaluated by weighted path integral of C2

nðzÞ,31 therefore
isoplanatic.

Assuming constant Kolmogorov turbulence throughout
the following

P0 þ P1 ¼ DðDωÞ∕2 ¼ ½DlðDωÞ þDϕðDωÞ�∕2
¼ ½Dω∕ðr0∕2.1Þ�5∕3 ¼ ð2.1XωÞ5∕3; (14)

with X ¼ D∕r0, using the Fried coherence diameter20,24

r0 ¼ 3.018ðk2LC2
nÞ−3∕5: (15)

The remaining two terms reflect SE corrections to the LE
MTF (due to P0 þ P1). The tilt variance term that can be
written24

P2 ¼ 1.0433ð2.1XωÞ5∕3GðQÞω1∕3; (16)

introducing parameter Q ¼ D∕F ¼ D∕ðλLÞ1∕2 to character-
ize diffraction influences, and functionGðQÞ that varies from
1∕2 to 1; G ≈ 1 for Q > 3 (GðQÞ plotted in Ref. 24).

Since P0, P1, and P2 are independent of x, they do not
affect the aperture integral of Eq. (11). The remaining
tilt-phase correlation, written 24

P3ðx;ωÞ ¼
32

πD4

Z
dxaWDðxaÞ½xa · ðDωÞ�

× ½Dϕðjx−Dω− xajÞ−Dϕðjx− xajÞ�; (17)

must be evaluated numerically. An improved version of the
PSF model is introduced to facilitate evaluation of P3

DϕðDuÞ∕2 ¼ DðDuÞαðQuÞ∕2
¼ ½ð2.1X∕QÞ5∕3�½ðQuÞ5∕3αðQuÞ�
¼ f1ðX∕QÞf2ðQuÞ; (18)

where u ¼ jxj∕D is a normalized separation variable, X and
Q have absorbed the D factors, and αðQuÞ parameterizes the
diffraction influence24

αðQuÞ ¼
Z

1

0

dc
ð3∕8Þ

Z
∞

0

dγ
½1 − J0ðγcÞ�
1.118γ8∕3

× cos2
�
γ2

½cð1 − cÞ�
4πðQuÞ2

�
; (19)

using dimensionless path (c ¼ z∕L) and frequency
(γ ¼ Duκ) variables. Function αðQuÞ transitions from 1∕2
to 1 over eight orders of magnitude in Qu.24

When turbulence is low (X → 0), the turbulent exponen-
tial argument approaches zero, and the SE MTF approaches
the behavior of the system MTF,

M0ðωÞ ¼
4

π

Z
duW1ðuÞW1ðu − ωÞ;

¼
� ð2∕πÞ½cos−1ðωÞ − ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�; ω < 1;

0; ω ≥ 1;
(20)

which depends only on ω, due to azimuthal symmetry.
When X ≠ 0, the Eq. (11) integral was evaluated numeri-

cally using the form

MTðQ;X;ωÞ ¼ 4∕π
M0ðωÞ

Z
duW1ðu − ωÞW1ðuÞ

× exp½þP3ðu;ω; Q; XÞ�; (21)

where the system MTF, a function independent of Q and X,
could be divided out to focus on the turbulence-varying com-
ponent. In the prequel,24 evaluation ofMT was handled using
a relatively inefficient integration technique, but here, based
on the PSF of Eq. (18), f1ðX∕QÞ was removed from the
exponential integral, allowing the remaining term

F3ðQ;u;ωÞ ¼ 32

π

Z
duaW1ðuaÞ½ua · ĵω�

× ½f2ðQju− ĵω−uajÞ− f2ðQju− uajÞ�; (22)
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to be tabulated and used for interpolation. The dimensional-
ity of the tabulated results was also reduced through appli-
cation of azimuthal symmetry that permitted the orientation
of ω to be fixed along the y-axis (unit vector, ĵ).

