
Fully automated muscle quality
assessment by Gabor filtering of
second harmonic generation images

Rik Paesen
Sophie Smolders
José Manolo de Hoyos Vega
Bert O. Eijnde
Dominique Hansen
Marcel Ameloot



Fully automated muscle quality assessment by Gabor
filtering of second harmonic generation images

Rik Paesen,a Sophie Smolders,a José Manolo de Hoyos Vega,a Bert O. Eijnde,a,b
Dominique Hansen,a,b and Marcel Ameloota,*
aHasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, Belgium
bHasselt University, REVAL–Rehabilitation Research Center, Agoralaan Building A, 3590 Diepenbeek, Belgium

Abstract. Although structural changes on the sarcomere level of skeletal muscle are known to occur due to
various pathologies, rigorous studies of the reduced sarcomere quality remain scarce. This can possibly be
explained by the lack of an objective tool for analyzing and comparing sarcomere images across biological con-
ditions. Recent developments in second harmonic generation (SHG) microscopy and increasing insight into the
interpretation of sarcomere SHG intensity profiles have made SHG microscopy a valuable tool to study micro-
structural properties of sarcomeres. Typically, sarcomere integrity is analyzed by fitting a set of manually
selected, one-dimensional SHG intensity profiles with a supramolecular SHG model. To circumvent this tedious
manual selection step, we developed a fully automated image analysis procedure to map the sarcomere disorder
for the entire image at once. The algorithm relies on a single-frequency wavelet-based Gabor approach and
includes a newly developed normalization procedure allowing for unambiguous data interpretation. The method
was validated by showing the correlation between the sarcomere disorder, quantified by the M-band size
obtained from manually selected profiles, and the normalized Gabor value ranging from 0 to 1 for decreasing
disorder. Finally, to elucidate the applicability of our newly developed protocol, Gabor analysis was used to study
the effect of experimental autoimmune encephalomyelitis on the sarcomere regularity. We believe that the tech-
nique developed in this work holds great promise for high-throughput, unbiased, and automated image analysis
to study sarcomere integrity by SHG microscopy. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.

JBO.21.2.026003]
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1 Introduction
Various types of muscle diseases with changes on the sarcomere
level have been identified,1 including types of distal muscular
dystrophy, which are often caused by defects in structural com-
ponents of sarcomeres.2 However, myopathy-related research is
seldom based on the study of sarcomeres. Instead, myofiber
cross-sections are considered to detect irregularities or odd fea-
tures such as nemalin rods,3 and to study changes in cross-sec-
tional area due to myogenesis or muscle atrophy.4,5 For these
studies, standard tools, such as immunohistochemistry (IHC),
are used to stain and visualize specific proteins within the tissue.
In case sarcomeres are considered, structural details of the sar-
comere organization is obtained by transmission electron
microscopy (TEM). Both IHC and TEM rely on tedious sample
preparation. IHC requires many staining optimization steps,
while TEM might suffer from possibly biased human selection
of representative regions.6 Therefore, these standard techniques
do not allow study of sarcomere irregularities in a high-through-
put fashion. The development of a fast and reliable screening
tool of sarcomere morphology would be very helpful.

Label-free second harmonic generation (SHG) microscopy
provides an attractive pathway that can meet these conditions.
Because of the extreme high degree of ordering of the myosin
thick filaments, strong SHG signals arise from skeletal muscle

tissue,7–11 making SHG a perfect tool for imaging sarcomeric
structures. Muscle degradation is known to be related to disrup-
tion of M-proteins, which interconnect thick filaments to attain
sarcomere integrity.12,13 The thick filament misalignment due to
absence of M-proteins is known to lie at the basis of clear tran-
sition from normal single-band to double-band SHG intensity
profiles.8,14 Based on a supramolecular sarcomere model to cal-
culate the expected SHG intensity profiles, the degree of thick
filament misalignment can be quantified by means of an appar-
ent increase in the centrosymmetric M-band size.8,14 Currently,
this degree of sarcomere disorder is mostly obtained by analyz-
ing local, manually selected one-dimensional sarcomere inten-
sity profiles. On the other hand, based on the distance-dependent
correlation value of the gray-level co-occurrence matrix, Liu
et al.15 suggested a method for assessing sarcomere regularity
of an entire SHG image. Their approach yields a reliable quan-
titative measure for sarcomere quality, but produces only a sin-
gle value to describe the complete manually selected area
containing multiple sarcomeres.

