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Abstract

Purpose: Mobile C-arm systems represent the standard imaging devices within the field of spine
surgery. In addition to 2D imaging, they allow for 3D scans while preserving unrestricted patient
access. For viewing, the acquired volumes are adjusted such that their anatomical standard
planes align with the axes of the viewing modality. This difficult and time-consuming step
is currently performed manually by the leading surgeon. This process is automatized within
this work to improve the usability of C-arm systems. Thereby, the spinal region consisting of
multiple vertebrae and the standard planes of all vertebrae being of interest to the surgeon need to
be taken into account.

Approach: An object detection algorithm based on the you only look once version 3 architec-
ture, adapted to 3D inputs, is compared with a segmentation-based approach employing a 3D
U-Net. Both algorithms are trained on a dataset of 440 and tested on 218 spinal volumes.

Results: Although the detection-based algorithm is slightly inferior concerning the detection
(91% versus 97% accuracy), localization (1.26 mm versus 0.74 mm error) and alignment accu-
racy (5.00 deg versus 4.73 deg error), it outperforms the segmentation-based one in terms of
speed (5 s versus 38 s).

Conclusions: Both algorithms show similar good results. However, the speed gain of the detec-
tion-based algorithm, resulting in a run time of 5 s, makes it more suitable for usage in an intra-
operative scenario.
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1 Introduction

Intra-operative 3D imaging has become a valuable tool in recent years, allowing the 3D assess-
ment of surgery in the operating room. For that, mobile C-arm systems acquire several hundred
x-ray images with a flat panel detector on a circular trajectory around the patient intra-operatively
and are used to compute cone-beam computed tomography (CBCT) volumes. By viewing these

*Address all correspondence to Sebastian Doerrich, sebastian.doerrich@uni-bamberg.de

Journal of Medical Imaging 034503-1 May∕Jun 2023 • Vol. 10(3)

https://orcid.org/0000-0002-4693-3282
https://orcid.org/0000-0003-1240-5809
https://orcid.org/0000-0002-7855-3436
https://orcid.org/0000-0002-9550-5284
https://orcid.org/0000-0002-7021-2370
https://doi.org/10.1117/1.JMI.10.3.034503
https://doi.org/10.1117/1.JMI.10.3.034503
https://doi.org/10.1117/1.JMI.10.3.034503
https://doi.org/10.1117/1.JMI.10.3.034503
https://doi.org/10.1117/1.JMI.10.3.034503
https://doi.org/10.1117/1.JMI.10.3.034503
mailto:sebastian.doerrich@uni-bamberg.de
mailto:sebastian.doerrich@uni-bamberg.de
mailto:sebastian.doerrich@uni-bamberg.de


volumes, a surgeon can assess implant position and fracture reduction. This allows for the treat-
ment of implant malpositions or remaining fractures already during the intervention and thus
reduces the need for subsequent revision surgeries.1

An essential task in assessing 3D images is the generation of the so-called standard planes
(see Fig. 1). The standard planes are used by physicians to obtain a standardized 3D volume view
of the anatomical structure, showing its key features.2 They help to facilitate the evaluation proc-
ess as well as reduce the risk of overlooking damages. For the spine, the standard planes are
orthogonal to each other. The individual planes are called the axial, coronal, and sagittal planes.3

In contrast to computed tomography (CT) produced images, the images created by mobile
C-arm systems lack information about the relative position of the patient and the device. This
deficiency makes a retrospective adjustment of the standard planes necessary. Until now, the
surgeon has needed to perform this adjustment manually. Although this action can be interpreted
as a normalization procedure, it depends on the physician and leaves leeway for mistakes.4 The
process includes finding the center of the vertebra and adjusting the orientations of the standard
planes. This step can take up to 210 s depending on the anatomical region and the experience
level of the surgeon.5,6 Hence, it increases the overall surgery duration. An illustration of this
process can be seen in Fig. 2. Spine surgeries typically involve the assessment and handling of
multiple vertebrae. Moreover, a CBCT volume can include up to 10 vertebrae. Thus, the plane
adjustment needs to be performed several times. Therefore, fast automation of the vertebral body
detection and standard plane regression for CBCT volumes is needed to accelerate and stand-
ardize this process and reduce the reader dependency.

Recent literature has proposed different strategies for automatic standard plane adjustment.
Lu et al.7 published an algorithm using the random forest classifier to regress standard planes in
3D echocardiography volumes automatically. They achieved a mean standard plane error of
3.7 mm and 11.3 deg, respectively. H. Chen et al.8 used a knowledge transferred recurrent neural
network to detect standard planes from ultrasound (US) videos independent of the underlying
anatomical region.

