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Abstract. Pain diagnosis for nonverbal patients represents a challenge in clinical settings. Neuroimaging meth-
ods, such as functional magnetic resonance imaging and functional near-infrared spectroscopy (fNIRS), have
shown promising results to assess neuronal function in response to nociception and pain. Recent studies
suggest that neuroimaging in conjunction with machine learning models can be used to predict different cognitive
tasks. The aim of this study is to expand previous studies by exploring the classification of fNIRS signals
(oxyhaemoglobin) according to temperature level (cold and hot) and corresponding pain intensity (low and
high) using machine learning models. Toward this aim, we used the quantitative sensory testing to determine
pain threshold and pain tolerance to cold and heat in 18 healthy subjects (three females), mean age�
standard deviation (31.9� 5.5). The classification model is based on the bag-of-words approach, a histogram
representation used in document classification based on the frequencies of extracted words and adapted for
time series; two learning algorithms were used separately, K-nearest neighbor (K-NN) and support vector
machines (SVM). A comparison between two sets of fNIRS channels was also made in the classification task,
all 24 channels and 8 channels from the somatosensory region defined as our region of interest (RoI). The results
showed that K-NN obtained slightly better results (92.08%) than SVM (91.25%) using the 24 channels; however,
the performance slightly dropped using only channels from the RoI with K-NN (91.53%) and SVM (90.83%).
These results indicate potential applications of fNIRS in the development of a physiologically based diagnosis
of human pain that would benefit vulnerable patients who cannot self-report pain.© TheAuthors. Published by SPIE under a

Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original

publication, including its DOI. [DOI: 10.1117/1.JBO.22.10.106013]

Keywords: pain; near-infrared spectroscopy; biomarker; machine learning; discrete wavelet transform; wavelet; principal component
analysis; means; bag-of-words; K-nearest neighbor; support vector machine.

Paper 170430R received Jul. 17, 2017; accepted for publication Oct. 2, 2017; published online Oct. 27, 2017.

1 Introduction
Pain is a subjective experience, and no objective clinically avail-
able diagnostic test exists to measure it. However, in clinical
practice, there are two main approaches for the assessment of
pain: self-reported and clinical judgment. Self-reported methods
try to rate patient’s pain by verbal or numeric self-rating scales,
such as visual analogue scales, verbal descriptor scales, numeri-
cal rating scales, or the MacGill pain questionnaire. Conversely,
pain assessment by clinical judgment is based on testing and
learning from observations of the type, significance, and context
of the patient’s pain perception. Self-report is the most accepted
method and provides the most valid assessment in clinical
practice. However, when self-reports are unavailable or in doubt,
observational measures can be used as a complement or
substitute.1

The absence of verbal (or writing) communication in some
patients (also referred as nonverbal) is an obstacle to the
evaluation of pain. Patients with impaired communication,
unconscious patients, infants, the critically sick, persons

suffering from advanced dementia, and patients with intellectual
disabilities are examples of vulnerable individuals, who are
unable to speak for themselves.2 Due to the inability to commu-
nicate pain status, these populations are at risk to be under- or
overtreated while in pain. These conditions create a significant
obstacle to evaluate and manage patient’s pain experience in
a suitable manner. Hence, the need for a reliable and objective
pain assessment to assist medical practitioners in the diagnosis
of pain is critical for this vulnerable population.

Pain assessment is not a trivial task and some factors should
be taken into consideration to achieve a reliable estimate of it.
For instance, pain perception can be affected by age, sex,
weight, psychological state, or cultural background.3 Similarly,
Edwards et al.4 found significant differences between African–
Americans to report greater levels of pain than whites for
conditions, such as AIDS, migraines, postoperative pain, joint
pain, or arthritis; these findings were consistent across different
age groups. In addition, tolerance to pain in patients differs
due to the capacity of each person to resist (or adapt) different
intensities of pain even within the same ethnic groups.5 Thus,
assessing and managing pain should be carried out to tailor
individual needs.

Some strategies have been proposed to aid the objective
assessment of pain. In clinical settings, for instance, the use
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of vital signs, metabolic markers, and brain imaging tools
has been explored.6 Vital signs, such as heart rate, blood
pressure, respiratory rate, and arterial oxygen saturation, are
commonly used by medical practitioners to measure pain in
nonverbal patients. However, these parameters can be unreliable
in situations, where the patient suffers from a mental disorder, is
under stress, is premedicated, or is sedated. In these cases,
changes in vital signs can be expected and relying on them
could affect the interpretation and assessment of pain in such
patients. On the other hand, the use of neuroimaging techniques
[e.g., magnetic resonance imaging (MRI), positron-emission
tomography (PET), electroencephalography (EEG), near-
infrared spectroscopy (NIRS), etc.] has gained recognition
due to their capabilities to gain insights into the human brain
(noninvasively) and understand the components involved in
pain processing.

In that context, functional near-infrared spectroscopy
(fNIRS) can be used to determine hemodynamic and metabolic
changes associated with brain activity by measuring changes in
the concentration of oxygenated hemoglobin (HbO) and deoxy-
genated hemoglobin (HbR) in real time. This neuroimaging
technique can be used to assess cortical activity in diverse
experimental and clinical settings, such as neurology (e.g.,
Alzheimer’s disease, dementia, stroke recovery), psychiatry
(e.g., anxiety, schizophrenia, personality disorders), psychology
(e.g., attention, language, emotion), and other applications
(e.g., brain–computer interface, sports sciences, pain research).7

By placing the fNIRS optodes on specific cortical regions,
it is possible to access the hemodynamic response associated
with neural activity. The activation of cortical regions is the
result of vascular dilation increasing cerebral blood flow,
thus, fluctuations in the hemodynamic response correlate with
neural activity.8 In addition, fNIRS offers advantages over
other technologies (fMRI, EEG, PET) such as it is noninvasive,
portable, relatively inexpensive, and provides good temporal
and spatial resolution,9–11 which makes this technology ideal
for clinical testing.