For assessing the muscle quality by analysis of full SHG
images of muscle tissue while preserving local information,
we designed a specific algorithm based on Gabor analysis.16

In general, the Gabor analysis relies on wavelets to obtain
local frequency content and orientation information.16,17 This
approach is referred to as Gabor decomposition and has been
applied in a broad range of applications in the field of computer
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vision technology.18,19 In the work by Recher et al.,9 a bifre-
quency Gabor-based approach was already introduced to locate
single- and double-band SHG patterns of manually selected one-
dimensional sarcomere intensity profiles. Here we propose to
use an alternative Gabor approach in which regular, single-
band sarcomeres are located by analyzing full images for the
frequency related to the average sarcomere length. Sarcomere
irregularities such as double-band SHG patterns, but also so-
called pitchforks,9,20 or any other type of anomaly will predomi-
nantly be described by higher-frequency components and hence
become automatically detected as the remainder of this single-
frequency detection. This makes a full Gabor decomposition
redundant and substantially speeds up the analysis. In the cur-
rent study, we introduce a fully automated and fast muscle qual-
ity assessment tool based on this single-frequency Gabor
analysis, yielding a per pixel so-called Gabor value to quantify
the sarcomere integrity. The analysis includes a new normaliza-
tion procedure, allowing for easy sarcomere comparison across
various imaging platforms and biological conditions. Moreover,
the procedure is designed in such a way that image processing
such as cropping to representative regions, image rotation, and
noise reduction is unnecessary.

The newly introduced Gabor analysis is used to study muscle
deterioration due to experimental autoimmune encephalomyeli-
tis (EAE), an animal model to study the effects of demyelination
in the context of multiple sclerosis (MS).21 Central nervous sys-
tem (CNS) deficit as a consequence of MS is known to result in
decreased central motor function, leading to muscle weak-
ness,22,23 and ultimately decreased muscle activity. Muscle dis-
use is known to induce atrophy,24 for which changes on the
sarcomere level can occur.25 To study the relation between
EAE severity and sarcomere regularity, muscle tissue from
EAE-induced rats and healthy rats is compared. First, the
data are used to indicate how the Gabor values should be inter-
preted based on representative SHG intensity profiles. Next, the
relation between the disorder-related M-band size8,14 and the
normalized Gabor value is studied to justify the use of the
Gabor approach for assessing sarcomere regularity. Finally,
we study the correlation between the EAE severity and the sar-
comere regularity quantified by our normalized Gabor value.

2 Materials and Methods

2.1 Experimental Autoimmune Encephalomyelitis
Rat Model

Flexor digitorum longus (FDL) muscle samples were isolated
from 8- to 10-week-old residual female Dark Agouti rats.
Rats were purchased from Harlan Netherlands B.V. (Horst,
The Netherlands). Experiments were conducted in accordance
with institutional guidelines and approved by the Ethical
Committee for Animal Experiments of Hasselt University.

EAE was induced by a subcutaneous injection at the base of
the tail with a 200 μl solution composed of 140 μg of recombi-
nant human myelin oligodendrocyte glycoproteinin complete
Freunds adjuvant (F5506, Sigma-Aldrich, St. Louis, Missouri)
supplemented with 2.5 mg∕ml H37RA heat-inactivated
Mycobacterium tuberculosis (Difco, BD Diagnostics,
Maryland). Healthy control animals did not receive any injection.
Immunized rats were weighed and received a pain score (PS) on a
daily basis according to the following neurological scale:
0.5 ¼ partial loss of tail tonus, 1 ¼ complete loss of tail tonus,

2 ¼ hind limb paresis, 3 ¼ hind limb paralysis, 4 ¼ moribund,
5 ¼ death.26 EAE rats were sacrificed 30 days after immunization.

2.2 Tissue Preparation

All animals were sacrificed by heart perfusion with Ringer sol-
ution after Nembutal injection (100 mg∕kg). FDL muscles were
immediately removed from both hind limbs, incubated over-
night in 4% para-formaldehyde at 4°C, followed by cryoprotec-
tion in 30% sucrose in phosphate buffered saline (PBS) at 4°C
until the tissue had sunk. Muscles were frozen in optimal cutting
temperature compound (Tissue-Tek, Sakura Finetek Europe,
The Netherlands) using liquid nitrogen cooled isopentane and
stored at −80°C. Sections of thickness 14 μm were cut on a
cryostat (CL 1990 UV, Leica, Wetzlar, Germany) along the
length of the myocytes, mounted onto Superfrost Plus
glasses (Menzel-Gläser, Thermo Fisher Scientific, Waltham,
Massachusetts), and stored at −20°C. Before imaging, sections
were washed thrice for 5 min in PBS, dipped into milli-Q, and a
coverslip was placed using Immu-Mount™ (Thermo Fisher
Scientific). Coverslipped sections were stored at 4°C until
imaging.

2.3 Microscopy

SHG imaging was performed using a Zeiss LSM510 META
(Carl Zeiss, Jena, Germany) mounted on an Axiovert 200M
and a 20 × ∕0.75 air objective (Plan-Apochromat 20 × ∕0.75,
Carl Zeiss). The excitation was provided by a femtosecond
pulsed laser (MaiTai DeepSee, Spectra-Physics, California)
tuned at a central wavelength of 810 nm. The SHG signal
was collected in forward mode by a condenser with a numerical
aperture (NA) of 0.55, which we have verified to be sufficient to
collect the complete SHG emission profile using the supramo-
lecular sarcomere model.8 After passing through a 400 to
410 nm bandpass filter, the signal was detected by an analogue
photomultiplier tube, delivered by Zeiss.

