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Abstract. Soil moisture data obtained by inversion of Fengyun 3B remote sensing data, are
widely used in drought monitoring and global climate change research, however, some regional
data are missing in this data set, which reduces the application effect. Based on backpropagation
neural network (BPNN), we established a filling method and filled the missing area with mod-
erate resolution imaging spectroradiometer (MODIS) inversion products, including land surface
temperature, normalized difference vegetation index, and albedo. We named it the multilayer
BPNN filling algorithm. The algorithm consists of two neural network layers. The first network
layer is used for the spatial scaling of MODIS inversion products, and the second network layer
uses the scaling products to further generate soil moisture values. We compared the proposed
method to a discrete cosine transform and partial least square (DCT-PLS) and a kriging using the
same data set. The experiments demonstrate that our method could obtain good filling results in
both homogeneous areas and areas with high data variations, whereas DCT-PLS and kriging
could only get good filling results in homogeneous areas. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI:
10.1117/1.JRS.12.042806]
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1 Introduction

Spatiotemporal continuous soil moisture data are an important index for drought monitoring,
global climate change research, and ecological environmental change research. It also has impor-
tant theoretical and practical significance for regional water resources, agriculture, and animal
husbandry management.1,2 Remote sensing technology has advantages in terms of full space
coverage, continuous time coverage, and low cost. Therefore, it has become an important
tool for acquiring soil moisture data.3

Fengyun 3B (FY-3B), launched on November 5, 2010, is one of China’s second-generation
polar-orbiting meteorological satellites;4 the spatial resolution of band data is 250 m × 250 m,
which can be used to obtain soil moisture data.5 Soil moisture data obtained by inversion of
FY-3B remote sensing data are widely used in drought monitoring and global climate change
research. However, the presence of clouds, aerosols, and haze leads to missing value in some
regional areas, and it further leads to missing soil moisture data. The gap reduces the application
effect. Figure 1 shows these types of gaps; the red regions represent gaps, and the black line
represents the bound of Shandong Province, China, which is our study area.
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Gap filling methods use acquired effective observation values to fill in missing values.
Common filling methods include spatial interpolation, filtering, and curve fitting. Spatial inter-
polation fills gaps based on the spatial continuity of surface parameters. Müller6 filled the gaps in
chlorophyll images using kriging. From the perspective of spatial data, Casey et al.7 proposed
a filling method using the values of neighboring pixels. This type of spatial interpolation algo-
rithm can achieve the desired filling effect when the area of the gaps is relatively small and
homogeneous. Otherwise, these algorithms often fail. Filtering algorithms decompose original
signals into different frequencies and use the low-frequency information to perform gap filling.
Kandasamy et al.8 used a method based on caterpillar singular spectrum analysis to fill the gaps
in data from moderate resolution imaging spectroradiometer (MODIS) eight-day leaf area index
products. Sirjacobs et al.9 and He et al.10 used a data interpolating empirical orthogonal function
to fill the gaps in sea surface temperature data and sea surface chlorophyll concentration data.
Zhang et al.11 reconstructed missing data from the advanced microwave scanning radiometer 2
based on a discrete cosine transformation combined with a penalized partial least square (DCT-
PLS) method. Chen et al.12 filled normalized difference vegetation index (NDVI) time series
gaps by means of Savitzky–Golay filtering combined with the upper envelope of NDVI
data. By regarding the high-frequency portion of a signal as noise, this type of filtering algorithm
typically achieves as better smoothing effect, but the details of signals are lost. Curve fitting
techniques adjust parameters by minimizing a cost function that is typically the sum of quadratic
differences between observations and simulations. Because this adjustment is performed over
a limited temporal window, only a limited amount of information is used when filling gaps. Beck
et al.13 reconstructed MODIS NDVI time series data using a double-logistic function and
achieved acceptable filling results. Jönsson et al.14 proposed a filling algorithm based on an
asymmetric Gauss function by fitting peaks and valleys to the gaps in NDVI data.

Artificial neural networks (ANN) comprising an input layer, several hidden layers, and an
output layer, are based on the biological neural network of the human brain. The backpropa-
gation neural network (BPNN) is one type of ANN model; it is self-organizing, self-teaching,
and nonlinear, and widely used in the analysis of the nonlinear system considering various
influencing factors. The goal of BPNN is to minimize the root-mean-square error between
the predicted outputs and the target outputs by adopting the backpropagation algorithm.15,16

Theoretically, three-layer neural network can approximate a nonlinear function with any preci-
sion, as long as the number of neurons is enough.