In the field of pain research, fNIRS studies have demon-
strated that external pain stimuli in healthy and diseased patients
evoke changes of oxygenation levels in distinctive cortical
regions.6,12–14 Several techniques have been utilized to safely
evoke noxious stimulation, including mechanical, thermal, elec-
trical, and chemical.8 For example, Yücel et al.8 used innocuous
and noxious electrical stimuli in 11 healthy subjects and
obtained a localized hemodynamic response in the right and
left motor-sensory regions; the noxious stimuli resulted in a
higher response (HbO) as compared to the innocuous stimuli.
In another study, Lee et al.15 observed distinct activation in
the parietal and frontal areas for acute pressure pain and hista-
mine-induced itch in seven subjects; the results showed a faster
activation and stronger response of HbO signals for pressure
pain than itch stimulation in both the frontal and parietal area.
Ranger et al.16 recorded the HbO response of 20 critically ill
infants (<12 months of age) during noxious procedures for
cardiopulmonary bypass for various congenital heart defects
(CHD) and found a significant bilateral increase in the somato-
sensory region despite the administration of analgesic treatment.
In another study, Slater et al.17 studied changes of total hemo-
globin (HbT ¼ HbOþ Hb) in response to noxious stimulation
(heel lance) in 18 infants aged between 25 and 45 weeks (post-
menstrual age) over the somatosensory cortex; the noxious
stimulation produced a clear hemodynamic response in the

contralateral somatosensory cortex and was significantly greater
in awake compared to sleeping infants. These studies have
showed the potential to use fNIRS to obtain pain-related infor-
mation in human subjects.

Similarly, attempts to use neuroimaging methods to identify
pain in healthy humans have shown potential to aid the assess-
ment of pain. For example, Brown et al.18 used fMRI data from
eight individuals to train a support vector machine (SVM) to
distinguish painful from nonpainful thermal stimuli with 81%
accuracy. In another fMRI study, Wager et al.19 predicted
pain intensity and identified patterns of noxious heat from non-
painful warmth using a principal components (PCs) regression
technique with a performance of 93%. Gram et al.20 used EEG to
investigate morphine- and placebo-administered subjects after
receiving stimulation using the cold pressor test, the authors
used SVM to classify responders with an accuracy of 72%.
In an fNIRS study, Pourshoghi et al.21 used a SVM classifier
to classify low pain and high pain from healthy subjects after
a cold pressor test with 94% accuracy. These results show
that pain recognition and classification is plausible using neuro-
imaging methods, also the results from these studies advocate
for the use of machine learning techniques to predict human
pain.

Significant progress on the work of the aforementioned
studies would be to design classification models that can
discriminate multiple pain signatures at different intensities.
For example, using two types of thermal stimuli (hot and
cold) and different intensities (low and high), the learning
model would be more robust than a model for a single pain
condition (cold or heat). Another contribution would be to
show the ability of bag-of-words (BoW) to represent time
series in the field of brain imaging, which in conjunction
with machine learning are a promising tool in neuroscience
research. Therefore, these new classification models, based
on robust learning models capable of differentiating multiple
signatures of pain at different intensities and which could be
extended to nonverbal patients, would be more valuable for
clinical testing.

In this study, we aim to contribute toward the establishment
of a tool for pain assessment in nonverbal patients using
fNIRS and machine learning techniques. To that end, we applied
the threshold test and tolerance test as measured in the quanti-
tative sensory testing (QST) to obtain the thermal sensory
profile in 18 healthy subjects using cold and heat. Therefore,
we explored the possibility to classify fNIRS signals of pain
according to temperature level (cold or hot) and pain intensity
(low or high). Two machine learning classifiers [K-nearest
neighbor (K-NN) and SVM] were trained to classify fNIRS
between cold and heat pain while distinguished between low
and high pain intensity; we built our classifiers using the
BoW representation used in text classification. The major
contributions of this study are (1) heat and cold pain are differ-
entiated using fNIRS signals (HbO) as well as their correspond-
ing pain intensity (low or high) using machine learning
techniques; (2) we report the investigation of two state-of-
the-art classifiers to distinguish between thermal noxious
stimuli; and (3) we also investigated the accuracy of our clas-
sifiers with respect to the region of interest (8 channels) or whole
head probe (24 channels). This study represents a step closer
to developing a physiologically based diagnosis of human
pain that would benefit vulnerable patients, who cannot self-
report pain.
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2 Methods

2.1 Subjects

Eighteen right-handed volunteers (three females) were consid-
ered in the study. All participants were of Chinese ethnicity
and dark brown hair color, mean age� standard deviation
(31.9� 5.5). No participants reported a prior history of
neurological or psychiatric disorder, a current unstable medical
condition, or under medication at the time of testing. All partic-
ipants were right-handed to avoid any variation in functional
response due to lateralization of brain function. The experimen-
tal procedure was explained to the participants, and they had the
opportunity to stop the procedure at any time if it was needed.
Written informed consent was obtained from all volunteers
after providing an explanation of the protocols in the study.
Procedures and methods for this study followed the guidelines
accepted by the Declaration of Helsinki. This research study
was approved by the Taipei Medical University (TMU) and
full-board review process of the TMU-Joint Institutional Review
Board under contract number 201307010.

2.2 Experimental Paradigms

Thermal pain perceptions (threshold and tolerance) in healthy
volunteers were investigated following the standard procedures
of the QST protocol.22 We defined pain threshold (low pain) as
the least stimulus intensity at which stimulation becomes painful
and pain tolerance (high pain) as the highest intensity of pain at
which stimulus becomes unbearable. Both thermal threshold
and thermal tolerance were obtained by heat and cold stimula-
tion, and pain measurements were obtained on the dorsum of the
left hand (nondominant hand). All thermal tests were performed
using a pathway CHEPS (Medoc, Israel), this sensory analyzer
delivers heat and cold to the skin with a thermode. Attached to
the central unit is a hand-held controller that allows subjects to
press a button to stop the heating/cooling of the thermode. The
subjects were seated on a comfortable armchair with the left arm
resting on a table. Previous studies have reported no significant
difference in QST between the right and left sides of the body.22

The pain experiment involved applying cold and heat to the
skin to induce pain. In this test, subjects are exposed to gradually
increasing or decreasing temperatures with a thermode and they
pressed a button when they experienced pain (threshold test) and
highest intensity of pain (tolerance test). The temperature of
the thermode, just as it becomes painful or unbearable, is the
thermal pain threshold or thermal pain tolerance, respectively.

