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Abstract. The identification and mapping of crops are important for estimating potential harvest
as well as for agricultural field management. Optical remote sensing is one of the most attractive
options because it offers vegetation indices and some data have been distributed free of charge.
Especially, Sentinel-2A, which is equipped with a multispectral sensor (MSI) with blue, green,
red, and near-infrared-1 bands at 10 m; red edge 1 to 3, near-infrared-2, and shortwave infrared 1
and 2 at 20 m; and 3 atmospheric bands (band 1, band 9, and band 10) at 60 m, offer some
vegetation indices calculated to assess vegetation status. However, sufficient consideration
has not been given to the potential of vegetation indices calculated from MSI data. Thus,
82 published indices were calculated and their importance were evaluated for classifying crop
types. The two most common classification algorithms, random forests (RF) and support vector
machine (SVM), were applied to conduct cropland classification from MSI data. Additionally,
super learning was applied for more improvement, achieving overall accuracies of 90.2% to
92.2%. Of the two algorithms applied (RF and SVM), the accuracy of SVM was superior and
89.3% to 92.0% of overall accuracies were confirmed. Furthermore, stacking contributed to
higher overall accuracies (90.2% to 92.2%), and significant differences were confirmed with
the results of SVM and RF. Our results showed that vegetation indices had the greatest
contributions in identifying specific crop types. © 2018 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.12.026019]
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1 Introduction

From a land-planning perspective, cropland diversity is vital and crop cover maps provide infor-
mation for estimating potential harvest and agricultural field management. To document field
properties, such as cultivated crops and locations, some local governments in Japan have been
using manual methods.1 However, more efficient techniques are required to reduce the high
expense of these methods. Thus, satellite data-based cropland mapping has gained attention.
Some spectral indices, which are combinations of spectral measurements at different wave-
lengths, have been used to evaluate phenology or quantify biophysical parameters.2–5 As a result,
they have also made crop maps more accurate in previous studies,6 and the abilities of optical
remote sensing data have been improved for monitoring agricultural fields. The opportunities to
obtain optical remote sensing data have improved due to the Sentinel-2A satellite launch on
June 23, 2015. Now, it is collecting multispectral data including 13 bands covering the visible,
shortwave infrared bands (SWIR) wavelength regions. Sentinel-2B, which possesses the same
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specifications, was launched on March 7, 2017, and creates greater opportunities for monitoring
agricultural fields. Furthermore, various spectral indices can be extracted including indices based
on SWIR, which are influenced by plant constituents, such as pigments, leaf water contents, and
biochemicals.7,8 Furthermore, vegetation indices derived from reflectance data acquired from
optical sensors have been widely used to assess variations in the physiological states and bio-
physical properties of vegetation.9–11 Specifically, the normalized difference vegetation index
(NDVI),12 soil-adjusted vegetation index (SAVI),13 and enhanced vegetation index (EVI)14 have
been used for monitoring vegetation systems or ecological responses to environmental change.15

Multispectral sensor (MSI) data have been used for identifying crop types,16–18 plastic-covered
greenhouses,19 water bodies,20 and some previous studies showed the potential of VIs calculated
fromMSI data. However, it is possible to calculate a vast number of VIs fromMSI data and most
of them have been ignored in the previous studies. In this study, 82 published indices and original
reflectance data sources were evaluated to classify six crop types including beans, beetroot,
grass, maize, potato, and winter wheat, which are dominant crops on the western Tokachi
plain, Hokkaido, Japan.

In addition to qualities of remote sensing data, classification algorithms are important to
improve classification accuracies of crop maps. Recently, random forests (RF) is a widely used
machine learning algorithm consisting of an ensemble of decision trees, and it has been an
extremely successful machine learning algorithm for classification and regression method.21

It has been applied for generating land cover maps22,23 and reached around 65% (tree species
identification),17 76% (crop types identification),17 and 90% (greenhouse detection)19 using MSI
data in the previous studies.