Lu et al.9 developed a convolutional neural network (CNN) in the form of an iterative
transformation network for identifying the standard planes within 3D fetal brain US images.
The proposed algorithm achieved an error of 3.83 mm and 12.7 deg. Dou et al.10 proposed
a reinforcement learning framework to localize the standard planes in 3D fetal brain US images.
In Ref. 6, our group introduced a PoseNet-like architecture estimating one triplet of standard
planes in two different body regions within 3D C-arm images. We showed that the direct regres-
sion of position and spanning vectors of the planes is superior to Euler angle and quaternion
representation. The inference can be done within a second.

All of these algorithms were developed for problems for which a single combination of stan-
dard planes is of interest. However, for the spinal region, a localization task for the different
vertebrae needs to be incorporated.

Shi et al.11 proposed a two-step algorithm to localize and segment vertebral bodies in CT
images using a combination of a 2D and a 3D U-net.12,13 The proposed algorithm achieved

Fig. 1 Axial (green), coronal (red), and sagittal (yellow) standard planes of a single vertebra.
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segmentation results with an identification rate of about 92% in under 20 s. However, it could
only segment intact vertebral bodies in the absence of metal implants.

In contrast, Thomas et al.2 developed an assistance system that provides a side-to-side view of
a patient’s ankle joints for visual comparison and evaluation for intra-operative CBCT volumes.
In a first step, the ankle’s position was localized by segmenting a sphere at the upper ankle joint
in a coarse volume. Then, in an region-of-interest around a single upper ankle joint, flat cylinders
with the orientation of the standard planes were segmented. Based on these cylinders, the param-
eters for the standard planes were calculated. The approach achieved a median position-to-plane
error of 0.73 mm and a mean angular error for the plane normals between 2.98 deg and 3.71 deg
in under 15 s of execution time. However, the approach has shown to be susceptible to offsets of
the ankle from the isocenter. For the spine, the execution time will increase because more
instances are present, and thus the costly step for the plane parameter regression needs to be
done repeatedly.

Alternatively, the standard plane regression can be achieved based on a preceded bounding
box prediction. Jaeger et al.14 developed an algorithm for object detection and bounding box
regression using semantic segmentation in 2D as well as 3D.

Another possibility for object detection in bounding box prediction is the “you only look
once” (YOLO) algorithm. Initially introduced in Redmon et al.15 in 2015 and in the meantime
developed further, YOLO is one of the most frequently used real-time object detection models.16

The goal was to develop a detection system that can compete with the human visual system in
speed and accuracy.15 Apart from the prevalent object detectors that re-purpose classifiers to
perform detection, YOLO reframes object detection as a single regression problem. There is
no longer any need for slow sliding window approaches such as in deformable parts models or
slow region proposal algorithms such as in region-based CNNs. The detection is executed on
full images in one single evaluation and therefore achieves real-time performance.

In this work, we describe a first-of-its-kind approach to automatically localize vertebral
bodies and regress their associated standard planes within intra-operative 3D CBCT volumes.
For this purpose, we present a novel algorithm based on the YOLOv3 architecture and adapted
for 3D inputs that regresses the standard planes in addition to the vertebrae surrounding bound-
ing box parameters. To evaluate the model, we create a reference model by adapting the approach
of Thomas et al.2 to enable the regression of the standard planes for multiple vertebrae within an
input volume. We further demonstrate the usability of both algorithms for the automatic standard
plane regression of vertebral bodies in intra-operative CBCT volumes through proof-of-concept
experiments. The experiments show that the proposed YOLO-based algorithm yields compa-
rable results to the reference approach while accelerating the plane regression by a factor of

Fig. 2 Current manual standard planes adjustment that is needed to obtain a standardized view of
the structure of interest from the 3D CBCT scan.
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8. This makes it more suitable for usage in an intra-operative scenario than the adapted approach
of Thomas et al.2 The main contributions of this paper can be summarized as follows.

• modification of the segmentation-based approach of Thomas et al.2 for the regression of
the anatomical standard planes in the human ankle (single point of interest) to work for
an unknown amount of vertebrae (multiple points of interest) instead.

• Development of a novel Yolov3-based approach to automatically localize and regress the
anatomical standard planes of vertebral bodies within intra-operative 3D CBCT volumes.