The pain threshold and tolerance for each subject were estimated
as the average from three consecutive trials of cold and heat
stimulation. Figure 1 summarizes the stimulation paradigm and
is explained below.

Similar to Rolke et al.,22 our protocol was divided in two
tests: the thermal pain threshold (low pain) and the thermal
pain tolerance (high pain), with a 2-min rest between both
tests. After an initial 60-s rest, the thermal pain threshold was
first measured by three consecutive trials of cold stimulation,
followed by 60-s rest and then, three consecutive measurements
of heat stimulation. Thermal pain tolerance was measured
by following the same procedure for thermal pain threshold.
In both tests, there was a 30-s interval between each trial. The
three consecutive measurements from each test were averaged,
and the block-averaged signal (∼30 s) from each thermal test
was used for the classification task. Thermal measurements
were obtained with ramped stimuli of 1°C∕s that were termi-
nated when the subjects pressed a button, then, the temperature
returned to baseline (32°C) for the next stimulation with a rate of
10°C∕s. The probe has a safety cut-off to prevent any harm to
the skin. The low cut-off temperature was 0°C and the high
cut-off temperature was 50°C. The contact area of the thermode
was 9 cm2. The testing took place in a quiet and temperature-
controlled (20°C to 22°C) room at TMU. All experiments were
carried out by the same researcher to reduce variabilities
between samples. Based on the threshold and tolerance of cold
and heat stimuli, the fNIRS data were organized into four
categories: (1) low-cold (low pain), (2) low-heat (low pain),
(3) high-cold (high pain), and (4) high-heat (high pain).
These categories (1 to 4) were used to label the database and
employed as classes for the classification task.

2.3 fNIRS Recording, Preprocessing, and
Channel Selection

fNIRS recordings were acquired using a multichannel optical
topography system, Hitachi ETG-4000 (Hitachi Medical
Corporation, Japan). This equipment uses two wavelengths of
near-infrared light to measure changes of hemoglobin concen-
tration in the cerebral cortex; HbO at 695 nm and HbR at
830 nm.9 The spectrometer is equipped with a 24-channel cap,
configured in 12 channels (rectangles) per hemisphere (Fig. 2).
Each hemispheric probe consists of five sources (red circles) and
four detectors (blue circles) that provide 12 source–detector
pairs. The head probe has a predefined source–detector separa-
tion (SDS) of 3 cm (left panel Fig. 2) and an NIR-light head

Fig. 1 Stimulation paradigm. Pain threshold test was first measured and followed by pain tolerance test.
In each test, cold and heat stimulus were applied on the back of the hand of each subject.
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penetration of about half the SDS distance.23 According to the
EEG 10 to 20 system, the measuring probes were centered on
the C3 and C4 positions. In this study, we used only the HbO
signals because HbO signals exhibit a better signal-to-noise ratio
than HbR signals.24,25 The sampling rate was 10 Hz.

Raw fNIRS data are normally contaminated by different
sources of noise, and preprocessing was required. To minimize
effects of physiological components (e.g., cardiac, respiration)
and electrical noise in fNIRS data, a finite-impulse forth-order
low-pass filter with a cut-off frequency of 0.1 Hz was used.
Then, motion artifacts were removed by following a denoising
procedure similar to Molavi et al.,26 which uses discrete wavelet
coefficients to find and eliminate those coefficients (outliers)
that do not belong to the probability distribution and therefore
behave as motion artifacts; four subjects presented motion
artifacts. Raw signals were converted to changes in HbO and
HbR concentrations using the modified Beer–Lambert law
applying literature differential path length factor values of
6.51 for the 695 nm and 5.86 for the 830 nm light sources.27

In order to reduce extracerebral hemodynamics (scalp) and sys-
temic variables23 (e.g., blood pressure, breathing rate, autonomic
nervous system activity) existed in our data, we followed the
method presented by Zhang et al.28 we applied principal com-
ponent analysis (PCA) to the baseline data, assuming that
baseline data primarily contain the spatial patterns of systemic
interference and identified the first PC (which accounted for
approximately 90% of the variance); then, we attenuated the
interference in the stimulus data by projecting the stimulus data
onto the orthogonal subspace of identified spatial eigenvectors
to obtain “clean” stimulus data. Finally, we normalized all
fNIRS data to zero mean and unit standard deviation to avoid
different baselines and amplitude variations.

The number of fNIRS channels used in this study was evalu-
ated during the classification task and two sets of channels were
selected for that purpose. The first set of channels is formed of
all the 24 channels available, whereas the second set is focused
on a specific region-of-interest (RoI) composed of eight chan-
nels. The reasoning behind this evaluation is that the fNIRS head
probe was covering a wide area of the cerebral cortex, including
the frontal and parietal lobes on both hemispheres. However, for
this particular study, wewere interested in evoked signals related

to pain in the left hand, therefore, our RoI was the somatosen-
sory region in the parietal lobe near the central sulcus on both
hemispheres. Based on this hypothesis, we decided to use the
channels around this cortical area and compare the performance
of RoI-based channels and all the 24 channels. The RoI-based
channels from both hemispheres were: Ch4, Ch6, Ch7, Ch9,
Ch16, Ch18, Ch19, Ch21.

2.4 Bag-of-Words Representation

This study is based on the BoW approach for document classi-
fication adapted for time series. BoW representations are very
popular in text mining, document classification, texture analysis,
scene classification, and robot localization due to its simplicity
and good performance.29,30 BoW has becomewell-established in
the field of computer vision, where it is also referred to as bag-
of-features. Recently, it has been adapted for the classification of
time series in audio and speech recognition,31–33 electroencepha-
logram (EEG) and electrocardiogram (ECG) signals,34 and time
series similarity.35 In these works, time series are treated as text
documents and sections extracted from the time series as words.