Third, the MT evaluations were modified to handle the
impact of large f1ðX∕QÞ effects inside the exponential
through use of an offset factor A

MTðQ;X;ωÞ ¼ 4 expðAÞ
πM0ðωÞ

Z
duW1ðu − ĵωÞW1ðuÞ

× exp½f1ðX∕QÞF3ðQ; u;ωÞ − A�: (23)

By adjusting A, math overflow errors in evaluating the
integral could always be eliminated. Thereafter, MT calcula-
tions could be interpreted in the form

MTðQ;X;ωÞ ¼ exp½þð2.1XÞ5∕3NðQ;X;ωÞω2�; (24)

NðQ;X;ωÞ ¼ ð2.1XÞ−5∕3 ln½MTðQ;X;ωÞ�ω−2: (25)

Combining this term with the tilt variance effect of
Eq. (16) yields the function

VðQ;X;ωÞ ¼ NðQ;X;ωÞ − 1.0433GðQÞ; (26)

such that the SE MTF can be written

MSðQ;X;ωÞ ¼ M0ðωÞ expf−ð2.1XωÞ5∕3
× ½1 − VðQ;X;ωÞω1∕3�g: (27)

Calculations of the VðQ;X;ωÞ function were performed
for a wide range of conditions: Q from 2−4 to 2þ4 by factors
of 2 (9 steps), X from 10−1 to 10þ3 in increments of tenths of
decades (41 steps), and ω from 0.01 to 0.99 in steps of 0.01,
and four additional steps at ω < 0.02 (103 steps), for a data-
base of 38,007 calculations. The analysis of this database is
described in Sec. 3, using these results to formulate a new
analytic SE MTF.

Sections 5 through 7 of Ref. 24 provides further details of
the analysis of Fried’s approach.

2.3 Range of Rytov Approximation Validity

Before examining the VðQ;X;ωÞ database, some discussion
of the extent of validity of the Rytov method seems appro-
priate. Clearly, the Rytov approximation is applicable to
coherent radiation studies under weak turbulence conditions,
but is typically considered inappropriate for stronger turbu-
lence scenarios, when the Rytov variance

σ2R ¼ 0.496C2
nk7∕6L11∕6 ¼ 0.676ðX∕QÞ5∕3; (28)

exceeds 0.5 (spherical wave coefficient used). However,
in light of subsequent comparisons with Charnotskii’s
results21,26 in Sec. 4, where comparable results are achieved
at Rytov variance values seemingly beyond the capability of
the RA, one may question the validity of such restrictions for
incoherent radiation, since temporal and spatial correlations
do not exist between propagating photons.

Tatarski’s analysis29 only required that n1 ≪ 1, and that
perturbation field gradients be small relative to wave number

k, conditions easily met. Similarly, Dashen30 developed full
and partial saturation conditions for judging RA validity,
formed as ratios of a turbulence parameter, ΦΔ, to a diffrac-
tion parameter, ΩΔ.

For the full saturation case, Dashen used,

ΩΔ1 ¼ 6kΛ2∕L; (29)

where Λmodels a single scatterer scale. For a turbulent outer
scale of Lo, and a spectral model33 based on Kaimal’s 1968
Kansas experiment analysis,34 Λ ¼ 4.36Lo. For the turbu-
lence parameter, Dashen used a phase variance metric also
based on an outer-scale influenced covariance

Φ2
Δ1 ¼ k2Lð2.309C2

nL
5∕3
o Þ: (30)

In this case, the RA is valid when ΦΔ1 < ΩΔ1, or,

C2
n < 5634L7∕3

o ∕L3; (31)

easily met for common outer scales of 1 m or greater.
More stringent conditions were associated with a partial

saturation case involving multiple scattering scales. Dashen
considered the effect of imposing a scale size cutoff that
would affect both turbulent and diffraction effects. For the
SE imaging problem, the most natural cutoff is the finite
aperture. Dashen’sΦ2