• Demonstration of the proposed method’s benefit in comparison with the segmentation-
based approach on a unique dataset containing standard plane annotated CBCT volumes.

The remainder of this paper is structured as follows. Section 2 contains the description of
both algorithms followed by an explanation of the experimental setup. The results are presented
in Sec. 4. A discussion of the results concludes the paper.

2 Material and Methods

To address the task at hand, two different approaches were developed. The first approach
(detection-based approach) aims to extract the standard planes for each vertebra by utilizing
a preceding detection of their vertebral bodies. the second approach (segmentation-based
approach) is designed to identify the standard planes for each vertebra by utilizing a preceding
simplified segmentation of their vertebral bodies. The underlying idea of both approaches is
visualized in Fig. 3, and their procedures are described below in more detail.

2.1 Detection-Based Algorithm (YOLO)

Originally, YOLOv3 was designed for detecting objects within 2D images of size
416 × 416 pixels by predicting the axes aligned bounding boxes. The network uses convolu-
tional blocks (CNN) together with residual blocks (RES) for feature learning, detection blocks
(SPD) for object detection, and upsampling blocks (UPS) to allow object detection at three
different scales. Applying YOLOv3 on the input size mentioned above results in the first
scale having a size of 13 × 13 pixels, the second scale of 26 × 26 pixels, and the third
scale of 52 × 52 pixels. For current computer systems, these dimensions are not feasible for
the 3D variant. Neither running the network’s training nor the inference on patches of size

Fig. 3 Segmentation- and detection-based approaches.
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416 × 416 × 416 voxels would be possible without exploiting disproportionate powerful
processing units. The resulting high hardware costs would prevent the algorithm’s usage within
the intra-operative environment. Hence, to allow the processing of 3D input volumes, the origi-
nal YOLOv3 architecture was first scaled from 2D to 3D by adding an additional depth dimen-
sion for each internal operation (e.g., 2D convolution → 3D convolution). Further, to maintain
the resource-efficient processing of the input data and thus enable the intra-operative usage of
the model, the feature map dimensions at each sub-module were reduced. The resulting input
and output resolutions of each sub-module’s feature maps of the 3D YOLOv3 architecture
are presented in Table 1. As can be seen, the input volumes’ resolutions were reduced to
160 × 160 × 160 voxels. As a consequence, the resolutions of all three scale predictions were
reduced to 5 × 5 × 5 voxels, 10 × 10 × 10 voxels, and 20 × 20 × 20 voxels.

The underlying algorithm’s goal is to detect classified axes aligned with bounding boxes. For
the 3D case, the labels contain three values ðx; y; zÞ describing the object’s position (center) and
three values ðw; h; dÞ describing the bounding box’s width, height, and depth. All of these
parameters are normalized with respect to the volume’s dimensions and lie within the range
of ½0;1�.

Furthermore, each ground truth bounding box contains the class value (c) of its associated
vertebra: c ¼ 1 for cervical, c ¼ 2 for thoracic, and c ¼ 3 for lumbar.

In addition to these parameters, the orientation for each object (vertebra) in terms of their
standard planes is extracted. Our group previously showed that simultaneous regression of the
plane spanning vectors gives better results than using Euler angles or quaternion representation.6

Therefore, the spanning vectors of the three planes were added to the parameter set. To incor-
porate the plane spanning vectors in the training, the loss function was extended by the mean
squared error between the predicted and ground truth values for each box containing an object.
This results in the following loss function:

EQ-TARGET;temp:intralink-;e001;116;436

L ¼ wOL � OLþ wNOL � NOLþ wBL � BLþ wCL � CL
þ wAPL � APLþ wCPL � CPLþ wSPL � SPL; (1)

with the “object” loss (OL), the “no object” loss (NOL), the “box” loss (BL), the “class” loss
(CL), the “axial sp” loss (APL), the “coronal sp,” loss (CPL) and the “sagittal sp” loss (SPL). The
weighting terms’ respective loss portion wxx are initialized in accordance with Redmon and
Farhadi17 as wOL ¼ wCL ¼ wAPL ¼ wCPL ¼ wSPL ¼ 1 and wNOL ¼ wBL ¼ 10. A lumbar verte-
bra’s size ranging from 21 mm up to 24 mm accounts for 0.13 up to 0.15 of the input patch size
of 1603 mm. Thoracic vertebrae having a size of 17 mm up to 24 mm account for 0.11 up to 0.12,
and a cervical vertebra’s size ranging from 8 mm up to 13 mm accounts for 0.05 up to 0.08 of
the total size. Consequently the anchor boxes were chosen as ½0.15 × 0.15 × 0.15� for scale 1,
½0.11 × 0.11 × 0.11� for scale 2, and ½0.07 × 0.07 × 0.07� for scale 3. Doing so, the anchor boxes
represent the most common sizes for each vertebra class. During inference, YOLO uses the
object loss and Jaccard index of the bounding box with the current cell to remove unlikely pro-
posals. In addition to these metrics, we propose adding a threshold for the class probability for
further removal of false proposals.