In the context of fNIRS time series representation, BoW can
adopt a similar model to the approach used for image classifi-
cation. It can be generalized in three steps: first, the detection of
keypoints (features) in the fNIRS time series using sliding win-
dows; second, keypoints are represented into words (codebook
generation) using a quantization technique (e.g., k-means); and
third, fNIRS time series are characterized by histograms of num-
ber of occurrences for each word observed in each time series.
This histogram representation is used as input to a classifier
(e.g., SVM) that finds boundaries between classes. These steps
are exhibited in Fig. 3 and are described below.

2.4.1 Feature extraction

The method starts by sliding a window through the fNIRS
(HbO) time series and obtaining local features from each
partition. Consecutive windows are obtained with incremental
steps to divide each fNIRS time series. Local features are
obtained from every sliding window and represented by their
corresponding feature vector. The influence of different step size
and window length was evaluated during the training process.

Fig. 2 Channel location and configuration. Channel probes were located around the C3 and C4 areas.
For classification purposes, two sets of channels were tested, all 24 channels and 8 channels from a RoI.
The selected channels from the RoI are four channels on the right hemisphere (Ch4, Ch6, Ch7, Ch9) and
four channels on the left hemisphere (Ch16, Ch18, Ch19, Ch21), which are positioned over the primary
somatosensory region. Source–detector distance was 3 cm.
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In the literature, different methods for feature extraction
have been employed to describe time series into BoW. Wang
et al.34 used discrete wavelet transform (DWT) from sliding
windows to obtain a number of wavelet coefficients using
a Daubechies order 3 (db3) wavelet transform. Grabocka
et al.,36 extracted coefficients of a polynomial regression by a
sliding window, and the degree of the polynomial was selected
based on the classification accuracy over a validation test.
Baydogan et al.,30 composed each feature vector by the slope of
the fitted regression line, mean and variance of the values, and
start and end points of the experiment. In our study, we used
wavelet db8 approximation coefficients because we were inter-
ested in the wavelet coefficients from the period of stimulation
(∼30 s) in the activation band (0.02 to 0.08 Hz).37 DWT has
shown better results compared to other methods for the classi-
fication of time series.34 In addition, wavelet analysis has the
ability to localize frequency content that mostly contributes
to the total energy contained within the fNIRS signal at the spe-
cific stimulation period, and the approximation coefficients are
more robust to noise than raw fNIRS signals (using a frequency
band less contaminated by physiological signals) while down-
sampling by a factor of 2 the original signal.34

2.4.2 Codebook formulation

The next step is clustering of extracted feature vectors and the
creation of the codebook. After the local features are extracted,
features are quantized using the k-means algorithm and a code-
book of k words is obtained. The k-means algorithm generates
a k set of centroids from a set of feature vectors, and each
feature vector is classified with the centroid index closest to it.
Following this concept, all feature vectors gathered from the
sliding window process on the fNIRS time series (training data)
are clustered to their nearest centroid (cluster center). These
centroids are referred to as the codebook (or word dictionary)
and each centroid can be seen as a word in the dictionary.
We can perceive each cluster as a group of feature vectors who
share local pattern similarities and the centroid of each cluster
as the most representative value of that specific local pattern.

The total number (k) of centroids is referred as the codebook
size and it is regulated by the number of clusters formed in the
clustering process. If a small codebook is chosen, the number of
centroids under-represents all feature vectors producing a poor
discriminative performance since two feature vectors could fall
into the same cluster even if the vectors are different. On the

Fig. 3 fNIRS time series representation: (I) sliding a window over the entire time series, (II) local seg-
ments are converted to feature vectors, local descriptors (e.g., wavelet) can be used to represent feature
vectors, (III) vector quantization using k -means clustering, (IV) codebook (or dictionary) generation, each
cluster center produced by k -means becomes a word (Wk ), the codebook is universal for training and
testing data, (V) each feature vector is assigned to nearest word in the dictionary, (VI) histogram
representation containing total number of appearances of each word in the time series. For new time
series (testing data), repeat steps (I), (II), (V), and (VI).
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other hand, if a large codebook is obtained, it is more prone to
noise due to the lack of generalization of the codebook while
significantly increasing the computational complexity. In order
to create a more discriminative and adequate codebook,
a trade-off between discrimination and generalization should
be considered.38 Thus, the effect of different codebook size
was also investigated.

2.4.3 Codebook assignment

The last step in the BoW representation is the assignment of all
feature vectors to their closest centroid. From the previous steps,
for a fNIRS time series, we slid a window one step at a time and,
from each window, we obtained a set of local features. We
then constructed a codebook from all local features using the
k-means algorithm. Now, we represent each fNIRS time series
as a histogram of k number of bins, where each bin symbolizes
each word in the codebook and the magnitude of each bin is the
number of occurrences for that specific word in the time series.
Each histogram can be seen as a normalized representation of
pattern occurrences (i.e., words) from the total number of pat-
terns (codebook) in the whole database. It is worth noting that
the temporal ordering of the local features in each time series is
ignored, and the centroids indexing (i.e., 1;2; : : : ; k) obtained in
the clustering task is used to order each word within the histo-
gram. The BoW representation of N number of fNIRS time
series is referred as the N number of histograms gathered
following this model. Therefore, the histograms are the new rep-
resentation of the fNIRS time series. The codebook generation is
only computed once from training data and is generic to be used
on test data. These histograms are then passed to a classifier to
learn how to map classes from this BoW representation.