Δ, corresponding to an RMS phase vari-
ance, is equivalent to one of Fried’s18 hΔ2

ji mean aperture
phase variance terms, where the order j indicates the number
of phase perturbation terms corrected during the imaging
process. In SE imaging, piston, tip, and tilt phase-expansion
terms do not alter image quality (corresponding to Fried’s
order-L case), leading to the condition,

Φ2
Δ2 ¼ hΔ2

Li ¼ ð4 × 0.00489Þð2.1XÞ5∕3; (32)

for an aperture of diameter D. For cutoff D, Dashen’s ΩΔ
parameter becomes

ΩΔ2 ¼ 12πQ2: (33)

Setting ΦΔ2 < ΩΔ2, for a given Q, a maximum X value
results

XmaxðQÞ ¼ 1

2.1

�
36π2Q4

0.00489

�
3∕5

: (34)

This condition translates to a maximum Rytov variance
function of Q

σ2R;maxðQÞ ¼ 0.676

�
Xmax

Q

�
5∕3

¼ 14261Q7∕3: (35)

Typical terrestrial imaging scenarios involve Q > 1∕4,
implying the RA remains valid up to high-turbulence
conditions.

3 Analytic Model of Short-Exposure Atmospheric
Modulation Transfer Function

Using the previous section’s data set, this section describes
development of an analytic expression for VðQ;X;ωÞ. This
is possible due to significant correlations that exist between
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VðQ;X;ωÞ results at different Q values. This behavior is
illustrated in Fig. 2 for two sets of plots at Q values of
1∕16 and 16, for a series of increasing values of X.

The key feature of these curves is that for moderate Q
values often encountered for typical terrestrial imaging sce-
narios, V exceeds unity at low to moderate frequencies,
resulting in enhanced behavior versus the LE response.

In developing a model of this behavior, it was first
observed that VðQ;X; 0Þ ¼ VðQ;X; 1Þ ¼ V0ðQÞ, permitting
V to be expressed

VðQ;X;ωÞ ¼ V0ðQÞ þ VΔðQ;X;ωÞ: (36)

The maximum value of V (as X → ∞) must also be a
function of Q, VMðQÞ. V0ðQÞ and VMðQÞ are plotted
in Fig. 3.

Figure 3 curves both suggest asymptotic behaviors at both
extremes of Q. These behaviors can be modeled using a sig-
moidal function (a variant of the hyperbolic tangent)

ΣðχÞ ¼ ½expðχÞ − 1�
½expðχÞ þ 1� ¼ tanhðχ∕2Þ: (37)

To facilitate the modeling process, a rescaled and shifted
sigmoid was also introduced

η ¼ ΣSðχ; A; B; C;DÞ ¼ Aþ BΣ½Cðχ −DÞ�: (38)

The center of this function occurs at ðχ; ηÞ ¼ ðD;AÞ with
an overall shift of 2B between asymptotes, and a central
derivative of dη∕dχjχ¼D ¼ BC.

The VMðQÞ function can be expressed using
P

S as

VMðQÞ ¼ ΣS½log2ðQÞ; 0.213; 0.072; 1.525; 0.150�: (39)

However, V0ðQÞ exhibits different asymptotic behaviors
at large and small Q. Therefore, a third sigmoidal form
was developed, featuring a central splice (piecewise sigmoi-
dal):

ΣPðχ;A;B1;B2;C1;C2;DÞ¼
�
AþB1Σ½C1ðχ−DÞ�; χ≤D
AþB2Σ½C2ðχ−DÞ�; χ≥D

:

(40)

This function is continuous in its first derivative at the splice
point if B1C1 ¼ B2C2. V0 is parameterized using this func-
tion via

V0ðQÞ¼ΣP½log2ðQÞ;0.870;0.370;0.085;0.355;1.545;−1.00�;
(41)

where 0.370 × 0.355 ¼ 0.085 × 1.545. Equations (39) and
(41) are plotted along with database derived points in Fig. 3.
Variables q ¼ log2ðQÞ and x ¼ log10ðXÞ will frequently
appear hereafter as surrogates for variables Q and X in argu-
ments to sigmoidal functions, as the majority of the modeled
behaviors exhibit logarithmic dependence.