Some studies showed that support vector machine (SVM) performed better than RF for this
purpose, and it has been widely applied for crop-for-crop classification.22,24–26 Its robustness to
outliers has been demonstrated and SVM is an excellent classifier when the number of input
features is large.27

The superlearner (SL) methodology,25 also called stacking, is an ensemble learning method
in which the user-supplied library of algorithms is combined through a convex weighted com-
bination, with the optimal weights to make the cross-validated empirical risk smaller. Therefore,
SL could be expected to classify crop types more accurately than the single use of RF or
SVM, both considered in this study. Next, an ensemble approach based on SL was applied for
improving classification accuracies.

Within this framework, the main objectives of the present study were to evaluate the potential
of Sentinel-2 data for crop-type classification and the potential of ensemble learning based on
RF and SVM.

2 Materials and Methods

2.1 Study Area

The study area was located in the western part of Tokachi plain, Hokkaido, Japan (Fig. 1, 142°42′
51″ to 143°08′47″ E, 42°43′20″ to 43°07′24″N). Main cultivated crop types are beans, beetroots,
grasses, maize, potatoes, and winter wheat. The average monthly temperatures were 8.3°C to
21.8°C and monthly precipitation was 12.0 to 94.5 mm from May to October.

Field location and attribute data, such as crop types, were based on manual surveys and
provided by Tokachi Nosai (Obihiro, Hokkaido) as a polygon-shaped file. A total of 12,639
fields [2265 beans fields, 1548 beetroot fields, 2110 grasslands (timothy and orchard grass),
1000 maize fields, 2452 potato fields, and 3264 winter wheat fields] were observed. The fields
ranged from 0.05 to 18.21 ha with an averaged value of 2.54 ha. Grasslands were located on
the outskirts of the built-up area.

2.2 Remote Sensing Data

The data acquired from Sentinel-2 MSI contained blue, green, red, and near-infrared-1 bands at
10 m; red edge 1 to 3, near-infrared-2, and SWIR 1 and 2 at 20 m; and three atmospheric bands
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(band 1, band 9, and band 10) at 60 m. In this study, the three atmospheric bands were removed,
because they were dedicated to atmospheric corrections and cloud screening.28

Although Sentinel-2A imagery was gathered seven times from May to September 2016, for
the whole site, all images were covered with clouds except for one acquired on 11 August. The
level 1C data acquired on August 11, 2016, were downloaded from EarthExplorer.29 All bands
were converted to 10-m resolution with a cubic convolution resampling method and average
reflectance values of each band were calculated for each field using the field polygons to com-
pensate for spatial variability and to avoid problems related to uncertainty in georeferencing.

Some vegetation indices, such as NDVI, have been used for improving classification accu-
racies in previous studies.16,22,30,31 About 82 published vegetation indices for evaluating various
vegetation properties were calculated in this study (Table 1).

2.3 Classification Algorithm

All samples were divided into the following three groups using a stratified random sampling
approach: training data (50%) for developing classification models, validation data (25%)
for hyperparameter tuning, and test data (25%) for evaluation of classification accuracies86

and Table 2 shows the numbers of fields of each crop type.
SVM partitions data using maximum separation margins87 and the “kernel trick” has fre-

quently been applied instead of attempting to fit a nonlinear model in previous studies.30 In
this study, the Gaussian radial basis function kernel, which has mostly been used for classifi-
cation purposes,30 was used as a kernel and two parameters were tuned to control the flexibility
of the classifier, the regularization parameter C, and the kernel bandwidth γ. If the C value is too
large, there is a high penalty for no separable points, and we may store many support vectors and

Fig. 1 Study area and the distribution of croplands (background map shows Sentinel-2A data
obtained on August 11, 2016, R: band 4, G: band 3, and B: band 2).
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Table 1 Vegetation indices calculated from Sentinel-2 MSI data.

Abbreviation Index Formula

AFRI1.632 Aerosol free vegetation index 1.6 Band8a−0.66�Band11
Band8aþ0.66�Band11

AFRI2.132 Aerosol free vegetation index 2.1 Band8a−0.5�Band12
Band8aþ0.5�Band12

ARI33 Anthocyanin reflectance index 1
Band3 −

1
Band5

ARVI34 Atmospherically resistant vegetation index fBand8−½Band4−γðBand2−Band4Þ�g
fBand8þ½Band4−γðBand2−Band4Þ�g

The γ is a weighting function that
depends on aerosol type.