2.4 Sarcomere Profile Analysis

Sarcomere analysis based on manually selected profiles was
done as previously described.14 In short, 2728 intensity profiles
were manually selected from 68 SHG images, taken from both
healthy (n ¼ 5) and EAE (n ¼ 8) animals. Each profile was ana-
lyzed using the supramolecular model developed by Rouède
et al.,8 yielding the sarcomere length L and the disorder-related
M-band size M. Based on our previous observations, the analy-
sis was done using an A-band length of A ¼ 1.40 μm, a refrac-
tive index (RI) at the illumination wavelength nω ¼ 1.39, and an
RI at the SHG wavelength n2ω ¼ 1.41.14 For the selected objec-
tive, the Gaussian point spread function (PSF) has a lateral size
of wxy ¼ 0.59 μm and an axial size of wz ¼ 3.45 μm (half width
at e−2).14

2.5 Gabor Analysis

In general, a Gabor analysis is used to obtain local frequency
components in a signal, either in time or in space. In this
work, we consider the SHG images of striated muscle as a spa-
tial signal. The main spatial frequency f present in these SHG
images of regular sarcomeres is related to the sarcomere length
L, such that f ¼ L−1. The purpose of the algorithm is to locate
and quantify sarcomere anomalies at the pixel level. Since SHG
images of sarcomere anomalies are typically characterized by
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spatial frequency components f 0 other than f, our algorithm
was designed to obtain a local quantifier indicating the relative
contribution of f to the signal, which we refer to as the local
Gabor value. Regions consisting of regular sarcomeres will
then receive the highest possible Gabor value.

Instead of a relative contribution, a standard Gabor analysis
returns the absolute contribution of the considered frequency.
Hence, regions containing similarly appearing sarcomeres
will have undesired differing Gabor values if the signal intensity
differs. These intensity variations are likely to occur not only
across samples but also within a sample due to variations in
a real sample’s thickness or changes in opacity of features
above and below the focal plane. To obtain a relative quantifier,
we implemented a new normalization procedure, which yields a
normalized Gabor value Ḡðx; yÞ.

In Appendix A, we give the theory on which our approach is
based. In short, the normalized Gabor value is defined as

EQ-TARGET;temp:intralink-;e001;63;565Ḡðx; yÞ ¼ 2
jGfðx; yÞ � Iðx; yÞj

Aðx; yÞ ; (1)

where * is the convolution product, Iðx; yÞ is the experimental
image data, Aðx; yÞ is the oscillation amplitude related to local
SHG intensities [see Eq. (3) in Appendix A], and

EQ-TARGET;temp:intralink-;e002;63;487Gfðx; yÞ ¼ 3f2

2π
exp

�
−
f2x2

2
−
9f2y2

2
þ 2πifx

�
(2)

is the Gabor kernel. This approach was implemented in a fully
automated analysis algorithm, which requires only the image as
input. The algorithm is described in Appendix B.

2.6 Computing System

The Gabor analysis was performed on a standard 64-bit PC with
a 3.6 GHz quad core processor, extended with an Nvidia
GeForce GTX 680 graphical processing unit (GPU). The analy-
sis code was written in MATLAB® (Version R2013a, The
Mathworks, Natick, Massachusetts), and the parallel processing
toolbox was used for its built-in GPU capabilities.

2.7 Simulations

Theoretical SHG intensity profiles were simulated using the
supramolecular model developed as described before.14 The
one-dimensional profiles were calculated along the x-direction
by the supramolecular model and copied laterally (y-direction)
to obtain two-dimensional images. Gaussian noise resembling
that of the used imaging modality was superimposed onto
the theoretical profiles. The PSF, refractive indexes, and A-
band length were fixed to the previously mentioned values.
The sarcomere length was fixed to L ¼ 2.2 μm.

2.8 Statistics

Data comparison over different conditions was done using the
one-way analysis of variance algorithm of MATLAB®’s statis-
tical toolbox. Differences were considered significant for
p < 0.001. Data correlation was tested by MATLAB®’s corr-
coef function, which, besides correlation, returns the probability
p of incidental correlation. Correlation was taken to be signifi-
cant for p < 0.05.

