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Super-resolution microscopy has long been a cornerstone in the study
of molecular biology, allowing scientists to observe processes at the
nanoscale. However, most of these techniques rely on fluorescent la-
bels, which not only require complex preparation but also pose limita-
tions in imaging certain small molecules.1 Stimulated Raman scattering
(SRS) is a label-free imaging technique that offers chemical selectivity
by capturing the intrinsic vibrations of intracellular biomolecules.2

However, the resolution limit of a laser-scanning SRS system is at
∼300 nm, which is insufficient for capturing the subcellular nanostruc-
tures inside the cells. How to achieve label-free super-resolution imag-
ing of biological samples remains a heated topic in the field.

In SRS microscopy, two fields, namely pump and Stokes, are tightly
focused on the sample to excite the nonlinear Raman process. Such a
process induces an energy change in the original laser fields, which can
be extracted through a lock-in amplifier. The SRS signal, generated in
regions where the two fields overlap, offers a resolution roughly equiv-
alent to that of two-photon imaging, providing a
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over the one-photon imaging.

Structured illumination microscopy (SIM) is well-known for break-
ing the diffraction limit by a factor of two.3 By incorporating structured
illumination into SRS, the resolution could theoretically improve by
a factor of
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. Recently published in

Advanced Imaging,4 Hilton B. de Aguiar and his colleagues from
the Kastler-Brossel Laboratory in France present Blind-S3, a super-
resolution technique that successfully translates this concept into
reality.

Unlike conventional wide-field SIM, the authors implemented a hy-
brid illumination design. They used speckle illumination for the pump
beam and laser-scanned the Stokes beam to capture the SRS image with
a single-element detector. A series of speckle-illuminated images were
then reconstructed using advanced computational methods. This syn-
ergistic “instrumentation + computation” approach not only overcomes
the challenge of SRS signal detection without a camera but also enhan-
ces the penetration depth of SRS, thanks to the use of speckle illumi-
nation. Blind-S3 achieves a
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-fold resolution enhancement, as
demonstrated through imaging of HeLa cells and thick mouse brain
tissues.

Blind-S3 now joins the ranks of super-resolution, label-free Raman
imaging technologies, with the ultimate goal of achieving nanoscopy of
non-fluorescent species in biological samples. Other super-resolution
techniques rely on mechanisms such as higher-order susceptibility,5

molecular saturation,6,7 stimulated emission depletion,8 photo-
switching,9,10 or sample expansion.11,12 However, these methods often
require non-biocompatible high laser powers, fluorescent labeling

(which reintroduces the challenges of fluorescence compatibility), or
special sample treatments. In contrast, Blind-S3 shows great promise
for broader application in natural, unprocessed biological samples.

Despite its significant advancements, the current resolution of
Blind-S3 is still distant from the capabilities of fluorescent nanoscopy.
This limitation stems not only from the near-infrared excitation, which
offers lower fundamental resolution, but also from insufficient sensitiv-
ity to detect minute nanostructures. Thus, the quest to develop novel
vibrational imaging techniques that can achieve sub-100 nm resolution
while maintaining the sensitivity to detect non-fluorescent metabolites
remains an ongoing and intense area of research.
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