The BPNN is widely used for prediction tasks for its excellent nonlinear mapping ability.17–19

Prediction using a BPNN does not require determination of the mathematical relationships
between inputs and outputs. During training, a BPNN can adjust its own parameters to obtain
the desired outputs. Soil moisture has strong correlations with time, surface temperature, land
cover, albedo, and digital elevation model (DEM) data.20,21 Therefore, we established a filling
algorithm based on BPNN and filled the missing area of soil moisture data obtained by inversion
of FY-3B with MODIS inversion products, including land surface temperature (LST), NDVI,

Fig. 1 Gaps in the soil moisture obtained by inversion of Fengyun 3B (FY3B).
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and albedo; DEM data were also used as input. We named it the multilayer BPNN filling algo-
rithm (MBPNN-filling). The reason why MODIS inversion products were chosen as the data
source is that MODIS data product has a short period and good credibility.22–24

The following summarizes the proposed method for filling the gap of soil moisture and its
evaluation.

(1) We built a network structure using BPNN; the network consists of two neural networks
layers. The first network layer is used for the spatial scaling of MODIS inversion prod-
ucts, and the second network layer uses the scaling products to further generate soil
moisture values.

(2) In the model training stage, we use stochastic gradient descent (SGD)25,26 to train
the network layer by layer.

(3) Finally, the filling experiment was carried out by using the trained model, and the filling
results were compared with the original data, and the comparison results were analyzed.

2 Methods

We describe the network structure in detail in Sec. 2.1, how to train the network in Sec. 2.2, and
Sec. 2.3 on the use of a trained network for filling gap.

2.1 Network Architecture

Figure 2 shows the network architecture of our approach. The function of LST-NN is to take
LST, NDVI, and albedo, and DEM as input to generate FY-LST, where LST, NDVI, and albedo
are inversion products of MODIS. Similarly, NDVI-NN is used to generate FY-NDVI. Albedo-
NN is used to generate FY-albedo. The spatial resolution of FY-LST, FY-NDVI, and FY-albedo
is the same as the spatial resolution of FY3B’s corresponding inversion products. We added
FY prefix before the generated data, indicating the same function as FY3B’s inversion products.
The function of SM-NN is to use FY-LST, FY-NDVI, FY-albedo, and DEM to generate soil
moisture products.

Fig. 2 The network architecture of our method.
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The main reason that we choose the given network structure is to avoid the adverse effect of
spatial scale effect on the result. Through the layered design, the first layer is responsible for the
transformation scale. In this layer, the main inputs LST, NDVI, and albedo are all from the same
MODIS, so the effect of space effect will be less. The second layer is responsible for generating
soil moisture data. The spatial resolution of input and output is consistent. This design is
beneficial to improve the reliability of the model.

2.1.1 LST-NN

In this section, we describe the structure and the input of LST-NN. The structure of NDVI-NN
and albedo-NN is similar to that of LST-NN except that the output is changed to FY-NDVI and
FY-albedo. Figure 3 shows the structure of LST-NN.

LST-NN comprises an input layer that has 28 neurons, a hidden layer that has 10 neurons,
and an output layer that has only one neuron. The spatial resolution of MODIS inversion product
used in this study is 1 km. Among FY3B inversion product, the spatial resolution of NDVI and
albedo is 250 m, the spatial resolution of NDVI and LST is 1 km. The spatial resolution of NDVI
is DEM is 90 m. According to the above data, the area covered by an FY3B pixel may be asso-
ciated with the area covered by four MODIS pixels at most and with 16 DEM pixels at most.
Therefore, among the 28 neurons in the input layer, four neurons are used to represent MODIS-
LST, four neurons are used to represent MODIS-NDVI, and four neurons are used to represent
MODIS-albedo, and 16 neurons used to represent DEM. LST-NN output is FY-LST.

The hyperbolic tangent and linear function were chosen as the activation function for the hid-
den and output layers, respectively.27 The datasets were normalized to give values between −0.95
and 0.95 prior to training. The initial connection weights were set to be random between −0.3 and
0.3. The learning rate and the momentum factor of the BPNN model were set to be 0.05 and 0.9,
respectively. These were all empirical values.28 To overcome the overfitting problem, the datasets
were divided into three sets: the training set, validation set, and testing set, accounting for 60%,
20%, and 20%, respectively. The training set was used to adjust the weights of the neural network,
the validation set was used to minimize overfitting, and the testing set was used only for testing
the final solution in order to confirm the actual predictive power of the network.