In this study, a value of 1 for γ.

ARVI234 Atmospherically resistant vegetation index 2 −0.18þ 1.17 �
�
Band8−Band4
Band8þBand4

�

ATSAVI35 Adjusted transformed soil-adjusted
vegetation index

a�ðBand8−a�Band4−bÞ
Band8þBand4−abþX ð1þa2Þ

a ¼ 1.22, b ¼ 0.03, X ¼ 0.08

AVI36 Ashburn vegetation index 2 � Band8a − Band4

BNDVI37 Blue-normalized difference vegetation index ðBand8 − Band2Þ∕ðBand8þ Band2Þ

BRI38 Browning reflectance index 1∕Band3−1∕Band5
Band6

BWDRVI39 Blue-wide dynamic range vegetation index 0.1�Band7−Band2
0.1�Band7þBand2

CARI40 Chlorophyll absorption ratio index Band5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�Band4þBand4þbÞ2

p
Band4 � ða2 þ 1Þ0.5

a ¼ ðBand5 − Band3Þ∕150

b ¼ Band3 � 550 � a

CCCI41 Canopy chlorophyll content index ðBand8−Band5Band8þBand5Þ
ðBand8−Band4Band8þBand4Þ

CRI55042 Carotenoid reflectance index 550 1
Band2 −

1
Band3

CRI70042 Carotenoid reflectance index 700 1
Band2 −

1
Band5

CVI43 Chlorophyll vegetation index Band8�Band4
ðBand3Þ2

Datt144 Vegetation index proposed by Datt 1 Band8−Band5
Band8−Band4

Datt245 Vegetation index proposed by Datt 2 Band4
Band3�Band5

Datt345 Vegetation index proposed by Datt 3 Band8a
Band3�Band5

DVI46 Differenced vegetation index 2.4 � Band8 − Band4

EPIcar45 Eucalyptus pigment index for carotenoid 0.0049 �
�

Band4
Band3�Band5

�
0.7488

EPIChla45 Eucalyptus pigment index for chlorophyll a 0.0161 �
�

Band4
Band3�Band5

�
0.7784

EPIChlab45 Eucalyptus pigment index for chlorophyll a+b 0.0236 �
�

Band4
Band3�Band5

�
0.7954

EPIChlb45 Eucalyptus pigment index for chlorophyll b 0.0337 �
�
Band4
Band3

�
1.8695

EVI14 Enhanced vegetation index 2.5 � Band8−Band4
Band8þ6�Band4−7.5�Band2þ1

EVI247 Enhanced vegetation index 2 2.4 � Band8−Band4
Band8þBand4þ1

EVI2.248 Enhanced vegetation index 2.2 2.5 � Band8−Band4
Band8þ2.4�Band4þ1
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Table 1 (Continued).

Abbreviation Index Formula

GARI49 Green atmospherically resistant
vegetation index

Band8−½Band3−ðBand2−Band4Þ�
Band8−½Band3þðBand2−Band4Þ�

GBNDVI50 Green-Blue normalized difference
vegetation index

Band8−ðBand3þBand2Þ
Band8þðBand3þBand2Þ

GDVI51 Green difference vegetation index Band8 − Band3

GEMI52 Global environment monitoring index n�ð1−0.25�nÞ−Band4−0.125
1−Band4

n ¼ 2�Band52−Band42þ1.5�Band5þ0.5�Band4
Band5þBand4þ0.5

GLI53 Green leaf index 2�Band3−Band5−Band2
2�Band3þBand5þBand2

GNDVI49 Green normalized difference
vegetation index

Band8−Band3
Band8þBand3

GNDVI249 Green normalized difference
vegetation index 2

Band7−Band3
Band7þBand3

GOSAVI54 Green optimized soil-adjusted
vegetation index

Band8−Band3
Band8þBand3þ0.16

GRNDVI55 Green–red normalized difference
vegetation index

Band8−ðBand3þBand5Þ
Band8þðBand3þBand5Þ

GVMI56 Global vegetation moisture index ðBand8þ0.1Þ−ðBand12þ0.02Þ
ðBand8þ0.1ÞþðBand12þ0.02Þ

