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Abstract Optical networks are evolving toward ultrawide bandwidth and autonomous operation. In this
scenario, it is crucial to accurately model and control optical power evolutions (OPEs) through optical amplifiers
(OAs), as they directly affect the signal-to-noise ratio and fiber nonlinearities. However, a fundamental
contradiction arises between the complex physical phenomena in optical transmission and the required
precision in network control. Traditional theoretical methods underperform due to ideal assumptions, while
data-driven approaches entail exorbitant costs associated with acquiring massive amounts of data to achieve
the desired level of accuracy. In this work, we propose a Bayesian inference framework (BIF) to construct the
digital twin of OAs and control OPE in a data-efficient manner. Only the informative data are collected to
balance the exploration and exploitation of the data space, thus enabling efficient autonomous-driving optical
networks (ADONs). Simulations and experiments demonstrate that the BIF can reduce the data size for modeling
erbium-doped fiber amplifiers by 80% and Raman amplifiers by 60%. Within 30 iterations, the optimal
controlling performance can be achieved to realize target signal/gain profiles in links with different types of
OAs. The results show that the BIF paves the way to accurately model and control OPE for future ADONs.
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1 Introduction
Optical fiber has been widely utilized in the fields of
communication1 and sensing,2–4 playing an critical role in
daily-life communications, the military, scientific research, and
other fields. Specifically, in the field of communication, fiber-
optic communication carries a majority of global data traffic
due to its low attenuation and large capacity.5 In recent years,
due to the information explosion caused by high-definition
video streaming, cloud computing, artificial intelligence, and so
forth, global communication traffic has grown exponentially.6,7

To sustain such dramatic traffic growth, optical transmission
technologies such as coherent transceivers with multilevel
modulation formats8 and advanced digital signal processing9

have been developed, pushing the fiber capacity to approach
the Shannon limit10 for a given spectrum bandwidth.

Today, to further increase the fiber capacity, multiband11 and
spatial-division multiplexing12 systems have been introduced to
exploit more spectrum resources. The multiband solution is
more appealing, as it upgrades existing fiber infrastructures
in a cost-effective manner. Recently, commercial systems have
been extended from C-band to C+L-band, scaling the available
bandwidth from ∼4 to ∼12 THz.13 On the other hand, autono-
mous-driving optical networks (ADONs)14,15 are being investi-
gated and developed to improve network performance and
lower operational expenditures (OpEx). By leveraging extensive
physical layer data, ADON is expected to achieve automated
service provisioning, power optimization, and failure manage-
ment, eliminating the need for human intervention.

In a fiber-optic communication system, the optical power of
signals evolves over fiber and also varies at different wavelengths,*Address all correspondence to Qunbi Zhuge, qunbi.zhuge@sjtu.edu.cn
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exhibiting a complex two-dimensional process. Modeling and
controlling the optical power evolution (OPE) are crucial for
enabling multiband ADONs.16 First, optical power determines
the optical signal-to-noise ratio (OSNR) and fiber nonlinear
effects,17 both of which significantly affect the signal transmis-
sion quality and achievable information rate. This is especially
crucial for multiband systems, since wider bandwidth usually
involves more severe Kerr nonlinearity18 and inter-channel
stimulated Raman scattering (ISRS).19 Furthermore, in future
ADONs, the static fiber channel should be upgraded into a pro-
grammable paradigm, which allows for dynamic configuration
of the optical powers for signals with different transmission re-
quirements, enabling more flexible and efficient utilization of
network resources.

In multiband ADONs, OPE is mainly influenced by fiber
propagation and amplification process. Since the fiber propaga-
tion process, including attenuation and ISRS, can be accurately
calculated,20–22 the main challenge in modeling and controlling
OPE lies in optical amplifiers (OAs). However, modeling and
controlling an erbium-doped fiber amplifier (EDFA)23 in current
C-band systems are already difficult tasks24–27 due to the
complex wavelength-dependent gain characteristics of EDFAs
in dynamic link conditions.28,29 In multiband systems, the
complexity further increases due to the adoption of multiple
homogeneous and/or heterogeneous OAs,30 which are used to
provide broader gain bandwidth and mitigate severe ISRS.
In this case, different types of OAs amplify signals through vari-
ous nonlinear effects, such as the stimulated emission or SRS.
These nonlinear effects can be expressed by a set of ordinary
differential equations (ODEs) with no closed-form solutions.
Consequently, modeling and controlling OPE with diverse
OAs pose considerable challenges.