Fig. 3 The architecture of LST-NN.
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2.1.2 SM-NN

Figure 4 shows the structure of SM-NN. SM-NN comprises an input layer that has 19 neurons,
a hidden layer that has 10 neurons, and an output layer that has only one neuron. Among
the 19 neurons in the input layer, one neuron is used to represent FY-LST, one neuron is
used to represent FY-NDVI, one neuron is used to represent FY-albedo, and 16 neurons
used to represent DEM. SM-NN output is soil moisture.

2.2 Network Training

The principle of selecting samples is: (1) MODIS products are consistent with the product time
of FY3B and (2) MODIS products and FY3B can be covered in the selected area.

The steps of generating a training sample are as follows: (1) extracting a subregion covered
by a FY3B pixel from the selected sample region; (2) obtaining LST, NDVI, and albedo values of
the FY3B inversion product of the pixel; (3) using the boundary of the subregion and the MODIS
data performs topology operations to obtain LST, NDVI, and albedo values of associated pixels;
and (4) performs topology operations using DEM data using the boundaries of the subregions to
obtain DEM values of associated pixels.

In our training, the SGD method with momentum was used for parameter updates,
the following expression illustrates the SGD method with momentum:

EQ-TARGET;temp:intralink-;e001;116;254Wðnþ1Þ ¼ WðnÞ − ΔWðnþ1Þ; (1)

whereWðnÞ denotes the old parameters,Wðnþ 1Þ denotes the new parameters, and ΔWðnþ 1Þ
is the increment for the current iteration. The iteration increment, which is a combination of
old parameters, gradient, and historical increment, is calculated as

EQ-TARGET;temp:intralink-;e002;116;186ΔWðnþ1Þ ¼ ϑ

�
dw · WðnÞ þ ∂JðWÞ

∂WðnÞ

�
þm · WðnÞ; (2)

where JðWÞ is the loss function, ϑ is the learning rate for step length control, dw denotes
the weight decay, and m denotes the momentum.

Fig. 4 The architecture of SM-NN.
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2.3 Fill Gap Using the Trained Network

After successful training, the model can be used to generate data. According to our design,
the output of the model is written to the corresponding pixel by location, replacing the original
null value, and completing the data filling work.

3 Experiment Design

We designed a set of test experiments and comparative experiments to verify the feasibility of the
proposedMBPNN-filling method. The proposed approach was implemented using MATLAB on
a windows operating system.

3.1 Study Area and Data

The study area is Shandong Province, China. The annual precipitation is about 550 to 950 mm,
with 75% concentrated from May (the beginning of the unfrozen season) to October (the begin-
ning of the frozen season) due to the impact of the South Asian summer monsoon. The surface
soil moisture has significant seasonal variations, lower in winter but higher in summer, with
strong spatial heterogeneity. The main vegetation is crop, grass, and forest.

3.1.1 MODIS products and DEM

Three MODIS optical products, including 16-day NDVI (MYD13A2), daily LST (MYD11A1)
as having almost the same observation time as FY-3B, and 16-day albedo (MCD43B3) with
1-km spatial resolution and yearly land cover (MCD12Q1) with the International Geosphere
Biosphere Programme (IGBP) classification in 2012 (downloaded from Ref. 29), were jointly
used to reconstruct the FY-3B soil moisture inversion product. The MODIS products with
the sinusoidal projection in the HDF format were then reprojected to the latitude/longitude
projection with the Geo-TIFF format using the MODIS reprojection tool (downloaded from
the website available in Ref. 30). In the pretreatment stage, we used the algorithms proposed
by Zeng et al.,24 Liu et al.,16 and Jia et al.22 to fill the gap of MODIS data.

3.1.2 DEM

DEM data from the Shuttle Radar Topography Mission (SRTM), an international project spear-
headed by the National Geospatial-Intelligence Agency, the U.S. National Aeronautics and
Space Administration, the Italian Space Agency, and the German Aerospace Center, with
90 m × 90 m resolution were downloaded from the website available in Ref. 31.

3.1.3 FY3B products

Three FY-3B inversion products, including 10-day NDVI (250-m spatial resolution), twice per
day LST (1-km spatial resolution), and 10-day albedo (250-m spatial resolution), were jointly
used to reconstruct the FY-3B soil moisture product.