2.5 Classifiers

The classification task is to assign a vector Xi of input
X ¼ ½X1; X2; : : : ; Xi� to one of the j classes Yj. For that purpose,
a classifier has to learn a model from training data Xtrain (a data-
set reserved for this purpose). We then use this model to make
class assignments on a different dataset Xtest (independent from
training data). This model captures the relationship between
features and class labels in the training data. The end goal of
a classification problem is to make generalized predictions on
unlabeled data from the same distribution using the trained
model. Properly, a classifier can predict the label Y of a given
feature vector X as a function f of the type Y ¼ fðXÞ.39
To obtain the best model on our pain database, two state-of-
the-art algorithms were compared, the K-nearest neighbor
(K-NN) and SVMs for multiclass classification (one-versus-
one voting).

The K-nearest neighbor (K-NN) is one of the simplest clas-
sification algorithms for supervised learning and a robust clas-
sifier for time-series classification.40 It uses the K features in the
training set Xtrain closest (nearest) in feature space to unlabeled
data x0 to predict its output y0. The algorithm basically uses
a majority vote between the K nearest training points and the
query point. Similarity is defined based on a distance metric
between two data points, for that purpose, we used Euclidean
distance due to its simplicity and low computational cost.41

Different number of nearest neighbors (K ¼ 1;3; 5;7; 9) was
also tested.

SVMs have been previously used in classification problems
in the neuroscience field.18,21 Its basic idea is to find a linear

separating boundary with the maximal margin, and new data
points are then classified according to which side of the decision
boundary they fall.42 However, data in real-world scenarios are
not easy to separate by a linear decision boundary; in these
cases, SVM solves this problem by kernel functions to map
the observations into higher-dimensional space in which the
data can be separable. We used the LibSVM library43 parame-
trized for a multiclass classification and the linear kernel was
used for this study. One of the reasons to use a linear kernel
compared to a higher-order kernel (e.g., radial base kernel) is
that a linear kernel is faster, has less parameters to optimize,
and it has been used in previous studies on pain research
using brain imaging techniques.18

2.6 Evaluation of Classification Models

The pain database was randomly split (on the subject level) in
two parts, training and testing datasets. The training set was
formed with 13 subjects and the testing set with the remaining
5 subjects. Therefore, the data are divided into two independent
sets, one subset is used to train the classifier and another subset
is used to test the performance of the classifier. During the train-
ing process, leave-one-out cross validation on the subject level is
computed. One data point (1 subject) is held as the validation set
while the remaining data (12 subjects) are used for training; the
process is repeated 12 times, validating on a different subject in
each iteration. During this process, the BoW parameters (step
size, window length, and codebook size) were evaluated with
a 1-NN and a linear SVM. The trained models were then tested
using the remaining five subjects and the estimates (accuracy,
sensitivity, and specificity) of predictive performance are then
averaged across all the testing groups and reported as the final
result.

3 Results
Figure 4 presents an example of the activation map during
stimulus. The image shows the hemodynamic response of all
the 24 channels and the RoI. In addition, we can see that
the activation is concentrated in the somatosensory strip.
Therefore, we hypothesized that using relevant channels for
the classification process would improve the performance of
the classifiers.

3.1 Thermal Threshold and Tolerance

Thermal threshold and tolerance of pain perception were
obtained following a similar approach to the thermal test in
the QST. By determining the QST thermal tests, we aimed to
minimize the subjective nature of self-reported pain scores.
In this way, the obtained measurements are based on tempera-
ture readings to classify a measurement as low pain (threshold)
or high pain (tolerance) of cold and heat stimulation and not on
self-reports. The measured (averaged) values obtained from
each experiment are shown in Fig. 5.

The two plots show the threshold and tolerance temperatures
of cold (Fig. 5, left panel) and heat (Fig. 5, right panel) stimuli
across all participants. The first three measurements in each plot
refer to the pain threshold while the last three measurements
refer to the pain tolerance. The median (�SD) temperatures
(horizontal red lines in Fig. 5) in which participants first
perceived pain (pain threshold) from cold (12.45� 1.97;
12.05� 1.93; 12.45� 2.22°C) and heat (42.70� 2.44; 42.80�
2.75; 42.95� 2.92°C) clearly presented differences from the
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highest intensity of pain (pain tolerance) the participants
could take from cold (3.40� 2.07; 2.40� 2.71; 1.45� 2.12°C)
and heat (48.00� 1.92; 49.10� 2.11; 49.70� 1.82°C). Median
values (horizontal red lines) of cold pain threshold exhibited
a statistically significant (p < 0.05) higher response (Wilcoxon
signed rank test, p ¼ 0.0018) than the median response to cold
pain tolerance; similarly, median values of hot pain threshold
showed a significant higher response (Wilcoxon signed rank
test, p ¼ 0.002) to the average response to hot pain tolerance.

Habituation of noxious thermal stimulation was observed in
all four experiments. As we can see in Fig. 5, group tempera-
tures of pain threshold and pain tolerance slightly decreased and
increased after each cold and heat stimulation, respectively.
Therefore, we used Friedman’s test and looked for statistically

significant differences between the three consecutive measure-
ments (test 1, test 2, test 3) from each thermal test (e.g., cold
threshold). However, the Friedman’s test did not show any sta-
tistically significant differences (p < 0.05) between repetitions
within cold threshold (p ¼ 0.18), heat threshold (p ¼ 0.57),
cold tolerance (p ¼ 0.22), and heat tolerance (p ¼ 0.13) tests.

3.2 Bag-of-Words Parameters

As a validity check on the effectiveness of the chosen parame-
ters, the main parameters to build the BoW implementation were
examined. Different step sizes, length of local segments, and
codebook sizes were evaluated during the training process.
The parameter evaluation included two classifiers (1-NN and

Fig. 5 Thermal threshold and tolerance levels experienced by the participants (a) after cold and (b) heat
stimuli. Horizontal red lines are the median values across all participants for each test.

Fig. 4. Stimulus-evoked hemodynamic activation (HbO), most of the activation is concentrated in the
somatosensory region.
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linear SVM) and two channel sets (24 channels and 8 channels).
The results of parameter tuning of the BoW representation are
presented in Fig. 6 and are described below.