Hue57 Hue a tan
h
2�Band5−Band3−Band2

30.5 � ðBand3 − Band2Þ
i

IPVI58 Infrared percentage vegetation index
Band8

Band8þBand5
2

�
Band5−Band3
Band5þBand5 þ 1

�

LCI44 Leaf chlorophyll index Band8−Band5
Band8þBand4

Maccion59 Vegetation index proposed by Maccioni Band7−Band5
Band7−Band4

MCARI60 Modified chlorophyll absorption in
reflectance index

½ðBand5 − Band4Þ − 0.2 �
ðBand5 − Band3Þ� � Band5

Band4

MCARI/MTVI261 MCARI/MTVI2 MCARI/MTVI2

MCARI/OSAVI62 MCARI/OSAVI MCARI/OSAVI

MCARI162 Modified chlorophyll absorption in
reflectance index 1

1.2 � ½2.5 � ðBand8 − Band4Þ
−1.3 � ðBand8 − Band3Þ�

MCARI262 Modified chlorophyll absorption in
reflectance index 2

1.5 � 2.5�ðBand8−Band4Þ−1.3�ðBand8−Band3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Bamd8þ1Þ2−ð6�Band8−5� ffiffiffiffiffiffiffiffiffiffi

Band4
p Þ−0.5p

MGVI63 Green vegetation index proposed by Misra −0.386 � Band3 − 0.530 � Band4þ
0.535 � Band6þ 0.532 � Band8

mNDVI64 Modified normalized difference
vegetation index

Band8−Band4
Band8þBand4−2�Band2

MNSI63 Non such index proposed by Misra 0.404 � Band3þ 0.039 � Band4 −
0.505 � Band6þ 0.762 � Band8

MSAVI65 Modified soil-adjusted vegetation index 2�Band8þ1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Band8þ1Þ2−8�ðBand8−Band5Þ

p
2

MSAVI265 Modified soil-adjusted vegetation index 2 2�Band8þ1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Band8þ1Þ2−8�ðBand8−Band4Þ

p
2

MSBI63 Soil brightness index proposed by Misra 0.406 � Band3þ 0.600 � Band4þ
0.645 � Band6þ 0.243 � Band8
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Table 1 (Continued).

Abbreviation Index Formula

MSR67066 Modified simple ratio 670/800 Band8
Band4 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Band8
Band4 þ 1

q

MSRNir/Red67 Modified simple ratio NIR/red
Band8
Band5 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Band8
Band5 þ 1

q

MTVI262 Modified triangular vegetation index 2 1.5 � 1.2�ðBand8−Band3Þ−2.5�ðBand4−Band3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Bamd8þ1Þ2−ð6�Band8−5� ffiffiffiffiffiffiffiffiffiffi

Band4
p Þ−0.5

p

NBR68 Normalized difference NIR/SWIR
normalized burn ratio

Band8−Band12
Band8þBand12

ND774/67769 Normalized difference 774/677 Band7−Band4
Band7þBand4

NDII70 Normalized difference infrared index Band8−Band11
Band8þBand11

NDRE71 Nnormalized difference red-edge Band7−Band5
Band7þBand5

NDSI72 Normalized difference salinity index Band11−Band12
Band11þBand12

NDVI12 Normalized difference vegetation index Band8−Band4
Band8þBand4

NDVI251 Normalized difference vegetation index 2 Band12−Band8
Band12þBand8

NGRDI69 Normalized green red difference index Band3−Band5
Band3þBand5

OSAVI54,73 Optimized soil-adjusted vegetation index 1.16 � Band8−Band4
Band8þBand4þ0.16

PNDVI55 Pan normalized difference vegetation index Band8−ðBand3þBand5þBand2Þ
Band8þðBand3þBand5þBand2Þ