3.2 Soil Moisture Inversion from FY-3B

Zhang et al.32 presented a method of soil moisture inversion using BPNN. First it created
a BPNN and optimized node weights of BP network by genetic algorithm. Then, TM data
(TM3, TM4, and TM6) and different ASAR data of polarization and polarization ratio (VV,
VH, and VH/VV) were used as neural network inputs; the outputs were ground soil moisture
data, part of which were used to train network and invert to get soil moisture distribution. Finally,
it verified the effectiveness of genetic neural network optimization algorithm and the inversion
results based on integration of active and passive remote sensing. The results showed that
the new optimization algorithm was efficient and effective, and the inversion results based on
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integration of TM and ASAR data were obviously better than inversion individuals, that embod-
ied advantages and potential of soil moisture inversion based on integration of active and passive
remote sensing.

In this study, we used FY-3B multispectral data instead of TM data and used FY-3B MWSI
data to represent ASAR for soil moisture inversion.

3.3 Samples and Test Data

We selected a batch of FY3B remote sensing image data of 2017, which are similar in time and
can cover the whole study area. The soil moisture data set of the whole study area was obtained
using the inversion method described in Sec. 3.2, and the data set has not missing value,
as shown in Fig. 5. We use this data set to make samples and test data.

We developed a data extraction tool based on GDAL that can extract pixels that intersect or
contain with its topology based on the specified coordinate location or range. We select 6000
pixels from soil moisture data set shown in Fig. 5, and extract soil moisture value of each pixel
using the tool. Then, we calculate the accurate coverage area of each pixel, on this basis, extract
data from MODIS product data sets, FY3B product data set, DEM data set, and form 6000
samples.

The method of making test data set is based on the original soil moisture data set, and the soil
moisture in several areas is artificially changed to 0 as a missing area. The advantage of this stage
is that after the completion of the filling test, we can compare the obtained filling value with
the original value to verify the precision of the fill value.

We made two sets of test data sets, each containing three sets of test data sets. Figure 6 is the
first set of test data sets, and Fig. 7 is the second set of data sets. In the first test set, the area of

Fig. 5 Soil moisture inversion product using method descried in Sec. 3.2.

Fig. 6 The first test data set: (a) Exp-1, (b) Exp-2, and (c) Exp-3.

Fig. 7 The second test data set: (a) Exp-4, (b) Exp-5, and (c) Exp-6.
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each test area is very small, whereas in the second test data set, the area of each test area is
relatively large.

In Fig. 6, (a) Exp-1 is the missing region distribution formed by removing the value of 150
subregions artificially. (b) Exp-2 is the missing region distribution formed by removing the value
of 250 subregions artificially. (c) Exp-3 is the missing region distribution formed by removing
the value of 600 subregions artificially. Each subregion contains 3 to 6 pixels, the area of each
pixel is 0.25 km2.

In Fig. 7, the missing area of (a) Exp-4 is 200 × 120 pixels, the missing area of (b) Exp-5 is
500 × 120 pixels, and the missing area of (c) Exp-6 is 600 × 600 pixels.

3.4 Comparison Model

We chose the DCT-PLS and the kriging model as the comparison models. A comparative
experiment was conducted using methods established in the published literature.

3.4.1 DCT-PLS

DCT-PLS is a method of performing simultaneous verification of raw data, replacement of false
and missing vectors, and some smooth and powerful postprocessing techniques based on
a penalized least squares approach (PLS); it combines the use of the discrete cosine transform
(DCT) and the generalized cross-validation, thus DCT-PLS algorithm can process the data
quickly and smoothly. The DCT-PLS uses a robust procedure that is very little affected by
the outliers. This method consists of constructing weights with a specified weighting function
using the current residuals and updating them, from iteration to iteration, until the residuals
remain unchanged. It is worth noting that the DCT-PLS does not contain any “outlier detector”
based on a specific predicate such as used in the normalized median test. The algorithm rather
assigns a low weight to outlying values in order to reduce their influence.

3.4.2 Kriging

Kriging interpolation algorithm is also known as the best interpolation of spatial autocovariance.
It is a method of interpolation that predicts unknown values from data at known locations.
Kriging uses variogram to express the spatial variation. This method is a mathematical
model obtained through fitting semivariogram, then the distance of any given semivariance func-
tion is estimated, and the spatial weight is calculated. It estimates the unknown value using
a weighed linear combination of the available samples.

In Kriging method, the weight is calculated from a variogram, which considers the distance
as an independent variable. The method first considers the variability of spatial attribute in spatial
location. Second, the influenced distance range of a point is determined and its value is to be
estimated. At last, the attribute value of the point to be estimated is computed using the points
within this range. Not only the relative positions between observed points and estimated points
are considered but also the relative positions of observed points are taken into account in
the Kriging method.