We first evaluated the length of the sliding window by
varying its size among the range of 32 to 352 in increments of
32 samples. In this process, we fixed the codebook size to
1000 and the step size to 4; these reference values have shown
good results in similar studies.30,34 The best results were
obtained using a sliding window between 192 and 352 samples
for the 1-NN classifiers and between 288 and 352 samples for
the SVM classifiers. In all cases, the accuracy of the classifiers
drops significantly with a length smaller than 160 samples.
Following these results, lengths of 224 and 192 samples
were selected for the 1-NN classifiers with 24 channels and
8 channels, respectively; lengths of 288 and 320 samples were
chosen for the SVM classifiers with 24 channels and 8 channels,
respectively.

Then, the influence of the codebook size on the classification
performance was evaluated. We fixed the step size to 4 and used
the best window length obtained in the previous step for each
classifier. The results in performance during the training process

are relatively stable with a codebook size between 50 and 1500
words for the 1-NN classifiers and between 500 and 300 words
for both SVMs. It is important to reduce computational time and
memory usage while having good discrimination, thus the best
values for codebook size were 500 words for both 1-NNs, and
2000 and 2500 words for the SVM classifiers with 8 channels
and 24 channels, respectively.

Finally, the last parameter to evaluate was the step size of the
sliding windows. In this case, the best values for the windows
length and codebook size were used to test different step size
from one to nine samples. The evaluation showed stable results
for most values, however, the best results were obtained
with step size of four and six samples for the 24-channel and
8-channels 1-NN, respectively, and five samples for both SVMs.
Therefore, the best BoW parameters were used to build the
codebook, which was universal for both training and testing of
each classifier.

In addition, an example of cluster centers obtained by
k-means is presented in Fig. 7. The image presents the DWT’s
approximation coefficients derived from the sliding window
process. In this set of samples, we can observe distinctive

Fig. 6 BoW parameter tuning. (a) Segment (window) length, (b) codebook size, and (c) step size were
evaluated; their corresponding classification performance while testing the parameters is also presented.
Note that the units of segment length and step size are samples, and the units of codebook size are words.

Fig. 7 Samples of cluster centers constructed by k -means on the zero-mean and unit-variance fNIRS
using the DWT coefficients.
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patterns, i.e., increasing, decreasing, decreasing, and then
increasing. Each of these centroids symbolizes the most repre-
sentative value from a group of fNIRS segments with distinctive
pattern similarities.

3.3 Classification of fNIRS Signals in Response to
Thermal Pain

The main goal of the classification task is to design a classifier
that can make predictions using new observations. As men-
tioned before, we have four types of observations (classes);
these observations refer to temperature level (hot and cold)
and pain intensity (low and high). Based on these observations
we trained our classifier to predict new observations to be either
low-cold pain, low-heat pain, high-cold pain, or high-heat pain.
With this in mind, we used the K-NN (with K ¼ 1, 1-NN) and
the linear SVM algorithms with 24 channels and 8 channels
(fNIRS channels) to design four classifiers able to estimate the
type of pain and its intensity by using the BoW representation.
Using the best BoW parameters for each classifier, we tested
each classification model with unseen subjects (n ¼ 5), the
results were averaged and summarized in Table 1.

The overall performance of each classifier showed good gen-
eralization results with both channel sets. The best results were
obtained by the 1-NN classifier with 92.08% and 91.53% using
the 24 channels and 8 channels, respectively. On the other hand,

the SVM classification models showed a slightly lower perfor-
mance compared to the 1-NN classifiers, 91.25% using 24 chan-
nels, and 90.83% using the 8-channel set. In addition, we also
evaluated different NNs with K ¼ 3, 5, 7, 9; however, in both
channel sets, the 1-NN showed the best results.

4 Discussions
In this study, we demonstrated that fNIRS and machine learning
are powerful tools to identify thermal pain and its intensity in
a research setting. We used the BoW representation of fNIRS
signals and compared two state-of-the-art classifiers (K-NN
and SVM) to predict the response of new fNIRS within four
categories of painful stimulation (low-cold, low-heat, high-cold,
and high-hot) using two sets of channels (24 channels and
8 channels). The classification models exhibited good classifi-
cation accuracy (90.83% to 92.08%) and demonstrated the pos-
sibility to design classifier models that can differentiate multiple
modalities of pain and their intensity. This study supports the
idea of developing an objective assessment of pain for nonverbal
patients.

4.1 Building the Classifiers

The BoW representation showed its potential to characterize
fNIRS signals, however, parameter tuning of such representa-
tion is important to obtain a trade-off between discrimination

Table 1 Performance of the K -NN (K ¼ 1) and SVM (linear) classifiers using the best results from parameter tuning of the BoW representation.
The evaluation also includes two sets of channels, all 24 channels (Ch) and 8 channels, from the RoI. “Low” refers to pain threshold, while “high”
refers to pain tolerance.

Classifier Ch Step Size Segment Length Codebook Size Class

Values (%)