PVR74 Photosynthetic vigor ratio Band3−Band4
Band3þBand4

RBNDVI55 Red–blue normalized difference
vegetation index

Band8−ðBand4þBand2Þ
Band8þðBand4þBand2Þ

RDVI75 Renormalized difference vegetation index Band8−Band4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Band8þBand4

p

REIP76 Red-edge inflection point 700þ 40 �
�ðBand4þBand7

2 Þ−Band5
Band6−Band5

�

Rre77 Reflectance at the inflexion point Band4þBand7
2

SAVI13 Soil adjusted vegetation index 1.5 � Band8−Band4
Band8þBand4þ0.5

SBL46 Soil background line Band8 − 2.4 � Band4

SIPI78 Structure intensive pigment index Band8−Band2
Band8−Band4

SIWSI79 Shortwave infrared water stress index Band8a−Band11
Band8aþBand11

SLAVI80 Specific leaf area vegetation index Band8
Band4þBand12

TCARI60 Transformed chlorophyll absorption ratio 3 �
h
ðBand5 − Band4Þ − 0.2 �

ðBand5 − Band3Þ
�
Band5
Band4

�i

TCARI/OSAVI73 TCARI/OSAVI TCARI/OSAVI

TCI43,81 Triangular chlorophyll index 1.2 � ðBand5 − Band3Þ − 1.5 �
ðBand4 − Band3Þ �

ffiffiffiffiffiffiffiffiffiffi
Band5
Band4

q

TVI82 Transformed vegetation index
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDVIþ 0.5

p

VARI70083 Visible atmospherically resistant index 700 Band5−1.7�Band4þ0.7�Band2
Band5þ2.3�Band4−1.3�Band2

VARIgreen83 Visible atmospherically resistant index green Band3−Band4
Band3þBand4−Band2

VI70084 Vegetation index 700 Band5−Band4
Band5þBand4

WDRVI85 Wide dynamic range vegetation index 0.1�Band8−Band4
0.1�Band8þBand4
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overfit. If it is too small, there may be underfitting. It controls the trade-off between errors of
the SVM on training data and margin maximization (C ¼ ∞ leads to hard margin SVM).
The γ value defines how far the influence of a single training example reaches, with low values
meaning “far” and high values meaning “close.”

RF is an ensemble learning technique composed of multiple decision trees based on random
bootstrapped samples of the training data.88 The output is determined by a majority vote of the
results of decision trees. There are two user-defined hyperparameters including the number of
trees (ntree) and the number of variables used to split the nodes (mtry). If ntree is made larger, the
generalization error always converges, and over-training will not be a problem. On the other
hand, a reduction in mtry makes each individual decision tree weaker.

The best combinations of these hyperparameters were determined using the Gaussian proc-
ess, Bayesian optimization,89 which has been widely applied for hyperparameter tuning of
machine learning algorithms.1

Ensemble machine learning methods have been used to obtain better predictive performance
than from single learning algorithms, and the SL methodology has been proposed.90 In this
method, given algorithms are combined through a convex weighted combination to minimize
cross-validated errors. First, classification models based on RF or SVM were trained as the base
algorithms using the training data. Next, a 10-fold cross validation was performed on each and
the cross-validated predicted results were obtained. N is the number of rows in the training data,
cross-validated predicted results were combined, and an N by two matrices was obtained as the
“level-one” data and meta-learning model was generated. To predict the test data, the predictions
from the base learners were fed into the metalearning model to generate the ensemble prediction.
The data-based sensitivity analysis (DSA),91 which performs a pure black box use of the fitted
models by querying the fitted models with sensitivity samples and recording their responses,
was applied for assessing the sensitivity of the classification models.

2.4 Accuracy Assessment

Classification accuracies were evaluated based on the simple measures of quantity disagreement
(QD) and allocation disagreement (AD).92 They provide an effective summary of confusion
matrices.93

The proportion of fields that are classified as crop i and their actual classes are crop j (Pij) is
expressed in the following

EQ-TARGET;temp:intralink-;e001;116;171Pij ¼ Wi
nij
niþ

; (1)

whereWi is the fields classified as crop i, nij is the number of fields classified as crop i, and their
actual classes are crop j. niþ is the row totals of the confusion matrix. In this case, AD and
QD are calculated using the following:

EQ-TARGET;temp:intralink-;e002;116;93ADi ¼ 2 minðpiþ; pþiÞ − 2pii; (2)

Table 2 Crop type and number of fields.