In the past decades, extensive research has been carried out to
achieve precise modeling and controlling of OPE through OAs
in fiber-optic communication systems. The first direction is to
rely on human intelligence.31,32 However, such approaches are
limited in accuracy, as they fail to consider the distinctive char-
acteristics of each OA caused by manufacturing discrepancies
and operating conditions.33,34 For instance, with the center of
mass model,35 the gain profile of an EDFA can be modeled with
merely one measurement of a baseline spectrum. However, this
approach only achieves a root-mean-squared error (RMSE) of
about 0.4 dB.26 Such a level of accuracy is insufficient for as-
sisting the ADON.

Recently, the concept of the digital twin (DT) has emerged to
mirror the real-time status of each optical device based on col-
lected data. This is especially crucial for OAmodeling due to the
diverse designs, manufactory discrepancies, uncertain parame-
ters, and device aging impacts in OAs. In this context, data-
driven techniques, especially neural networks (NNs), have at-
tracted increasing attention in recent years.24,26,27,36–38 However,
a bottleneck in implementing data-driven models is the require-
ment for large training data sets to achieve high levels of accu-
racy. For example, with about 12,000 pieces of measured data,
the RMSE of the gain model for an EDFA can be reduced to
0.1 dB.26 In some cases, the training data set includes 40,000
data samples.24 In a real system, the procedure for collecting
such a large amount of data can be costly and time-consuming.
Even though some methods utilize transfer learning to reduce
the needed data size,36 the data size of the pretraining is still
high, which is hard to be achieved in a real system with various
types of OAs from multiple vendors. Therefore, a reliable

method that can assist the accurate modeling and controlling
for OA with data as little as possible is desired for future
ADONs.

In this paper, we propose a Bayesian inference framework
(BIF) to construct the DT of OAs and control OPE in a reliable
and data-efficient manner. In this framework, a few initially
collected data are used to train a Gaussian process regression
(GPR)39 surrogate model, which can provide the mean and vari-
ance of the estimation. By designing the acquisition functions
based on the surrogate model, only the most informative data is
sequentially collected. This approach can help obtain accurate
digital models for modeling OAs and finding the optimal system
configurations for controlling OA systems. Compared with
the traditional methods for modeling and controlling OAs,
the BIF can achieve higher accuracy and significantly reduce the
amount of needed data. In this paper, the performance of the
BIF is evaluated in both the EDFA system and RA system
through simulations or experiments. In terms of modeling,
the BIF can reduce more than 80% and 60% data to model
the EDFA and RA, respectively. For the online controlling, the
target gain/signal power spectra can be realized within 30 iter-
ations. The optimal performance can be achieved with an RMSE
of less than 0.5 dB in most cases. In the next section, the archi-
tecture of the BIF is introduced. The real-time experiment
and simulation investigations for modeling and controlling are
demonstrated.

2 Architecture of BIF for OA Modeling and
Controlling

When modeling and controlling OAs, the aim of BIF is to opti-
mize the sampling or operating strategies to achieve the best
modeling or controlling performance. Based on prior observa-
tions, the BIF sequentially selects the next to-be-measured sig-
nal spectra or amplifier configurations. As shown in Fig. 1(a),
first, a training data set containing fewer than five sets of pre-
collected spectra with the corresponding initial amplifier con-
figurations is constructed. Afterwards, a surrogate model is
trained based on the GPR to quantify the optimization perfor-
mance. According to the output of the GPR, the next to-be-
sampled data are selected by an acquisition function and then
measured automatically. After adding the newly measured data
to the training data set, the surrogate GPR model can be updated
to decide the next data for sampling. If the BIF is used for mod-
eling, an accurate model for the OA can be obtained iteratively.
If the BIF is used for online controlling, the optimal system
configuration to achieve the target signal/gain spectra can be
realized.