2.2 Segmentation-Based Algorithm (U-Net)

The most recent state-of-the-art algorithm for multi-object plane regression is the two-step algo-
rithm proposed by Thomas et al.2 In the first step, the object of interest is detected. A segmen-
tation network performs this task on a down-sampled version of the volume as the input. Then,
flat cylinders representing the standard planes are segmented in an area around the object using
the full resolution of the data. Despite its good position and angle regression results, the run time
is quite long as several segmentation tasks are executed. Therefore, we simplified the algorithm
and skipped the extra localization step. The segmentation network is trained such that cylinders
representing the three standard planes of the vertebral bodies are retrieved. The center of gravity
of the cylinder coincides with the center of the spinal canal. For each standard plane of one
vertebra, such a flat cylinder is created with the basis having the same normal vector as the
respective standard plane. The radius and height of the cylinders differ by a factor of
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4ðd ¼ 4 · hÞ. For one volume, the size of the cylinders is constant, and it was chosen so that the
cylinders do not overlap. This allows the network to segment the vertebrae as individual objects
that do not overlap with those of another vertebra. The nnU-Net architecture was modified such
that the axial, coronal, and sagittal planes were retrieved in individual channels. The label type is
encoded as the label value. This approach enables overlapping labels for the different planes of
one vertebra. The loss term for the training was extended to be the sum of the single losses for
the three channels, which were calculated following Issensee et al.18 as

EQ-TARGET;temp:intralink-;e002;116;133L ¼ wCE � CEþ wDC � DC; (2)

with CE denoting the cross-entropy and DC denoting the Dice loss. wCE and wDC were set to 1.
For the plane parameter calculation, the segmentation masks are clustered using the density-
based spatial clustering of applications with noise (DBSCAN) algorithm.19 The DBSCAN

Table 1 Adapted YOLO architecture for volumetric data.

Block Input resolution Output resolution # In Ch # Out Ch

CNN1 160 × 160 × 160 160 × 160 × 160 1 32

CNN2 160 × 160 × 160 80 × 80 × 80 32 64

RES1 80 × 80 × 80 80 × 80 × 80 64 64

CNN3 80 × 80 × 80 40 × 40 × 40 64 128

RES2 40 × 40 × 40 40 × 40 × 40 128 128

CNN4 40 × 40 × 40 20 × 20 × 20 128 256

RES3 20 × 20 × 20 20 × 20 × 20 256 256

CNN5 20 × 20 × 20 10 × 10 × 10 256 512

RES4 10 × 10 × 10 10 × 10 × 10 512 512

CNN6 10 × 10 × 10 5 × 5 × 5 512 1024

RES5 5 × 5 × 5 5 × 5 × 5 1024 1024

CNN7 5 × 5 × 5 5 × 5 × 5 1024 512

CNN8 5 × 5 × 5 5 × 5 × 5 512 1024

SPD1 5 × 5 × 5 5 × 5 × 5 1024 512

5 × 5 × 5 5 × 5 × 5 1024 29

CNN9 5 × 5 × 5 5 × 5 × 5 512 256

UPS1 5 × 5 × 5 10 × 10 × 10 256 768

CNN10 10 × 10 × 10 10 × 10 × 10 768 256

CNN11 10 × 10 × 10 10 × 10 × 10 256 512

SPD2 10 × 10 × 10 10 × 10 × 10 512 512

10 × 10 × 10 10 × 10 × 10 512 29

CNN12 10 × 10 × 10 10 × 10 × 10 512 128

UPS2 10 × 10 × 10 20 × 20 × 20 128 384

CNN13 20 × 20 × 20 20 × 20 × 20 384 128

CNN14 20 × 20 × 20 20 × 20 × 20 128 256

SPD3 20 × 20 × 20 20 × 20 × 20 256 29
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algorithm does not require information about the number of existing clusters within the data.
This enables it for the use on the spine volumes at hand for which the number of existing ver-
tebrae is unknown during prediction. Furthermore, the algorithm directly executes an outlier
handling by distinguishing between clusters and noise. After extracting all real clusters, these
are thresholded based on half of the number of voxels within the largest existing cluster. This is
done to reduce the number of false-positive predictions to maintain only the correct predicted
clusters. Thereafter, intersecting clusters for axial, coronal, and sagittal planes are grouped to
one vertebra. Then, the approximated center of a vertebra i is calculated as the mean centroid of
the related clusters as