3 Results

3.1 Typical Patterns and Their Gabor Values

To correctly interpret the resulting Gabor values, the Gabor his-
tograms of representative sarcomere structures and anomalies
are given in Fig. 1. In Figs. 1(a) and 1(b), the difference between
the original and normalized Gabor values, respectively, is shown
for the same regular sarcomeres. Without normalization, the

(a) (b)

(c) (d)

(e) (f)

Fig. 1 Typical results of the suggested Gabor filter. The color map
represents the Gabor value, as specified in the histogram above
each image. Each panel shows a cropped region of a larger image
containing background regions. (a) Typical proper sarcomere pattern
without normalization [Gðx; yÞ] and (b) the same data as (a) with
normalization [Ḡðx; yÞ]. In panels (c) to (f), the normalized Gabor
coefficient is shown. Typical irregularities such as (c) pitchforks
and (d) thinned regions show a slight decreased normalized Gabor
value. Other typical structures contributing to the Gabor histogram
of an image are: (e) double-band regions and (f) edge effects and
dark regions (no mask applied for illustrative purposes). Scale bar
5 μm. All images have the same field of view.
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Gabor distribution contains two distinct peaks with a central
value of ∼69 and ∼55, which is a 20% difference. The distinct
peaks suggest the image contains structures with different
frequencies. However, a one-dimensional fast Fourier transform
(FFT) analysis along the sarcomeres indicates that the frequency
mismatch is only apparent (data not shown). The FFT reveals a
peak having a width representing a 2.5% frequency spread, cor-
responding to a 1% normalized Gabor value decrease according
to Eq. (9). After normalization [Fig. 1(b)], the Gabor histogram
contains only one peak at an average value of 0.932. The stan-
dard deviation of 0.018 matches a 2% spread and resembles the
mismatch deduced from the FFT analysis. This typical example
shows the explicit need for the normalization procedure. From
here on, only the normalized Gabor values (Ḡ) are considered.

A first type of anomaly that can be detected using the nor-
malized Gabor analysis is a pattern where the signal appears to
come from one half of the thick filament [Figs. 1(c)–1(d)]. In
these structures, often referred to as pitchforks,9 the A-band
splits into two smaller myosin regions. One of these two regions
typically has a higher SHG intensity. Pitchforks can occur on
both short [Fig. 1(c)] or longer transversal length scales
[Fig. 1(d)]. However, the Gabor values are independent of
this length scale and consistently range from ∼0.6 in the center
of the pattern to >0.85 near the fully formed sarcomeres.

A second type of anomaly is the double band pattern, which
was suggested in previous studies as a typical feature for proteo-
lytic muscle tissue.8,9 The double-band features result in lower
Gabor values, down to a normalized Gabor value of 0.08 when
the pattern contains only this doubled frequency. In most cases,
the double-band pattern contains a combination of the reference
frequency f and the doubled frequency, resulting in Gabor val-
ues ranging from 0 to 0.6 [Fig. 1(e)].

The last representative pattern is a technical artifact rather
than a sarcomere anomaly. SHG images of sarcomeres will con-
tain myocyte boundaries and background (dark) regions that are
also analyzed by the protocol [Fig. 1(f)]. However, these image
regions do not contain valuable information on the sarcomere
regularity. Therefore, the boundary and background regions
are excluded from the Gabor histogram by the mask defined
in Appendix B, eliminating the additional histogram peaks
near Ḡ ¼ 0.

In general, all aforementioned patterns contribute to the final
Gabor histogram, which represents the sarcomere regularity in
the entire SHG image. It appears that a Gabor value below 0.6
always maps disordered sarcomeres. Values between 0.6 and
0.85 indicate myocyte alterations related to an increasing or
decreasing number of sarcomeres, indicated by the presence
of pitchforks.9 Finally, values above 0.85 will always represent
regular sarcomere patterns and are considered as good and
healthy regions.

3.2 Gabor Value Correlates with Myosin Disorder

In order to link the obtained Ḡ to sarcomere disorder, the cor-
relation between the normalized Gabor value and the M-band
size was studied. This was done on a set of samples taken
from healthy animals and EAE induced animals for which sar-
comere degradation was expected. A broad range of values for
M was obtained by analyzing manually selected intensity pro-
files from samples of both animal groups. The automatically
determined normalized Gabor value corresponding to each pro-
file was taken from the pixel at the profile center. For each inten-
sity profile, Ḡ is plotted against the corresponding M in Fig. 2.

For M < 0.3 μm, the normalized Gabor value is essentially
constant, indicating no detectable change in the SHG profile.
Above this threshold value, a transition from single to double
band occurs, resulting in a rapid decrease of Ḡ. A correlation
between M and Ḡ exists, validating the applicability of our
Gabor approach to automatically estimate sarcomere (ir)regular-
ity from entire SHG images. The observed M − Ḡ correlation
was additionally verified by means of simulations. For each
M-band size, images containing only one type of sarcomere
were simulated in accordance with experimental conditions
and analyzed with the normalized Gabor approach. The result-
ing maximum possible Ḡ for eachM, shown by the solid line in
Fig. 2, clearly indicates the upper limit of the experimental data.
The simulations show that the Gabor approach is less sensitive
to small M-band sizes, while for 0.3 < M < 0.75, the method is
highly sensitive.