Crop type Training data Validation data Test data

Beans 1132 566 567

Beetroot 774 387 387

Grassland 1055 527 528

Maize 500 250 250

Potato 1226 613 613

Wheat 1632 816 816
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EQ-TARGET;temp:intralink-;e003;116;723AD ¼ 1

2

XNc

i¼1

ADi; (3)

EQ-TARGET;temp:intralink-;e004;116;693QDi ¼ jpiþ − pþij; (4)

EQ-TARGET;temp:intralink-;e005;116;667QD ¼ 1

2

XNc

i¼1

QDi; (5)

where Nc is the number of classes (six in this study), piþ and pþi are the row and column totals
of the confusion matrix, ADi is the allocation disagreement of crop i, and QDi is the quantity
disagreement of crop i, respectively. The sum of QDi (QD) and ADi (AD) are calculated and
the total disagreement can be evaluated by the sum of QD and AD.92

In addition, three indicators including overall accuracy [OA, Eq. (6)], producer’s accuracy
[PA, Eq. (7)], and user’s accuracy [UA, Eq. (8)] were calculated because they have widely been
applied for assessing classification accuracies

EQ-TARGET;temp:intralink-;e006;116;538OA ¼
XN
i¼1

pii∕N; (6)

EQ-TARGET;temp:intralink-;e007;116;488PA ¼ pii∕Ri; (7)

EQ-TARGET;temp:intralink-;e008;116;462UA ¼ pii∕Ci; (8)

where N is the number of fields, Ri and Ci represent the total number of crop i in the correct data
and the total number from the classification results, respectively. McNemar’s test94 has been used
to judge whether the differences between two given classification results were significant,95 and
it was also applied in this study.

3 Results and Discussion

3.1 Classification Accuracy

Crop classification maps are shown in Fig. 2, the maximum, minimum, and averaged accuracies
of 10 repetitions and confusion matrices when all the repetitions were merged are shown in
Tables 3 and 4. Averaged OAs were 89.0% for RF, 90.6% for SVM, and 91.6% for the ensemble
machine learning method and the mean PAs and mean UAs derived using the machine learning
algorithms were >0.8, excepting those of RF (mean UA for maize was 0.797). All machine
learning algorithms performed well in classifying croplands. Especially, the good accuracies
were confirmed for the PAs and UAs for wheat (>93.8%) and beet (>89.9%). However,
the chi-square values based on McNemar’s tests were 12.02 to 40.60, 27.78 to 62.43, and
17.00 to 51.60 for R—SVM, RF—SL, and SVM—SL, respectively. As a result, significant
differences were confirmed among the results of three machine learning algorithms (p < 0.05).

Classification results by SL had the best OA and AD + QD (8.5%) and SVM had a slightly
better PA of wheat (97.1%). On the contrary, identifying maize fields was difficult due to
the similarity in their reflectance. Grasses cultivation employs fewer controls and then a lot of
weeds were mixed with timothy and orchard grass in grasslands. As a result, variation in
reflectance features was larger than in other crop types, causing misclassifications of relatively
large fields.

Figure 3 shows the relationship between field area and misclassified fields for each algorithm
after 10 repetitions (i.e., the total number is 10 times of that of the test data). More than 75% of
the misclassified fields were <200 a in area for all algorithms, and 95.1% (RF), 95.5% (SVM),
and 96.1% (SL) of misclassified fields were below 450 a. Applying stacking made the model
more robust for classifying smaller fields and the number of misclassified croplands decreased
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(813 fields for smaller than 50 a) compared with the results by RF (909 fields for smaller than
50 a) and SVM (855 fields for smaller than 50 a). It was especially useful for identifying beans
fields. It was not effective for identifying small grasslands as grass cultivation employs fewer
controls and many weeds were present in grasslands. However, stacking was useful for iden-
tifying grasslands more than 500 a, which had a certain homogeneity with Dactylis glomerata or
Phleum pretense in the MSI image.