Using Eqs. (39) and (41), our problem reduces to finding
an analytic expression for

V̂ΔðQ;X;ωÞ ¼ VΔðQ;X;ωÞ∕VMðQÞ: (42)

Figure 4 illustrates plots of V̂Δ for the same families of
curves (Q ¼ 1∕16 and 16) as in Fig. 2, highlighting the simi-
larities in behaviors at different Q values. These plots also
reveal how V̂Δ develops increasingly complex behaviors as
X increases.

To model these behaviors, it was observed that function
curves at high ωmaintained simpler forms with increasing X
than at low ω, suggesting the functions could be divided at
the peak and studied separately at high and low frequencies.
The next step was, therefore, to model the form of the peak
curves (as illustrated in Fig. 4) as functions of Q and X.

Note that the peak curves at different Q values exhibit
similar X dependencies. Thus, the behaviors of the different
peak curves could be modeled as shifted versions of the peak
curve for Q ¼ 1, described by ωPð1; XÞ (abscissa) and
VPð1; XÞ (ordinate) functions. The Q ¼ 1 abscissa curve
is modeled as

ωPð1; xÞ ¼ ΣP½x; 0.360;−0.133;−0.322;
þ 3.450;þ1.424;þ1.320�: (43)

Several ωPðQ;XÞ curves at different Q levels illustrate
this shifting behavior in Fig. 5. A pair of analytic expressions
that approximate this behavior are given by

ωPðQ;XÞ ¼ ωPfQ ¼ 1; log10ðXÞ − xω½log2ðQÞ�g; (44)
Fig. 2 Plots of V ðQ;X;ωÞ for Q ¼ 1∕16 and Q ¼ 16 families of
curves at different X values as functions of ω.

Fig. 3 Plots of V 0ðQÞ and VM ðQÞ for Q ¼ 2−9: : : 2þ6.
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xωðqÞ ¼ ΣS½q;−0.004;þ0.091;þ1.750;−0.050�: (45)

Several VP ordinate function curves, designated
VPðQ;XÞ¼VΔðQ;X;ωPÞ (using the non-normalized form),
are illustrated for varying X in Fig. 6, for Q values ranging
from 1∕16 to 16. This component exhibits both shifting and
scaling properties, but again was quantified relative to its
behavior at Q ¼ 1, using

V1ðxÞ ¼ VPð1; 10xÞ
¼ ΣPðx;þ0.122;þ0.044;þ0.082;

þ 4.257;þ2.300;þ1.167Þ: (46)

The behavior at Q ¼ 1 was then rescaled using AR, and
shifted using xP, in the form,

VPðQ;XÞ ¼ AR½log2ðQÞ�V1flog10ðXÞ − xP½log2ðQÞ�g;
(47)

ARðqÞ ¼ ΣSðq;þ1.051;þ0.3565;þ1.600;þ0.150Þ; (48)

xPðqÞ ¼ ΣSðq;þ0.005;−0.088;þ1.550;−0.150Þ: (49)

The function VPðQ;XÞ supports a further parameteriza-
tion through introduction of

UPðQ;XÞ ¼ VPðQ;XÞ∕VMðQÞ; (50)

using Eqs. (47) and (39), where 0 < UP ≤ 1. The V̂Δ curve
shapes appear to vary based on height UP, while ω depend-
ence may be modeled using a Legendre-polynomial-related
series expansion.

The Legendre polynomials begin as P0ðzÞ ¼ 1,
P1ðzÞ ¼ z, and use recurrence relation35

ðnþ 1ÞPnþ1ðzÞ ¼ ð2nþ 1ÞzPnðzÞ − nPn−1ðzÞ; (51)

to characterize the interval −1 ≤ z ≤ þ1. Rescaling and nor-
malizing these functions using

LnðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Pnð2ω − 1Þ; (52)

where z → 2ω − 1, yields an orthonormal set over
0 ≤ ω ≤ 1.