3.3 Experimental Autoimmune Encephalomyelitis
Affects Sarcomere Integrity

Using the Gabor histograms, the effect of EAE on sarcomere
integrity was studied. For this, the global EAE severity of
each animal is measured by the pain score averaged from the
day of EAE induction to the day of sample collection (hPSi).
The data used in Sec. 3.2 were divided into three groups: a
healthy control group (n ¼ 5), animals with a time-averaged
pain score below 1 (hPSi < 1, n ¼ 5), referred to as mild
EAE, and animals with a time-averaged pain score above 1
(hPSi > 1, n ¼ 3), referred to as severe EAE. For each animal,
the Gabor histograms of four to six SHG images from different
slices were combined, resulting in one Gabor histogram per ani-
mal. These histograms, combined per animal group, are shown
in Fig. 3 (histograms per animal are shown in Appendix C).

Relative to the control group, the Gabor histogram shifts
toward lower values only for the severe EAE group.
According to previous observations (Fig. 1), this shift is mainly
due to transformation from regular single-band SHG patterns
into double-band patterns. The control, mild EAE, and severe
EAE histogram cross at values representative for pitchfork struc-
tures (see Fig. 1), indicating little or no change in their preva-
lence. The mild EAE group shows no clear difference with
respect to the control group. Only small differences are observed
at Ḡ > 0.85, for which no sarcomere alterations were assumed.
Moreover, statistical comparison of the median normalized
Gabor values (Ḡ1∕2, see upper axis in Fig. 3) shows no

Fig. 2 Sarcomere disorder quantified by M versus normalized Gabor
value Ḡ correlation. The maximum possible normalized Gabor value
is indicated by the solid line (simulated). The simulated profiles of the
given M-band size are shown on the right.
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significant difference between both groups. Only the severe
EAE group has a significantly lower Ḡ1∕2 (p < 0.001) relative
to both the control and mild EAE group.

The fact that severe EAE results in lower median normalized
Gabor values than mild EAE suggests that a correlation exists
between the EAE pain score on which data grouping was based
and the muscle quality assessed by the Gabor analysis. To
emphasize this correlation, the time-averaged EAE pain score
(hPSi) is compared to the median Gabor value of each animal.
The result is shown in the inset in Fig. 3. A correlation analysis
reveals a correlation coefficient of −0.81 (p < 0.05), indicating
a strong relation between the average pain score and the median
Gabor value.

4 Discussion and Conclusions
We introduced a new and automated method based on Gabor
analysis to accurately characterize the sarcomere quality from
an SHG microscopy image of skeletal muscle. Instead of per-
forming a full Gabor decomposition, we chose to analyze the
image with only one frequency that is related to the sarcomere
length and give interpretation to the resulting normalized Gabor
values. First, the Gabor values can be linked to typical sarco-
mere SHG profiles, either regular structures giving rise to sin-
gle-band profiles or any of the discussed anomalies that are
detectable by SHG microscopy (Fig. 1). Second, we showed
that the resulting Gabor values relate to sarcomere disorder
quantified by the M-band size, giving a structural meaning to
the Gabor values. Compared to the analysis of manually selected
profiles, previously used to obtain the same structural informa-
tion, the Gabor method is objective and extremely fast. Our fully
automated sarcomere integrity mapping requires only the image
as input, provided that it contains a preferential sarcomere direc-
tion and a background region. The analysis occurs in <5 s for a
2048 × 2048 8-bit image using a GPU. Moreover, the method
gains information on the entire image instead of just a few man-
ually selected intensity profiles.

We believe that the newly introduced normalization method
forms the strength of the proposed Gabor analysis.
Normalization makes the interpretation of the results indepen-
dent of imaging properties, such as illumination power or

detector gain; also, local intensity variations due to opacity prop-
erties of tissue above and below the scanning plane are
circumvented.

We assumed that all sarcomeres are contracted similarly such
that sarcomere length is the same for all sarcomeres, including
possibly irregular ones. Moreover, we have not studied the rela-
tion between sarcomere integrity and sarcomere length. One
could anticipate that for increasing sarcomere length, the
base frequency has a lower relative contribution for well-ordered
sarcomeres because the A-band length remains constant. Since
Ḡ estimates this relative contribution, longer sarcomeres will
yield lower normalized Gabor values, even for well-ordered sar-
comeres. The normalized Gabor approach thus needs to be
revised when considering samples with longer sarcomeres.

This study was limited to images taken with an objective
having a moderate NA of 0.75. If one would prefer a higher
resolution, in spite of our recommendation to use moderate
NA objectives,14 typical sarcomere anomalies (Fig. 1) might
be characterized by different normalized Gabor values.
Moreover, the M − Ḡ relation (Fig. 2) might alter. For regular
sarcomeres, this can be expected due to the more pronounced
shoulder regions.14 These shoulder regions are described by
higher harmonics, causing a lower relative contribution of the
base frequency, and thereby a lower Ḡ. Additional work is
thus needed to use the approach presented in this work for
images obtained through elevated NA objectives.