EQ-TARGET;temp:intralink-;e003;116;628civertebra ¼
cciaxial þ ccicoronal þ ccisagittal

3
: (3)

Finally, the standard plane normals are calculated using the principal component analysis
(PCA) algorithm.

2.3 Data Augmentation

The following data augmentations are applied on the fly during training to expand the number of
samples as well as increase the robustness of both approaches to anatomical or scanner-induced
discrepancies in the field.

4. Rotation and scaling

Rotation and scaling are applied together to reduce the number of needed interpolations and
improve the computation speed. The probability for only doing scaling is set as 0.16, for doing
only rotation is 0.16, and for executing both is 0.08. The rotation angles for each axis are drawn
from Uð−30 deg; 30 degÞ. The scaling factor is sampled from Uð0.7; 1.4Þ.

2. Gaussian noise

With a probability of 0.15, zero centered additive Gaussian noise is added. The variance of
the noise is drawn from Uð0; 0.1Þ.

3. Gaussian blur

The blurring augmentation is applied with a probability of 0.2. The width in voxels of the
used Gaussian kernel σ is sampled from Uð0.5; 1.5Þ.

4. Brightness

With a probability of 0.15, the intensity values are multiplied by a factor x sampled
from Uð0.7; 1.3Þ.

5. Contrast

With a probability of 0.15, the intensity values are multiplied by a factor x sampled from
Uð0.65; 1.5Þ. Afterward, the values are clipped to their original value range.

6. Simulation of low resolution

With a probability of 0.25, a sample is down-sampled by a factor of Uð1;2Þ using
nearest neighbor interpolation and then sampled back up to their original size with cubic
interpolation.

7. Gamma transform

With a probability of 0.15, the intensity values of a sample are scaled to a factor between ½0;1�
of their respective value range. Subsequently, a nonlinear intensity transformation of inew ¼ iγold
is applied per voxel, with γ being sampled from Uð0.7; 1.5Þ. At last, the intensity values are
scaled back to their original value range.

Doerrich et al.: Fast 3D YOLOv3 based standard plane regression of vertebral bodies. . .
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3 Experiments

3.1 Datasets

For the study, a proprietary dataset consisting of 658 CBCT volumes is used. The volumes cover
the cervical spine region (150 volumes), thoracic spine region (130 volumes), and the lumbar spine
region (378 volumes). The volumes were acquired intra-operatively using a mobile C-arm system
Cios Spin manufactured by Siemens Healthineers. Depending on the spinal region, a volume con-
tains between 1 and 10 vertebrae. The volumes are of size 512 × 512 × 512 voxelswith 0.313 mm
voxel spacing and were reconstructed offline with the Feldkamp-David-Kress algorithm20 with
parameters equal to the product standard settings. The annotation of the standard planes was done
by a medical engineer after 2 hours of training with a trained physician using a syngo XWorkplace
VD2021 that was modified to store the plane description. During the annotation, the planes
per vertebra were coupled and annotated simultaneously to ensure orthogonality among them.
An expert physician and a senior medical engineer validated the annotations on a random basis.

3.2 Study Design

For the comparison of the detection-based algorithm with the segmentation-based algorithm,
we perform a holdout validation. The training set contains 440 volumes, and the test set includes
218 volumes with 1126 ground truth vertebrae.

The following performance measures were evaluated.
Vertebra detection: the models’ vertebra detection abilities are measured based on the accu-

racy, error rate, recall, and precision.
Vertebra classification: during labeling, the individual vertebrae were classified only to

their spinal region without further specifications. Thus, all cervical vertebrae C1 to C7 were
classified to the class “cervical (C),” all thoracic ones T1 to T12 to the “thoracic (T)” class,
and all lumbar ones L1 to L5 to the “lumbar (L)” class. This results in a total of three potential
classes that a predicted vertebra is assigned to by the model.