When constructing the GPR surrogate model, the training
dataset can be written as D ¼ ½xi; yi�, where xi and yi represent
the i’th input and output of the GPR model, respectively.
The mapping between the input and output, denoted as fðxÞ,
is described by the Gaussian process (GP) of

fðxÞ ∼ GPðmðxÞ; kðx; x0ÞÞ; (1)

where mðxÞ is the mean function of the GP and kðx; x0Þ is the
covariance function, which is the ‘kernel’ for evaluating the sim-
ilarity of each sample. mðxÞ and kðx; x0Þ can be learned from
data during training. For a new input, which is written as x�,
the estimation of the output, denoted as fðx�Þ, follows the joint
Gaussian process of
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where K is the covariance matrix of the training dataset. k and
kT are the covariance between the training set x and x�. β is the
hyperparameter representing the noise of the measurement.
Therefore, the estimated mean μ� and variance σ2� of x� are

μ� ¼ mðx�Þ þ kT ðK þ βIÞ−1ðY −mðxÞÞ; (3)

σ2� ¼ kðx�; x�Þ − kT ðK þ βIÞ−1k: (4)

Based on the GPR surrogate model, the next to-be-sampled
data are decided by an acquisition function. Since the optimi-
zation target is different among tasks, the sampling strategies
are different, resulting in the customized design of the acquis-
ition functions.

When modeling OAs, the surrogate GPR model is con-
structed as a DT of an OA. The input of the GPR-based DT is
the input signal spectra and amplifier configuration parameters.
The output is the gain spectra of the OA under test. To achieve
data-efficient modeling, as shown in Fig. 1(d), the BIF focuses

on the exploration (sampling the places with a high σ2�) of the
whole feature space. Therefore, the acquisition target is to sam-
ple the most informative data, which can be categorized as a
problem of Bayesian active learning.40 In our work, the acquis-
ition function is designed by uncertainty sampling, which means
sampling where the uncertainty is high. The sampling strategy
can be written as

argmax
x

σ2ðxÞ; (5)

where σðxÞ represents the estimation variance of the sample x.
In this way, the most uncertain candidate spectra are selected for
the next round of measurement. After several iterations, the sur-
rogate model can converge to a high accuracy.

For controlling OAs, the aim of the BIF is to exploit limited
reconfigurations (input spectrum, operating conditions, etc.) to
optimize the output signal/gain spectrum, which can be catego-
rized as a problem of Bayesian optimization.41–44 In this case, the
surrogate model is the objective function, which quantifies the
controlling performance. The input of the surrogate model is
the OA configuration. The output is the estimated controlling
performance such as the error between the current system value
and the target. The commonly used acquisition functions are

Fig. 1 The architecture of the proposed BIF for modeling and controlling OAs. (a) The general
workflow of the BIF. (b) The employed data collecting method in real systems and simulations.
(c) The input and output of the surrogate GPR model. (d) The exploration-preferred acquisition
workflow of the OA modeling. (e) The exploitation-preferred acquisition workflow of the OA con-
trolling.
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expected improvement (EI),41,45 probability of improvement
(PI),41 and upper confidence bound.46 In our study, we find that
these acquisition functions achieve a similar performance, and
we choose the EI for the following evaluations. The acquisition
formulation of the EI can be written as

EIðxÞ ¼ ðμðxÞ − fðxþt Þ − ξÞΦðZÞ þ σðxÞϕðZÞ; (6)

where Z ¼ μðxÞ−fðxþt Þ−ξ
σðxÞ . μðxÞ and σðxÞ represent the current es-

timated mean and variance value of the sample x, respectively.
fðxþt Þ is the current maximum with the optimal sample xþt .
Therefore, μðxÞ − fðxþt Þ represents the expected improvement
of x compared with xþt . ΦðZÞ is the cumulative distribution
function, which represents the probability distributions of the
improvement. ϕðZÞ is the probability distribution function fol-
lowing the standard normal distribution. ξ is a hyperparameter
controlling the balance between searching the global optimal
and exploring the whole data space. Based on EI, the acquisition
strategies can be represented as

argmax
x

EIðxÞ: (7)

After iterative searches, the most suitable system configura-
tion, i.e., x, is obtained.