Using this basis set, each V̂Δ curve could be separated
into two functions at the peak position ω ¼ ωPðQ;XÞ, fol-
lowed by affine transformation to stretch each monotonic
function into its own ω half-range, and reverse copied to
fill the opposing half-range. Thereby, two functions, each
even about ω ¼ 1∕2, could be analyzed using Legendre-
derived basis functions. Due to their symmetry, only
even-order series terms were needed to characterize each
function ½L2nðωÞ ¼ L2nð1 − ωÞ�. The V̂Δ model could, thus,

Fig. 4 Plots of V̂Δ ¼ VΔðQ;X;ωÞ∕VM ðQÞ for Q ¼ 1∕16 (a) and 16 (b).

Fig. 5 Plots of ωP ðQ;X Þ for a range of Q values.
Fig. 6 Plots of VP ðQ;X Þ for Q ranging from 1∕16 (bottom line) to 16
(top line), by factors of 2.
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be splined using the coefficient sets: C2n for ω ≤ ωP, and
D2n for ω ≤ ωP, as

V̂ΔðQ;X;ωÞ ≈
Xn¼N

n¼0

C2n½UPðQ;XÞ�L2n

�
ω∕2

ωPðQ;XÞ
�
;

ω ≤ ωP; (53)

V̂ΔðQ;X;ωÞ ≈
Xn¼N

n¼0

D2n½UPðQ;XÞ�L2n

�
1−

½1−ω�∕2
½1−ωPðQ;XÞ�

�
;

ω ≥ ωP: (54)

Sets of C2nðUPÞ coefficient behaviors are illustrated in
Fig. 7. D2nðUPÞ behaviors are plotted in Fig. 8.
Coefficients C0 through C8, and D0, exhibit approximately
hyperbolic UP dependence. The remaining coefficients
exhibit approximately linear dependence.

Hyperbolic behaviors of Cm and Dm coefficients were
expressed using constants am through em in the models

CmðUPÞ ¼ amðUP − emÞ þ bm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUP − emÞ2 þ cm

q
þ dm:

(55)

Linear cases were modeled by setting bm ¼ cm ¼
em ¼ 0. The curves plotted in Figs. 7 and 8 represent

functional fits to computed values. Fit coefficients are listed
in Tables 1 and 2.

With the development of the Cm andDm functional forms,
the new analytic SE MTF model form was completed. How-
ever, given the number of free constants (80) involved, an
open question remained whether a slightly modified set of
coefficients could produce a better fit. To explore this
possibility, a stochastic parallel gradient descent (SPGD)
procedure36 was applied to improve the fit to the database.

The coefficient set derived in the initial analysis
(described above) was used to “seed” the SPGD optimizer.
The SPGD consisted of randomly perturbing the full 80-
parameter coefficient set, recomputing the RMS VðQ;X;ωÞ
error for the full database, and comparing that error with
the previous best fit error. Any new set that outperformed
the prior best fit was adopted as the new best fit. Use of
the SPGD reduced the overall RMS error of V from
0.006795 to 0.002728. For simplicity of presentation, coef-
ficients listed in Tables 1 and 2 represent the SPGD best-fit
coefficients. For the remaining expressions, the original results
(used in the plotted figures) were retained in Eqs. (39) through
(49), so curves in the various figures can be replicated.
Optimized versions of these equations are given below.

To summarize, the new SE MTF model is formulated
starting with the general expression in Eq. (27), then using
M0 from (20), V from (36), VΔ from (42), expressions in
Eqs. (44), (47), and (50) through (55), and results of the
SPGD analysis

Fig. 7 Plots ofCmðUP Þ expansion coefficients and associated curve fits.

Fig. 8 Plots of DmðUP Þ expansion coefficients and associated curve
fits.

Table 1 SPGD hyperbolic Cm and Dm coefficients.