The related confusion matrices are created first to evaluate the performance of each model
based on their vertebra classification. Afterward, the same metrics as for the vertebra detection
are calculated. The classification was only evaluated for correctly detected vertebrae. Thus, the
total number of vertebrae differs between the individual models as well as between their con-
fusion matrices.

Vertebra localization: to evaluate the models’ vertebra localization abilities, two different
methods are used. The first one evaluates the offset of the predicted center with respect to the
ground truth center (center-to-center distance (dcc)) for each correctly predicted vertebra. The
second method evaluates the distance of the predicted center to each standard plane, respectively
(center-to-plane distance). Therefore, this method is separated into the distance from the pre-
dicted center to the axial standard plane (dasp), to the coronal plane (dcsp), and to the sagittal
plane (dssp). The latter two were further averaged to get a general impression of the center-to-

plane distance (dsp).
Vertebra orientation: to evaluate the alignment of the predicted standard planes, the angle

error between the predicted normal and the ground truth normal vector for each standard plane
(∢asp, ∢csp, ∢ssp) is calculated. Once again, only the correctly predicted vertebrae were chosen for
evaluation.

3.3 Implementation

The models are implemented in PyTorch ðv:1.6Þ and trained onWindows 10 systems with 64 GB
RAM and 24 GB NVIDIA Titan RTX GPUs. The weights are initialized by the method of
Kaiming et al.22 The training followed the proposals of the YOLOv3 and nnU-Net, respectively.
For the YOLOv3 based approach, the Adam optimizer with learning rate 10−5 and weight decay
10−4 was used, and for the segmentation-based approach, a mini-batch gradient descent opti-
mizer with momentum was used. The total number of epochs was set to 1000, verifying the
training convergence of all model variants.

Doerrich et al.: Fast 3D YOLOv3 based standard plane regression of vertebral bodies. . .
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4 Results

Figure 4 illustrates the final prediction results for both algorithms. To eliminate false-positive
predictions, the segmentation-based approach uses a clustering algorithm for which the clusters
are thresholded based on half of the voxel number within the largest existing cluster
ðθ ¼ 1

2
� nNÞ. All clusters exceeding this threshold are preserved, whereas all smaller ones are

omitted. In contrast, the YOLO based approach uses non-max suppression (NMS). The NMS
helps to extract the correct vertebra predictions out of the number of total predictions (9125 for

Fig. 4 Final prediction results. (a) The orignal volume, The predictions by the U-Net variant
(b) before clustering and (d) after clustering. The predictions by the YOLO variant (c) prior to
NMS and (e) after NMS.
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the used network configuration of this paper) for each input volume. For that, NMS evaluates
each prediction first based on their confidence score. Then, the “intersection over union” (IoU)
metric is used to preserve only accurate predictions. As the last step, the predictions’ class prob-
abilities are used to extract the high fidelity predictions. As one can derive from the explanations
above, the success of the NMS highly depends on an appropriate choice of the confidence, the
IoU, and the class probability thresholds. A different task may require a different configuration
of these. Thus, to improve the results for this paper’s task, a hyperparameter optimization
was applied to find the optimal threshold combination for all three metrics. The best perfor-
mance was achieved for the configuration of confidence score ¼ 0.10, IoU ¼ 0.15, and
class probability ¼ 0.25.

Table 2 collects the results of the presented YOLO based algorithm and compares them with
the ones achieved by the speed optimized segmentation (U-Net)-based approach. Both models
are evaluated based on their vertebra detection and classification ability. Then, the localization
error and the standard plane parameter prediction accuracy of the correctly determined vertebrae
are compared. Finally, the inference times of both approaches are measured.

Table 2 shows that the U-Net-based model performs slightly better than the YOLO based
one. The vertebra detection and classification are more accurate. Also, the vertebra localization
and orientation are more precise.

However, this difference is small. The YOLO-based model’s localization is worse by
1.19 mm for the center-to-center distance and 0.52 mm for the average center-to-plane distance.

Table 2 Results comparison of both approaches.