3.2 Sensitive Factor Analysis

Reflectance values obtained from Sentinel-2A are shown in Fig. 4. Differences in reflectance
were particularly clear between wheat and beans as the wheat harvest was finished on 11 August
and the reflectance of wheat fields was similar to that of bare soil. Beetroot had the steepest
gradient between bands 5 and 6 and some differences in the reflectance values at band 11
were confirmed between maize and potato. Differences in the reflectance patterns between
grass and beans were not clear.

To clarify which variables contributed to identifying each crop type, DSAwas conducted for
each algorithm and their importance values were calculated.

For identifying beans fields, Datt3 (6.0%, 6.6%, and 6.3% for RF, SVM, and SL, respec-
tively) and REIP (6.4%, 8.2%, and 7.3% for RF, SVM, and SL, respectively) played important
roles in the three algorithms. Some variables (the reflectance values at bands 2 and 3, AFRI2.1,
CVI and NDSI) possessed importance values of >5.0% in the RF-based model, whereas no

Fig. 2 Crop classification map generated by (a) RF, (b) SVM, and (c) SL.
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variables except for Datt3 and REIP had importance values of >5.0% for SVM and SL. Even
though the importance values of GEMI, Maccioni, and MNSI in SVM were <5.0%, they were
more than five times those in RF. AFRI1.6 and SIWSI were useful for identifying beetroot fields
and AFRI1.6 occupied 11.1%, 6.8%, and 9.0% and SIWSI occupied 10.6%, 7.1%, and 8.9% of
the importance for RF, SVM, and SL, respectively. GEMI and NDSI also had importance values
of >10% for RF, but were <5% for the others. In contrast, REIP was useful in SVM and it
occupied 9.1% of the importance in SVM. AFRI1.6, REIP, and MNSI were effective for iden-
tifying grassland for all algorithms, whereas SIWSI played an important role (7.8%) for RF and
the reflectance at band 6 played an important role (8.2%) for SVM. For identifying maize fields,
no variable had importance values >5.0% for any algorithm, but the importance value of REIP
was 25.3% for SVM (2.9% for RF). CRI550, CRI700, and MSBI were 9.1%, 12.9%, and 5.6%
in RF, respectively (those in SVM were 2.4%, 2.2%, and 3.6%, respectively). REIP played the
greatest role for identifying potato fields in all algorithms (12.8%, 6.9% and 9.9% for RF, SVM,
and SL, respectively). The importance values of CCCI and CVI were also high in RF (9.9%) but
those in SVM were <3.0%. In contrast, Maccioni had an importance of 6.9% in SVM but in RF
was 1.4%. REIP also played a great role for identifying wheat fields in SVM, but 1.2% of the
importance value was confirmed in RF while AVI occupied 15.1% in RF (1.2% in SVM).
However, the original reflectance values possessed importance values of <1.0%.

In this season, the photosynthetic activities of each crop type were different; maize is a C4
plant, beans and beetroot were in their growing season, grassland was after second harvest,
potato growth was inhibited by chemicals for easy harvesting, and wheat fields were cultivated.

Table 3 Classification accuracies of each algorithm.

RF SVM SL

Minimum
(%)

Maximum
(%)

Mean�
std (%)

Minimum
(%)

Maximum
(%)

Mean�
std (%)

Minimum
(%)

Maximum
(%)

Mean�
std (%)