Coefficient am bm cm dm em

C0 20.2124 19.6324 0.0031 0.5751 1.0686

C2 2.1118 2.4928 0.0042 −0.3515 0.9808

C4 −0.3413 −0.3355 0.0051 0.0051 0.7996

C6 −0.3529 −0.3769 0.0000 0.0131 0.9041

C8 −0.3696 −0.3982 0.0000 0.0153 0.9504

D0 6.4372 5.8919 0.0005 0.5788 1.0341

Table 2 SPGD linear Cm and Dm coefficients.

Coefficient am dm

C10 0.01009 −0.00452

C12 0.00550 −0.00257

D2 −0.30273 −0.00057

D4 0.03335 −0.00413

D6 −0.01271 0.00485

D8 0.00425 −0.00154

D10 −0.00452 0.00186

D12 0.00055 −0.00019
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V0ðQÞ ¼ ΣP½q; 0.879; 0.373; 0.085; 0.373; 1.570;−0.984�;
(56)

VMðQÞ ¼ ΣS½q; 0.221; 0.070; 1.539; 0.150�; (57)

ωPð1; XÞ ¼ ΣP½x; 0.351;−0.133;−0.318;
þ 3.451;þ1.407;þ1.274�; (58)

log10½XωðQÞ� ¼ ΣS½q;þ0.004;−0.088;þ1.745;−0.050�;
(59)

V1ðxÞ ¼ VPð1; 10xÞ ¼ ΣPðx;þ0.122;þ0.044;þ0.082;

þ 4.296;þ2.323;þ1.179Þ; (60)

ARðqÞ ¼ ΣSðq;þ1.066;þ0.352;þ1.596;þ0.150Þ; (61)

xPðqÞ ¼ ΣSðq;−0.005;þ0.089;þ1.550;−0.150Þ: (62)

4 Comparisons with Alternative Approaches
The analytic model developed in the previous section is
compared here with results obtained by Charnotskii21,26

and several prior analytic methods. Charnotskii21 used
a Feynmann-path integral technique.

Figures 9 through 11 intercompare the new model with
Charnotskii’s21 Figs. 8 through 10. Charnotskii’s d param-
eter is related to X via X ¼ ðd2∕2Þ3∕5∕2.1, such that d values
0, π, 2π, 3π, and 4π correspond to X values 0.000, 1.241,
2.851, 4.638, and 6.550, respectively. Charnotskii’s N
parameter is related toQ asQ ¼ ð2N∕πÞ1∕2. Reported N val-
ues of the three plots were 10.0, 1.0, and 0.1, respectively,
corresponding to Q values 2.523, 0.798, and 0.252. The d ¼
0 curves (the uppermost line in each graph) correspond to the
system MTF, and match identically. Remaining lines in
Figs. 9 and 11 were plotted using Q values that produced
the closest fit to Charnotskii’s results, Q ¼ 12.0 in Fig. 9
and Q ¼ 0.02 in Fig. 11. Lines in Fig. 10 were constructed

based on the reported N ¼ 1 (Q ¼ 0.798). Systematic devi-
ations employed in these plots appear consistent with
Charnotskii comments that N ¼ 10 and N ¼ 0.1 constituted
limiting cases, but might be due to approximations used
when Charnotskii developed Eq. (31) of Ref. 21.

The comparisons of Figs. 9–11 provide partial verifica-
tions of both the present method and Charnotskii’s calcula-
tions. A similar comparison is made in Fig. 12 between data
from Fig. 2 of Ref. 26 (symbols) and simulations (lines)
based on,

DSA½Q;X; r∕D� ¼ 2ð2.1XÞ5∕3ðr∕DÞ5∕3
× f1 − V½Q;X; ðr∕DÞ�ðr∕DÞ1∕3g; (63)

an analogous SE structure function derived from the expo-
nential kernel of Eq. (27), transformed into distances r in the
entrance pupil. Results similar to Charnotskii’s calculations
were achieved usingQ values 0.02, 0.21, 0.78, and 12.0, and
X ¼ 0.314 (corresponding to d ¼ 1.0). Similar Q stretching
as in Figs. 9 and 11 was again observed. Curiously, the
lowest line (second lowest σ2R) exhibited the worst fit to
Charnotskii’s results, suggesting discrepancies between
the methods are not explicable simply due to RA failure.