4 Test Results and Discussion

This paper provides an approach to fill the missing soil moisture data with auxiliary information
using MBPNN-filling. Compared with other typical methods of the same kind, the proposed
method obtains the best effect. We first give the result of test experiment in Sec. 4.1 and analyze
the reasons in Sec. 4.2.

4.1 Test Results

Figure 8 shows the results of the first test experiment and Fig. 9 shows the results of the second
test experiment. In Figs. 8 and 9, the first row is the original soil moisture inversion product using
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Fig. 8 The filling results of first test experiment: (a) original soil moisture, (b) test data, (c) filling
result of DCT-PLS, (d) filling results of kriging, and (e) filling results of our approach.

Fig. 9 The filling results of second test experiment: (a) original soil moisture, (b) test data, (c) filling
result of DCT-PLS, (d) filling results of kriging, and (e) filling results of our approach.
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our method, which descried in Sec. 3.2. Because the FY3B remote sensing data we selected can
cover the whole region, the soil moisture inversion product is not missing, so the test results can
be verified better. The second row is test data, the missing area is shown by manually removing
the value of some pixels. The third row is the filling results of DCT-PLS. The fourth line is
the filling results of kriging. The fifth line is the filling results of our approach.

4.2 Analysis

In order to compare the filling results, we calculated the mean square error (MSE) between
the filling results and the original values after each test, and taking MSE as the evaluation index,
the smaller the MSE, and the better the filling effect.

These MSE values of first test experiment are listed in Table 1. From the table, we can see that
the three algorithms all achieved optimal filling results (MSE less than or equal to 8.08727E-7).
Among the three algorithms, MBPNN-filling achieved the best filling results and Kriging
achieved the worst filling results.

Table 2 lists the MSE values of second test experiment. For the same missing proportion,
MBP achieved the best filling results among the three algorithms. The MSE of kriging is too
large to accurately reflect the distributions of soil moisture. With an increasing missing propor-
tion, the performance of all three algorithms decreases significantly.

It can be seen from Exp.-1, Exp.-2, and Exp.-3, although soil moisture is a variable with
strong spatial heterogeneity, when the area of the missing area is small enough, MBPNN-filling,
DCT-PLS, and Kriging can still get good filling results. The reason is that when the area of the
missing area is small, the algorithm can get enough information from the surrounding area to
calculation. The influence of spatial heterogeneity can be ignored. The effect of filling mainly
depends on the area of a single missing area, regardless of the number of missing areas.

It can be seen from Exp.-1, Exp.-2, Exp.-3, Exp.-4, Exp.-5, and Exp.-6 that since the infor-
mation used by DCT-PLS and Kriging is all from the same kind of information in the surround-
ing area. As the area of the missing area increases, the information that the algorithm can use
becomes less, the effect of spatial heterogeneity of soil moisture increases significantly, and the
filling effect becomes worse or even fails.

On the other hand, it can be seen from Exp.-1, Exp.-2, Exp.-3, Exp.-4, Exp.-5, and Exp.-6
that because the MBPNN-filling use external auxiliary information, the size of the missing
area has little influence on the filling effect of the algorithm due to the availability of auxiliary
information in the missing area.

Table 1 MSE values of the first test experiment.

Experiment MBPNN-filling DCT-PLS Kriging

Exp.-1 1.00195E-07 2.12906E-07 4.97913E-07

Exp.-2 1.2061E-07 3.67998E-07 8.08727E-07

Exp.-3 1.11183E-07 4.31474E-07 7.63266E-07

Table 2 MSE values of second test experiment.

Experimental run MBPNN-filling DCT-PLS Kriging

Exp.-4 1.81012E-07 3.10333E-06 0.000569

Exp.-5 5.70709E-07 1.01E-05 0.00197

Exp.-6 9.63106E-07 3.28E-05 0.002134
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5 Conclusion

This paper proposes a method to fill the missing area of FY-3B soil moisture inversion product
by using MODIS inversion product and DEM as auxiliary information. Compared with tradi-
tional DCT-PLS, Kriging, and other filling algorithms, the proposed method introduces external
auxiliary information and adopts the strategy of spatial scale conversion of auxiliary variables
and filling separately. It effectively avoids the influence of spatial heterogeneity on the filling
algorithm and has a good filling effect. This article also provides a tool to generate pixel-level
training samples, which can reduce manual workload and improve efficiency.

The main limitation of our method is that when the time of auxiliary information from
MODIS is too different from the time of FY3B, the effect of filling will be greatly reduced.
In the next work, we will introduce time series data to further enhance its applicability.
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