PA

Beans 80.6 86.4 83.4� 1.6 81.1 90.5 86.2� 2.2 84.7 90.3 87.6� 1.4

Beet 89.9 94.8 93.0� 1.3 91.0 96.4 94.5� 1.5 93.8 96.1 95.1� 0.6

Grassland 84.3 88.3 86.0� 1.2 86.7 93.8 89.4� 2.5 89.8 94.3 92.1� 1.4

Maize 78.8 84.8 80.8� 1.7 78.8 87.6 83.0� 3.1 81.2 87.6 84.6� 1.8

Potato 82.9 89.7 87.0� 1.8 83.5 89.9 87.6� 1.9 84.0 89.7 88.1� 1.6

Wheat 96.4 97.9 97.0� 0.5 96.3 97.5 97.1� 0.4 95.7 97.5 97.0� 0.7

UA

Beans 84.9 88.6 86.8� 1.1 82.0 91.4 86.4� 2.9 83.4 90.3 88.6� 2.0

Beet 94.5 96.9 95.6� 0.8 94.3 97.3 95.7� 0.9 95.1 97.1 96.0� 0.6

Grassland 88.0 93.3 91.0� 1.4 89.9 96.6 94.0� 2.3 93.8 97.7 95.7� 1.1

Maize 77.8 82.0 79.7� 1.3 78.4 87.3 81.9� 2.2 81.4 85.2 83.6� 1.4

Potato 78.5 83.1 81.5� 1.2 82.1 87.8 85.2� 1.9 83.0 86.8 85.4� 1.1

Wheat 93.8 96.1 95.0� 0.7 94.5 97.2 95.9� 0.8 95.1 97.2 96.2� 0.6

OA 88.5 89.4 89.0� 0.2 89.3 92.0 90.6� 0.9 90.2 92.2 91.6� 0.6

κ 85.9 87.0 86.5� 0.3 86.8 90.2 88.4� 1.1 88.0 90.5 89.6� 0.8

AD 8.0 9.9 9.0� 0.6 6.5 9.7 7.9� 1.0 6.5 8.8 7.3� 0.7

QD 1.3 2.8 2.0� 0.5 0.7 2.5 1.5� 0.6 0.6 2.3 1.2� 0.5
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Table 4 Confusion matrices for (a) RF, (b) SVM, and (c) SL.

Reference data

Beans Beetroot Grasslands Maize Potato Wheat

(a) RF

Classified data Beans 4726 59 247 100 287 26

Beet 48 3599 23 28 65 1

Grasslands 172 65 4543 52 116 43

Maize 139 21 128 2019 177 48

Potato 503 119 230 235 5332 123

Wheat 82 7 109 66 153 7919

(b) SVM

Classified data Beans 4888 77 212 119 333 34

Beet 61 3659 17 22 63 2

Grasslands 110 34 4720 40 70 49

Maize 112 14 130 2076 166 40

Potato 429 79 121 189 5368 115

Wheat 70 7 80 54 130 7920

(c) SL

Classified data Beans 4965 82 105 83 333 42

Beet 61 3680 11 17 61 3

Grasslands 59 17 4861 37 52 53

Maize 85 8 121 2114 169 32

Potato 426 77 113 200 5403 112

Wheat 74 6 69 49 112 7918

Fig. 3 Relationship between field area and misclassified fields (a) RF, (b) SVM, and (c) SL.
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In addition to indices related to chlorophyll content, the additional use of shortwave infrared data
contributed to the estimation of photosynthetic pigments, water, nitrogen, cellulose, lignin, phe-
nols, and leaf mass per area (e.g., NDSI). As a result, vegetation indices had greater influence on
the classification results than the original reflectance. However, there were differences among
algorithms in which vegetation indices were more important. The importance values in SL were
near the averaged values of RF and SVM. So, the differences in importance between RF and
SVM were useful when stacking was applied, and the modification contributed to identifying
croplands with higher accuracies.

4 Conclusions and Future Work

Cropland classifications were conducted using a single image from Sentinel-2 MSI and the suit-
ability and accuracy of vegetation indices from the original reflectance data from Sentinel-2 MSI
were assessed.

Of the two algorithms applied (RF and SVM), the accuracy of SVM was superior and 89.3%
to 92.0% of OAs were confirmed. Furthermore, stacking contributed to higher OAs (90.2% to
92.2%) and significant differences were confirmed with the results of SVM. Based on DSA,
the vegetation indices calculated from the original reflectance from Sentinel-2 MSI data were
useful to identify the specific crop types. Although the vegetation indices that played the largest
roles were different between RF and SVM, stacking helped to modify and reduce the importance
of specific variables, which might prevent overfitting. Stacking should be utilized to monitor
agricultural fields for improving classification accuracies.

The field is used as a basic unit in classification and some problems related to the borders of
fields remain to be resolved. We are planning to evaluate the potential of geographic object-based
image analysis in conjunction with MSI data and address this question in future work.
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