Accuracy Sensitivity Specificity

K-NN 24 4 224 500 Low-cold 95.00 89.06 98.20

Low-heat 89.66 92.86 96.57

High-cold 93.22 98.21 97.65

High-heat 90.48 89.06 96.47

Average 92.08 92.30 97.22

SVM 24 5 288 2500 Low-cold 90.00 84.38 96.49

Low-heat 94.55 92.86 98.24

High-cold 93.10 96.43 97.63

High-heat 88.06 92.19 95.24

Average 91.25 91.46 96.90

K-NN 8 6 192 500 Low-cold 92.70 85.94 97.44

Low-heat 94.67 95.24 98.82

High-cold 89.39 95.24 96.33

High-heat 89.69 90.63 96.04

Average 91.53 91.76 97.01

SVM 8 5 320 2000 Low-cold 90.63 90.63 96.39

Low-heat 92.73 91.07 97.66

High-cold 91.38 94.64 97.06

High-heat 88.89 87.50 95.86

Average 90.83 90.96 96.74
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and generalization. While the step size of the sliding window
showed stable results with different numbers of steps, the seg-
ment length and the codebook size presented more variability.
Local information was extracted by continuously sliding a win-
dow along an fNIRS signal and BoW allows incorporating this
information that appears at different temporal locations and with
different scales in an efficient way. If the window segment is
short, the local information loses meaningfulness due to the
lack of data points for feature extraction and a large number
of local segments will be extracted from each fNIRS signal,
which increases the computational complexity due to the large
number of segments to cluster. However, if the window segment
is large, only a few local segments are obtained, which restricts
the discriminative ability of the BoW representation due to the
limited number of samples. On the other hand, the codebook
size showed good results with medium-size codebooks, how-
ever, it varied for K-NN and SVM classifiers. In previous
works on classification in biomedical signals, such as EEG
and ECG30,34,36 using BoW, the optimal codebook size has
ranged from 25 to 8024 words, and this diversity is mainly due
to differences between the nature and data type of each study.
For our particular study, a compact codebook (<500 words)
produced limited discriminative results because segments with
a different profile can be assigned to the same cluster, whereas
a large codebook (>2000 words) increased computational time
and memory usage. Therefore, obtaining the most suitable
values of BoW parameters for each specific data type produces
better results while being more computationally efficient.

The generalization capability between the classification
models for the discrimination of pain showed that the K-NN
classifier performed slightly better than SVM on both channel
sets. This can be explained due to the fact that the K-NN
classifier was designed with a smaller codebook (500 words)
compared to the SVM classifier (2000 to 2500 words). Thus,
increasing the number of words amplifies the intraclass variabil-
ity, which decreases classification accuracy and also increases
computational time and memory usage. We also found that
unlike SVM, K-NN was much more adept at classifying low-
cold (threshold of cold) and high-heat (tolerance of heat) on
both channel sets, which might be the reason why the accuracy
rate for SVM was slightly lower compared to K-NN. The differ-
ence between these two modalities (low-cold and high-heat) of
pain might also suggest that distinctive patterns from these two
classes are more inconsistent among subjects and thus more
difficult to separate in a high dimensional space using a linear
kernel. As mentioned before, we also compared different
values of NNs (K ¼ 3, 5, 7, 9), however, the performance
dropped; the risk of including NNs that belong to different
classes increases since the K-NN algorithm uses a majority
voting scheme.

Multiple cortical areas were monitored using a 24-channel
head probe, because of that, we were interested to know if
the hemodynamic response in a specific RoI could provide bet-
ter classification accuracy compared to the whole probe. For that
reason, we selected the somatosensory area as RoI and trained
the classifiers with data only from this cortical area using (eight
channels). The reasoning behind this comparison was that the
somatosensory area, in particular, the primary (S1) and secon-
dary (S2) somatosensory cortex, has shown a fundamental role
in pain processing.8,12,18 The results showed that the accuracy of
RoI-based classifiers was slightly lower than whole-probe clas-
sifiers (refer to Table 1). For instance, for the K-NN classifier,

the difference between RoI-based and whole-probe approach
was a loss of ∼0.55% in accuracy, whereas for the SVM clas-
sifiers, the accuracy dropped 0.42%. A clear advantage of using
an RoI-based approach is the need for less channels, which
decreases the computational cost to build the BoW representa-
tion and the classification models (K-NN and SVM), since the
RoI-based dataset is built with one third of the original dataset.
However, the RoI-based approach did not perform better than
the whole-probe approach in either case. This finding is consis-
tent with Brown et al.,18 the authors found that using a whole-
brain approach produced better accuracy to classify pain and
no-pain signals using a linear SVM compared to an RoI-based
approach. These findings confirm that despite the fact that the
somatosensory region plays a fundamental role in pain process-
ing, there are still more cortical regions than are implicated in
sensory aspects of pain perception (e.g., insular cortex, anterior
cingulate cortex, prefrontal cortex), which make nociceptive
processing a large distributed brain network, referred as the
“pain matrix.”44 Therefore, it is also important to monitor differ-
ent cortical regions that may be involved in the particular pain
experience, the interaction between different cortical areas could
tell more about the brain functioning as a system rather than
looking at separate areas working independently.13

4.2 Pain Assessment

The definition of pain is sometimes broad and controversial and
is mainly regulated by the perceived intensity of the painful sen-
sation. In this study, we differentiated the intensity of a painful
stimulus as pain threshold (low pain) and pain tolerance (high
pain). It is believed that all humans have a similar threshold
for pain but different pain tolerance.45 For instance, heat is
perceived as noxious at thermal doses between 40°C and 45°C,
same temperature at which tissue damage occurs, while the
response to pain intensities differs from person to person and
is influenced by factors, such as, gender, age, weight, etc. In
addition, in some circumstances, the tolerance to pain of a per-
son can change after a stressful experience (e.g., death of a loved
one, self-injury). In a study by McCoy et al.,46 it was found
that participants with previous experience of self-injury had a
significantly higher pain tolerance but the same pain threshold
compared to normal controls; it was hypothesized that self-
injury increases the desensitization to fear and pain.

An advantage of obtaining the intensity (low and high) of
pain in a patient is to provide a personalized medical treatment.
It is well reported that pain judgement is affected by factors,
such as age, gender, weight, cultural background, etc. Medical
treatments that work well for some patients may not be adequate
for others due to physical differences, therefore tailoring pain
control to the individual needs of each patient is not only impor-
tant for nonverbal patients but also for the whole population.
In many cases, medical practitioners prescribe analgesics
based only on general information about medical treatments
and not on the individual patient’s characteristics. For this
reason, knowing the individual pain sensation will reduce the
risks of harmful side effects due to overdose and cut medical
treatment costs compared with traditional trial-and-error
treatments.