A key element of these results is the range of Rytov vari-
ance where similar results were obtained using RAversus the

Fig. 9 Comparison of SE (solid lines) and LE (dashed lines) MTF
model results using Q ¼ 12.0 versus data (symbols) digitized from
Ref. 21’s Fig. 8.

Fig. 10 Comparison of SE (solid lines) and LE (dashed lines) MTF
model results using Q ¼ 0.798 versus data (symbols) digitized from
Ref. 21’s Fig. 9.

Fig. 11 Comparison of SE (solid lines) and LE (dashed lines) MTF
model results using Q ¼ 0.02 versus data (symbols) digitized from
Ref. 21’s Fig. 10.
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alternative approaches of Refs. 21 and 26. While Figs. 9 and
11 involved Q stretching, a single Q adjustment appeared to
correct all X cases, while no Q adjustment was used in
Fig. 10 where the two strongest turbulence cases corre-
sponded to σ2R values of 12.7 and 22.8. This ability of the
RA to perform at high σ2R levels is consistent with the
Sec. 2.3 analysis.

Lastly, four prior SE MTF models, (1) V ¼ 0.5 (Fried’s
far-field case), (2) V ¼ 1.0 (Fried’s near-field case),
(3) Holst’s15 method where either Fried’s near-field or far-
field approximation was chosen based on best fit, and (4)
the VðQ;XÞmethod of Ref. 24, were compared with the new
analytic SE MTF model (5). An RMS metric was used to
compare each estimate against database-derived MTF val-
ues, weighted by frequency ω. The RMS results computed
were E1 ¼ 0.035179, E2 ¼ 0.014089, E3 ¼ 0.010788, E4 ¼
0.006431, and E5 ¼ 0.000218. The prequel model (4) out-
performed methods (1) through (3), but the new model
offered dramatic improvement (by a factor of 29) over the
prequel, and greater than 100 better than the far-field
approach.

5 Conclusions
This paper’s extended high angular frequency analysis, using
the methodology described in Sec. 2, has lead to a new ana-
lytic expression for the atmospheric SE MTF. This model’s
RMS error of 0.000218 versus numerically integrated results
represents factors of 29 improvement over the prequel,24 49
over Holst,15 and 64 over Fried’s near-field case.20 The new
model exhibits diffraction-limited behavior at all angular
frequencies.

The primary focus of this effort was to provide systems
performance engineers with an easily computed SE MTF
that accounted for a thorough range of system and observa-
tional scenario conditions. Specifically, it improves evalu-
ation of SE MTF degradation at high frequencies. This
will aid trade studies in evaluating image reconstruction tech-
nique effectiveness where high frequency edge information
losses are of critical concern.

Augmenting the present model, a previous study37

showed that the new model, based on structure functions,

can treat path-varying turbulence effects, including slant-
path and valley geometries. A planned future paper will
expand on these results, considering the annular aperture
case (Newtonian telescopes, etc.), where the circular aperture
results represent the zero central obscuration limit of the
more general solution.

The main caveats of the model regard the Kolmogorov
spectrum used and the validity of the RA method. Regards
the spectrum, we impose the requirement that lo < D < Lo,
ensuringD occurs in the inertial subrange. Regarding the RA
method, conditions derived based on Dashen’s 30 analysis
[Eqs. (31) and (35)] suggest a relatively wide range of appli-
cability. This suitability was further tested through intercom-
parison with path-integral21 and Markov26 techniques.

Results of the current study might also be used in an
improved inverse filtering procedure [e.g., Ref. 5], though
such a study is beyond the scope of the present work. In such
a study, multiple range effects could be simulated, but special
handling would be required to subsegment the images to
apply different MTF’s in different portions of the image
field.
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