When introducing the theoretical background of our Gabor
approach, we considered SHG intensity oscillations as a single
harmonic function with the base frequency related to the sarco-
mere length. This is not in accordance with the model developed
by Rouède et al.8 Consequently, the normalized Gabor value will
never reach its maximum value of 1, as can also be observed
from the simulation results shown in Fig. 2. The maximum nor-
malized Gabor value approaches Ḡ ≈ 0.97 for regular profiles
(M ≈ 0), meaning that ∼97% of the profile consists out of
the base frequency. By inspection of the amplitude spectrum
of the SHG profile calculated by the supramolecular model,
we found that 98% of the profile is represented by the base fre-
quency. This indicates that the normalized Gabor value closely
resembles the expected value given by the supramolecular
model. Moreover, the simplified phenomenological model is
an acceptable 3% off for regular sarcomeres, making our
Gabor approach ideal to locate regular, and therefore irregular,
sarcomeres.

Note that at a given M, experimental values of Ḡ are mainly
lower than the theoretical maximum estimated from simulations
(Fig. 2). This might be a consequence of the single frequency
approach, which does not cope with small variations in the sar-
comere contraction state. Moreover, manually selected profiles
might be located close to anomalies, which could slightly affect
the Gabor values at the profile site due to the lateral kernel
dimension σy.

We have not thoroughly tested the effect of the imaging noise
level on the normalized Gabor values. Yet, because of the
selected kernel size, spatial noise will be Gaussian averaged
over a range of pixels, improving the signal-to-noise ratio by
a factor of ∼40 relative to the original imaging noise.
Conversely, this approach overlooks irregularities occurring
on length scales of individual sarcomeres. However, our
approach is still more sensitive to local variations than, for in-
stance, the gray-level co-occurrence matrix method described by
Liu et al.,15 in which the complete selected region is represented

<
P

S>

Fig. 3 Gabor histograms of healthy control group (n ¼ 5), the mild
EAE group (n ¼ 5), and the severe EAE group (n ¼ 3). As indicated
on the upper horizontal axis, a significantly lower median Gabor value
(Ḡ1∕2) for the severe EAE group is observed (*, p < 0.001). The inset
shows the correlation between Ḡ1∕2 and the time average pain score
(hPSi). The solid line is a linear fit serving as a guideline to emphasize
this correlation.
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by a single oscillating profile. And although we similarly pro-
pose to condense the full Gabor image into a single histogram
for easy interpretation, the local information remains present in
the initial Gabor analyzed images and can always be referred to.

The applicability of our new Gabor analysis was tested in the
context of EAE induced muscle degradation. To our knowledge,
this is the first time SHG microscopy was used to assess sarco-
mere quality in an EAE study. We showed that the Gabor histo-
grams represent sufficient information to compare the different
biological conditions. A significant decrease of the median
Gabor value is observed for the severe EAE animals with an
average pain score above 1. As these animals typically showed
multiple relapses before sample collection (data not shown), the
number of relapses seems to have an effect on muscle quality.
Based on these results, we can, however, not state that the
decreased muscle quality is a direct consequence of muscle dis-
use. EAE is known as an inflammatory disease of the CNS, and
the resulting systemic inflammatory signals mediate the skeletal
muscle metabolism, eventually resulting in muscle atrophy.27 As
each relapse coincides with an increased inflammatory state,28

the observed relation between number of relapses through the
average pain score and the muscle quality suggests, indeed,
that muscle atrophy is related to CNS inflammation rather
than muscle disuse. Although additional work is required to
prove this statement, the observed relation seems to suggest
that relapsing-remitting EAE might not be an appropriate
model for studying MS-related sarcomere alterations.

In our study, only rat muscle samples were used for the veri-
fication and application of the new Gabor approach. However,
because striations are typical for skeletal muscle of all vertebrae,
and because of a low variability of the sarcomere architecture
among vertebrate species,29 the Gabor analysis can be directly
applied to study skeletal muscle of other vertebrates. This makes
the analysis applicable in human studies or in a more clinical
context.

Appendix A: Gabor-Based Protocol
In order to explain the design of the Gabor-based protocol, we
start by describing a real SHG image of striated muscle tissue
using a phenomenological model. This model is based on the
assumption that a sample of striated muscle contains only sar-
comeres of length L, oriented along the x-direction, such that the
base frequency equals f ¼ L−1. Due to the intensity variations
related to local changes in sample thickness or opacity, the SHG
image Iðx; yÞ was modeled with spatially varying amplitude
Aðx; yÞ ≥ 0 and offset Oðx; yÞ ≥ 0, such that

EQ-TARGET;temp:intralink-;e003;63;242Iðx; yÞ ¼ Oðx; yÞ þ Aðx; yÞf1þ cos½2πf 0ðx; yÞx�g; (3)

where f 0ðx; yÞ is the main local frequency component. For sim-
plicity, the sarcomere SHG intensity was modeled by a harmonic
function instead of using the comprehensive model developed by
Rouède et al.8 According to their model, a regular sarcomere pro-
file consists for 98% out of the base frequency f for the used
imaging parameters. This makes Eq. (3) a good approximation
of regular SHG profiles for which f 0ðx; yÞ ¼ f. Anomalies
are then dominated by the local frequency f 0ðx; yÞ ≠ f, up to
f 0ðx; yÞ ≈ 2f for double-band patterns.