Thermal testing was kept as uniform as possible among all
the participants, however, possible differences in data acquisi-
tion could occur. In order to minimize any differences between
observations and thermal acquisition, we utilized thermode-
induced stimulation. In contrast with water-based methods,
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such as cold pressor test and the hot water immersion test,47 the
thermode induces heat or cold from the baseline of 32°C at a
constant rate. One major difference between the two methods
is the size of the area of application; while water-based methods
require one hand to be submerged into cold/hot water, the ther-
mode can be used on any area of the skin with a small surface
(9 cm2). Thermode-induced stimulus safely activates nocicep-
tive peripheral afferents and induces a moderate to intense
painful sensation. One important feature of thermode-based
stimulation is its reproducibility, which reduces the intrasubject
variability of the measurements and increases reliability of the
thermal experiment. Thermode-induced stimulation is less time
consuming, and it can be used routinely and repeatedly in
patients, which makes it ideal for clinical use. In addition,
thermode-based stimulation safely activates A-delta (Aδ) and
C fibre nociceptors, which are known to transmit sensory
information to the spinal cord and the brain. Nociceptors are
specialized sensory nerve endings that warn us of potential
tissue damage by identifying harmful temperature, pressure,
and chemicals; nociceptors convert these stimuli into electrical
signals that are conveyed through the central nervous system to
higher cortical regions in the brain. Aδ and C fibre nociceptors
carry noxious sensory information and they have different func-
tions while transmitting sensory information. Fine myelinated
Aδ fibers respond to mechanical and cold stimuli, transporting
rapid and sharp pain; unmyelinated C fibers respond to warm
detection and heat pain, transmits slow, burning pain, respond-
ing to chemical, mechanical and thermal stimuli.22

4.3 Limitations

We acknowledge that one potential issue was the lack of control
for any skin blood flow contributions and intracerebral hemo-
dynamics to the fNIRS signals. Recent studies have highlighted
the issue that fNIRS signals encompass not only hemodynamic
fluctuations due to neurovascular coupling but also due to skin
blood flow and task-related systemic activity of cortex.23,28

On the one hand, extracerebral hemodynamics is originated
at shallow tissue (e.g., scalp), the area in which NIR light travels
before reaching the cerebral cortex, and thus, contributions to
the observed fNIRS signals of HbO and Hb are expected.
Therefore, it is important to account for probable influence of
scalp blood flow, which may or may not be temporally consis-
tent with cortical signals. In our study, despite possible contri-
butions of extracerebral confounders, the observed activation
was measured in areas known to be involved in pain processing,
which suggests that the fNIRS signals reflect mainly localized
cortical vascular dynamics. On the other hand, intracerebral
hemodynamics is caused by systemic physiological interference
that may resemble true task-related cortical activities. These
physiological variables are mainly associated with cardiac pul-
sations, respiration, arterial blood pressure, and activity in the
autonomic nervous system.23 In our case, the peak amplitudes
for the HbO response to thermal stimuli were substantially
distinguishable relative to the baseline signal at resting state.
In both cases, we tried to reduce these confounders (extra- and
intracerebral) by (1) using PCA on the baseline data to identify
those PC that account for most of the variance while in resting
state, and then reduce these PCs (potentially both, extra- and
intracerebral confounders) in the stimulus data. (2) Using
wavelet analysis in frequency bands that are only related to
the expected period (Hz) of response and therefore avoiding
those bands related to heartbeat (∼1 Hz), respiration (∼0.3 Hz),

or blood pressure (∼0.1 Hz); however, very-low frequency
oscillations (VLFO) associated with various brain stem nuclei in
the sympathetic tone of cerebral arterioles (0.02 to 0.08 Hz)48

might overlap with the content of the stimulus response,
since the period of our block-design stimulation (∼30 s) corre-
sponds to this band. Finally, using both methods might not be
enough to reduce such sources of hemodynamic interference
and other methods, such as using short-separation channels to
reveal scalp blood flow, or employing additional instruments to
measure physiological signals would be desirable to regress
out of these global signals.

4.4 Future Work and Final Remarks

The results of this study expand earlier findings from previous
research of pain assessment using neuroimaging methods.18,19,42

Direct comparisons are difficult because of the use of different
experimental conditions, neuroimaging technique (e.g., fMRI),
sampled population, data representation (using BoW), valida-
tion method, and classification models. Therefore, the contribu-
tions of this study can be summarized as follows: (1) presenting
the classification of two types of thermal stimuli (cold and heat)
and the discrimination between corresponding low (threshold)
and high (tolerance) pain for each thermal stimulus, (2) showing
that the pain tolerance and pain threshold test from the QST
could be used to obtain pain information from nonverbal
patients, (3) comparing two classification models (K-NN and
SVM) to classify four different modalities of pain, and (4) inves-
tigating whether feature extraction from the somatosensory
area could produce better classification accuracy compared to
whole-probe approach.

The development of a bedside monitor for the diagnosis of
pain is yet to be fully established. To expand such method into
clinical settings requires validation on new datasets (generaliza-
tion), include more participants of different populations (e.g.,
age, background), use multiple types of noxious stimulations
(e.g., mechanical, chemical), stimulate different parts of the
body (robust to testing location), and include models to study
chronic pain disorders (e.g., back pain, neuropathic pain, fibro-
myalgia). In addition, the use of more learning models should be
evaluated, such as decision trees, linear discriminant analysis
(LDA), neural networks (NN), or higher-order SVM kernels
(e.g., radial basis function, polynomial).

fNIRS has demonstrated to be a method that has potential for
the assessment of pain. fNIRS is a technique capable of iden-
tifying cortical hemodynamic changes in response to chemical,
temperature, and pressure noxious stimuli. In addition, our study
demonstrates that the use of fNIRS in combination with machine
learning techniques is a powerful tool for the assessment of pain
in experimental settings. fNIRS possesses advantages over PET
or fMRI to be used in more realistic clinical settings, e.g., less
exposure to ionizing radiation, safe to use over long periods
and many times, less expensive, easy to use, and small size.
Finally, our findings advance knowledge in pain assessment
using neuroimaging as a method of diagnosis and represent
a step closer to developing a physiologically based diagnosis of
human pain that would benefit vulnerable population who
cannot self-report pain.
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