Models

YOLO U-Net

μ σ μ σ

Vertebra detection (%) Accuracy 0.91 0.92

Error rate 0.09 0.08

Recall 0.95 0.93

Precision 0.95 0.99

Vertebra classification (%) Accuracy 0.95 0.96

Error rate 0.05 0.04

Recall 0.94 0.97

Precision 0.94 0.96

Vertebra localization (mm) dcc 2.75 4.08 1.56 1.40

dasp 0.96 0.77 1.07 1.39

dcsp 1.29 3.75 0.67 0.40

dssp 1.74 1.82 0.50 0.26

dsp 1.26 1.85 0.74 1.00

Vertebra orientation (deg) ∢asp 5.08 5.70 3.30 1.88

∢csp 5.59 5.93 5.36 3.06

∢ssp 5.15 7.43 5.50 3.04

∢sp 5.00 6.51 4.73 3.67

Inference time (s) Tmin - Tmax 5 17 to 38
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Concerning the average angle error between predicted and ground truth plane normals, the
YOLO model performs worse by 0.27 deg.

In contrast, comparing both models’ inference times, the YOLO based model surpasses the
segmentation-based model. One factor is the absent decoder structure, which enables the YOLO
network to process a volume faster. Then, the post-processing of the YOLO based algorithm is
much more efficient because no clustering operations or PCA need to be performed. The
segmentation-based approach requires these two steps. Therefore, the YOLO-based algorithm
achieves its results in about 5 s. This implicates a reduction of computation time by 12 to 33 s
compared with the proposed U-Net variant.

5 Discussion

The results show that the proposed YOLO-based algorithm yields comparable results to the
adapted segmentation-based approach presented by Thomas et al.2 Our evaluation confirms the
finding of Thomas et al.2 that a segmentation-based approach can yield slightly better results
concerning the center-to-plane error and the mean angular error. (Note that related work was
applied on a different dataset and anatomy. Hence, the results are not directly comparable.)
However, this gain is obtained at the cost of computation time. In the application of Thomas
et al.,2 which implements a comparison of the left and right ankles, the accuracy is crucial. By
contrast, in ordinary viewing applications, the user desires a low computation time and tolerates
minor plane adjustment errors.

As already pointed out in the introduction, the main benefit of the proposed approaches is that
they can predict the standard planes, not for a single point of interest but for an unknown number
of vertebrae with relatively small distances to each other within a volume. This influences the
prediction process, narrows down the post-processing possibilities, and thus affects the segmen-
tation-based and YOLO-based approaches, as discussed in the following.

As indicated by the high precision values of the approaches’ object detection evaluations,
both algorithms result in a high number of true-positive predictions with a simultaneous low
number of false-positive predictions (FPs). In detail, for the segmentation-based approach,
1.0% of all predictions are FPs, whereas for the YOLO based approach, FPs accounts for 5.4%.

However, Fig. 5 shows that these numbers have to be considered carefully, and the true
number of FPs is even lower than this. The figure further shows that both approaches predict
vertebrae correctly that were not labeled within the ground truth data. This lack of labels
results from some vertebrae being omitted from the labels. For these, specific factors such as
visual artifacts disabled the generation of precise labels. Also, vertebrae that were only partially
contained within a particular volume could not be labeled consistently. Thus, the ground truth
labels do not contain an entry for these specific vertebrae.

However, the developed networks of both presented approaches manage to predict those
omitted ground truth vertebrae to some extent. Thus, for each prediction of one of those, the
number of FPs is increased, in addition to the network predicting a real vertebra.

Although the models are able to compensate for modest artifacts, severe artifacts interfere
with the approaches in the creation of appropriate prediction results. It has been observed that
artifacts modifying a volume’s intensity values substantially enough cause the networks to fail in
their vertebra detection task. Figure 6 presents such an example for each of the two approaches.

It can be seen that both approaches miss the prediction of specific vertebrae. Furthermore,
the segmentation-based approach not only misses vertebrae, but it also predicts false positive
vertebrae. Thus, such artifacts caused by metal implants such as screws and plates can hinder
the presented approaches from functioning correctly.

As can be seen within image (d) of Fig. 5 and Fig. 6, the predicted bounding boxes created by
the YOLOs-based approach are larger in size compared with their ground truth counterparts.
This size difference between prediction and ground truth applies not only to the presented
cervical region but to the entire spine. Thus, in general, the predictions made by the presented
network configuration result in oversized bounding boxes. Although these do not affect the pre-
dicted standard plane parameters, they influence the extraction of the best predictions out of the
total number of individual predictions. In principle, the ground truth bounding box sizes were

Doerrich et al.: Fast 3D YOLOv3 based standard plane regression of vertebral bodies. . .