A practical implementation of the Gabor transform is based
on the two-dimensional (2-D) convolution of an image with a
Gabor kernel. To obtain the local contribution of the frequency
f, the Gabor kernel is defined as30

EQ-TARGET;temp:intralink-;e004;326;752Gfðx; yÞ ¼ 1

2πσxσy
exp

�
−

x2

2σ2x
−

y2

2σ2y
þ 2πifx

�
; (4)

where σx and σy are the widths of the kernel in the x and y direc-
tions, respectively. Due to the position-frequency uncertainty,16

the width along the sarcomere direction is a crucial parameter
for the sensitivity of the analysis. For σx ≫ f−1, a high-fre-
quency accuracy is obtained with a low positional accuracy,
while the opposite holds for σx ≪ f−1. A good trade-off for fre-
quency matching and localization is valid when σx ≈ f−1, for
which the kernel spans about three sarcomere units (see side
panels of step 3 in Fig. 4). The choice of σy is not related to
the length of the sarcomeres. The value of σy defines the small-
est lateral length scale on which changes are detectable. This
length is already limited by the PSF of the imaging device.
This PSF size can be estimated using the Rayleigh
criterion.31 Yet, using the PSF size to set σy requires additional
input parameters to the Gabor analysis. Alternatively, we can
assume that lateral changes typically occur on a length scale
of one sarcomere, such that σy ≈ σx∕3. For most imaging sys-
tems, this value is higher than the PSF size, but it will prove to
be sufficiently small to detect sarcomere irregularities. The
Gabor kernel can then be rewritten as

EQ-TARGET;temp:intralink-;e005;326;495Gfðx; yÞ ¼ 3f2

2π
exp

�
−
f2x2

2
−
9f2y2

2
þ 2πifx

�
: (5)

Fig. 4 Automated Gabor analysis flowchart.
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In our study, the Gabor analysis was applied by first convolving
the full image with the Gabor kernel of frequency f related to the
average sarcomere length and then taking the modulus (j: : : j) of
this convolution product (*).

EQ-TARGET;temp:intralink-;e006;63;708Gðx; yÞ ¼ jGfðx; yÞ � Iðx; yÞj: (6)

The resulting value Gðx; yÞ is defined as the local Gabor value.
If Aðx; yÞ, Oðx; yÞ, and f 0ðx; yÞ are slowly varying with respect
to f−1, then evaluating Eq. (6) results in

EQ-TARGET;temp:intralink-;e007;63;640

Gðx;yÞ≈Aðx;yÞ
2

�����exp½2πif 0ðx;yÞx�

× exp

(
−
½f 0ðx;yÞ−f�2

2
� f
2π

�
2

)
þ2 expð−2π2Þ

þ2Oðx;yÞ
Aðx;yÞ expð−2π2Þ

þ exp½−2πif 0ðx;yÞx�exp
(
−
½f 0ðx;yÞþf�2

2
� f
2π

�
2

)�����: (7)

The three last terms are negligibly small compared to the first
term for nonzero oscillation amplitude Aðx; yÞ, such that

EQ-TARGET;temp:intralink-;e008;63;466Gðx; yÞ ≈ Aðx; yÞ
2

exp

(
−
½f 0ðx; yÞ − f�2

2
� f
2π

�
2

)
: (8)

The local Gabor value thus comprises both the amplitude
Aðx; yÞ and the frequency mismatch f 0ðx; yÞ − f of the sarco-
mere related intensity oscillation. We introduce a normalization
procedure to compensate for the amplitude variation due to
instrumental or sample related artifacts, such that only the local
frequency contribution is represented by the Gabor value. The
normalized Gabor value Ḡðx; yÞ is defined as

EQ-TARGET;temp:intralink-;e009;63;335Ḡðx; yÞ ¼ 2
jGfðx; yÞ � Iðx; yÞj

Aðx; yÞ : (9)

This normalized Gabor value ranges from 0 for complete fre-
quency mismatch to 1 for perfect frequency matching relative
to f, independent of the oscillation amplitude and offset. The
local amplitude and offset are obtained from the image by solv-
ing the system

EQ-TARGET;temp:intralink-;e010;63;231Sðx; yÞ ¼ Iðx; yÞ � jGfðx; yÞj; (10)

EQ-TARGET;temp:intralink-;e011;63;201Σðx; yÞ ¼ Iðx; yÞ2 � jGfðx; yÞj: (11)

Basically, the operations shown in Eqs. (10) and (11) represent a
Gaussian smoothing of the experimental image Iðx; yÞ, which is
only done sufficiently for f⪅f 0 such that multiple sarcomeres
are covered by the smoothing kernel. Combining Eqs. (3) and
(5), Eqs. (10) and (11) yield

EQ-TARGET;temp:intralink-;e012;63;120Sðx; yÞ ¼ Oðx; yÞ þ Aðx; yÞ; (12)

EQ-TARGET;temp:intralink-;e013;63;91Σðx; yÞ ¼ ½Oðx; yÞ þ Aðx; yÞ�2 þ Aðx; yÞ2
2

: (13)

From these, the resulting local amplitude and offset are
calculated as

EQ-TARGET;temp:intralink-;e014;326;730Aðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Σðx; yÞ − Sðx; yÞ2�

q
; (14)

EQ-TARGET;temp:intralink-;e015;326;692Oðx; yÞ ¼ Sðx; yÞ − Aðx; yÞ: (15)

Thus, by inserting the experimental image Iðx; yÞ into Eqs. (10)
and (11), Eqs. (14) and (15) can be used to locally estimate the
amplitude and offset of the experimental data.

Appendix B: Automated Analysis Work Flow
A detailed flowchart of the analysis is shown in Fig. 4. The pro-
cedure is developed to attain minimal human input throughout
the entire analysis. After acquiring the SHG image (step 1), the
mean sarcomere orientation hθi with respect to the horizontal
edge of the image and frequency related to the main sarcomere
length are estimated. Both frequency and orientation are con-
tained in the first noncentral peak of the 2-D frequency spectrum
obtained by FFT of the full image (step 2). First, the frequency
coordinate of this spectral peak is detected in a range defined by
the typical physiological sarcomere working range, being 1.6 to
3 μm.32 At this frequency f, the angular peak position is deter-
mined and taken as the main sarcomere orientation hθi. Both f
and hθi are initial estimates that will be refined later in the pro-
cedure. Based on these initial values for frequency and orienta-
tion, the initial Gabor kernel is calculated using Eq. (5)
including a rotational basis transformation. The real (Re) and
imaginary (Im) parts of a typical kernel are shown in step 3
of Fig. 4 for illustrative purposes. The resulting Gabor kernel
is applied to the image by a convolution, and additionally,
the normalization procedure is performed as described in
Appendix A.

For easy data interpretation, all normalized Gabor values
belonging to myocytes are condensed into a histogram (step 4).
Values of pixels not belonging to sarcomeres, such as areas in
between myocytes, are excluded from the histogram by apply-
ing a mask. This mask is obtained by consideringOðx; yÞ, which
takes larger values than the dark noise level at regions contain-
ing sarcomeres. The average dark noise level is estimated for
each image I by increasing i, starting at the lowest pixel value,
until

EQ-TARGET;temp:intralink-;e016;326;271medðII≤i−1Þ ≤ medðII≤iÞ; (16)

where medðII≤iÞ represents the median of pixel values of I
having intensity lower than or equal to i. Considering the
image intensity histogram, dark regions induce a local maxi-
mum at low intensity values, which is located by this algorithm.
Only pixels obeying Oðx; yÞ > i are used to create the Gabor
histogram.

Using the histogram resulting from step 4, a frequency opti-
mization routine is performed before continuing to step 5. This
optimization is needed to cope with possible variations of sar-
comere lengths due to different contraction states at the time of
sample preparation. A first estimate of the sarcomere length was
obtained by the FFT method in step 2. For each image, the opti-
mal frequency (fo), related to the average sarcomere length hLi
present in the image, is obtained by maximizing the 90th per-
centile normalized Gabor value. By considering a percentile,
multiple Gabor values are simultaneously taken into account
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for frequency optimization, which is not the case when only the
maximal Gabor value would be maximized. The optimization is
done by repeating steps 3 and 4 with six different frequencies
near the initial frequency: f � 7%, f � 14%, and f � 20%. In
this, it is assumed that error on the initial estimate of f by the
FFT method is maximum 20%, falling within the earlier men-
tioned physiological sarcomere working range. The resulting
seven values are sufficient to perform a second-order polynomial
regression, for which the frequency at the polynomial peak is set
as the optimal frequency fo for the considered image. Due to the
restriction to the physiological working range of sarcomere
lengths, fo will always represent the main sarcomere length,
even when only double-band patterns are present in the image.

In step 5, the actual Gabor analysis is performed with the
previously obtained average orientation hθi and optimal fre-
quency fo. However, to allow for local changes in orientation,
the Gabor kernel is applied for angles ranging from
hθi − 30 deg to hθi þ 30 deg with a step size of 5 deg. When
the kernel orientation matches that of the sarcomere, the Gabor
value is maximal. This maximum value is selected for each
pixel. This procedure is referred to as maximum projection in
Fig. 4. Finally, the resulting Gabor data are condensed into
the final Gabor histogram (step 6).

Appendix C: Gabor Histograms Per Animal
In Fig. 5, the Gabor histograms are shown for each animal,
grouped per condition. For the healthy group, five animals
were used; five animals are contained in the mild EAE group,
and three animals are contained in the severe EAE group.
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