Journal of Medical Imaging 034503-11 May∕Jun 2023 • Vol. 10(3)



chosen to avoid intersection and overlapping of bounding boxes of adjacent vertebrae. Thus,
accurate predictions of these would likewise result in non-intersecting bounding boxes and
would not influence the IoU metric of the applied NMS. However, the prediction of oversized
bounding boxes results in the intersection of the individual boxes around every single vertebra.
This affects the IoU metric and leads to the potential discarding of precise bounding box pre-
dictions by the NMS, thus resulting in a worse accuracy or even the loss of predictions for spe-
cific vertebrae. The regions that are mainly affected are the thoracic and cervical spinal regions,
but especially the axis and atlas because these are located closest together. In contrast, the over-
sized bounding box predictions are still able to avoid intersections within the lumbar region due
to the larger distances between the associated vertebrae within this region.

One possibility to challenge the discarding of proper predictions due to the overlapping of
their associated bounding boxes would be the adjusting of the IoU metric’s threshold to retain
more predictions. However, this leads to the retention of more redundant predictions, which
increases the number of FPs and aggravates the results at the same time. Therefore, to improve
the performance of the presented algorithm, the predicted bounding box sizes have to be
reduced. This can be established by increasing the number of anchor boxes per level to more
precisely represent the different vertebrae sizes. Currently, there is only one anchor box size for
each vertebra. However, vertebrae sizes of one spinal region differ among the individual vol-
umes. Thus, having more anchor box configurations for one particular region to cover the differ-
ent sizes more efficiently would help to decrease the predicted bounding box sizes. However,
having more anchor boxes per scale would also increase a network’s number of total predictions,
affecting the inference time. Therefore, it has to be evaluated if the performance improvement is
worth the increase in inference time.

Fig. 5 Networks’ predictions for missing ground truth vertebrae. (a) The ground truth segmenta-
tion and (b) the predicted segmentation by the U-Net variant. (c) The ground truth bounding boxes
and (d) the predicted bounding boxes by the YOLO variant.
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Other ideas customizing the ground truth bounding box generation, such as establishing a
uniform size for all vertebrae instead of the current volume respective generation, will not
improve the results. A uniform size inspired by the cervical vertebrae would result in boxes
that are too small for an appropriate representation of the thoracic and lumbar ones. By contrast,
a size rested on the dimensions of the lumbar vertebrae would lead to boxes being too large for
the thoracic and cervical ones. A size reflecting the thoracic vertebrae instead would neither
benefit the representation of the cervical nor the lumbar vertebrae. Likewise, specifying the
ground truth bounding box size depending on the region affiliation of the respective vertebra
instead of a uniform size would not improve the results either. Although this approach incor-
porates more information by including the vertebra type for the generation of its bounding boxes
in the first place, it lacks adaptability to the high variance of different spine appearances. A taller
person has larger vertebrae than a smaller one, and in particular, a child has smaller vertebrae
than an adult. Furthermore, spinal injuries or degeneration cause the alteration of vertebrae sizes
as well as the modification of the space between neighboring vertebrae. Thus, a predetermined
ground truth bounding box size would disable the dynamical adjustment of the bounding boxes
to the variation within the used volumes similar to how it has been done so far.

6 Conclusion

Mobile C-arm systems are used within the intra-operative environment to allow for 3D assess-
ment during the intervention. However, to enable this, the acquired 3D volumes must first be
aligned with the patient’s anatomy. This alignment is based on the standard planes of the

Fig. 6 Missed predictions caused by substantial artifacts. (a) The ground truth segmentation and
(b) the predicted segmentation by the U-Net variant. (c) The ground truth bounding boxes and
(d) the predicted bounding boxes by the YOLO variant.
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respective anatomical region. After extracting the standard plane parameters, the volume is
rotated respectively to restore a standardized view of the anatomy. The idea of this work was
to develop an approach that extracts the standard planes faster than the current manual procedure
using deep learning methods. For that, we have presented, to the best of our knowledge, the first
YOLOv3-based network to automatically localize the standard planes of vertebral bodies within
intra-operative CBCT volumes. We depicted how we adapted the original parameters to be
within today’s hardware constraints for training of such a network. For comparative purposes,
the algorithm’s performance was evaluated against a state-of-the-art segmentation-based
approach.

In conclusion, the proposed algorithm based on the Yolov3 architecture showed similar good
results compared with the segmentation-based algorithm. The latter method has its benefits when
accuracy is of great importance. In a surgeon’s daily life, the observed slightly worse results are
negligible. However, the speed gain resulting in a run time of 5 s makes the algorithm suitable for
use in an intra-operative scenario.
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