3 Results

3.1 Constructing DT of EDFAs Based on BIF

To further improve the performance of OA modeling, other
methods have been proposed previously with some data
sets.47,48 For example, the transfer-learning-based modeling
scheme36 proposes to initially train a basic model, which is
then transferred to the specific EDFA. In addition, the hybrid
modeling method49 integrates the estimations of the analytical
models to the input for higher precision. These methods have

successfully improved the modeling performance by designing
the training scheme and the input features. However, the design
of the data selection scheme is not thoroughly investigated. For
modeling OAs, we aim to build an accurate DTwith data as little
as possible. In this case, the BIF pays more attention to the ex-
ploration, and the uncertainty-based acquisition function is uti-
lized. To evaluate the performance of the BIF, an experimental
validation for modeling EDFA is conducted.

First, we show the performance of modeling a commercial
EDFA based on the BIF in an experiment. As shown in
Fig. 2(a), an automatic EDFA measuring system is built. An
ASE noise source is used for simulating the flat full C-band
spectrum. After filtered by a Finisar WaveShaper 4000A optical
spectrum processor, 80 channels with 50 GHz spacing in the
C-band from 192.1 to 196.1 THz are generated. Among them,
40 odd-numbered channels are selected to establish signals
while other channels are filtered out. Two optical spectrum
analyzers (OSAs) are used to measure the input and output
power spectra of the EDFA. The operating mode of the EDFA
under test is set as the automatic gain control (AGC) mode with
a gain of 16 dB. When generating the repository of the gain
spectra, the 40 odd-numbered channels are assumed to be
occupied or idle randomly. A random deviation of each signal
power from −2 dB to 2 dB with a step size of 1 dB is involved
by setting the attenuation of the WaveShaper. In total, 9578
to-be-measured input spectra are generated as the candidate
repository. Additionally, to evaluate the forward modeling per-
formance, a testing data set containing 1002 pairs of input and
output spectra is generated randomly by the automatic measur-
ing system.

When building the DT for the EDFA, the input is a vector
representing the power spectrum of the signals before amplifi-
cation. The output is the corresponding gain spectrum. In this
experiment, we compare the modeling performance with the tra-
ditional models based on NNs that are trained with data sampled
randomly as the baseline. To investigate the performance, the
RMSEs of each model on the testing data set are calculated.
Considering the impact of various initial random data sets,

Fig. 2 The diagram of collecting training data for OA modeling. (a) The experimental system for
measuring EDFA spectra. (b) The simulation workflow for calculating the GSNR of an RA system.
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each training process undergoes five iterations to mitigate per-
formance fluctuations. The mean RMSEs are then plotted in
Fig. 3(a), while the error bars represent the performance fluc-
tuations across different training iterations. For the NN-based
models with random data selection, the estimation errors are
large when the data size is small. The best accuracy achieved
with 500 training instances is about 0.12 dB. In contrast, the
proposed BIF-based model converges at a high speed and
can reduce the RMSE to about 0.1 dB with fewer than
200 instances, demonstrating its significant learning ability.
To achieve the same RMSE on the same testing data set, the
proposed method can largely reduce the training data size by
80%, making it possible to prepare a customized tiny data set
for building the precise gain model for each EDFA. Moreover,
the performance of the proposed model is relatively stable
because the error bar is smaller when the data size is large.
The violin plot of the errors of the models trained by different
methods with different amounts of data is plotted in Fig. 3(b).
The maximum and minimum errors are plotted. The results
show that the model trained by the proposed BIF has lower
estimation errors and converges faster, demonstrating its strong
ability of selecting data and learning.

As mentioned before, to achieve the data-efficient forward
modeling, the BIF employs the data-efficient GPR modeling
method and data selection strategy. Here we further investigate
the contributions of the GPR algorithm and the data selection
strategy individually. In Fig. 3(e), we plot the RMSEs of the
GPR-based and NN-based models using the data selected by
the BIF or randomly. Four cases are considered: (1) the baseline

NN, (2) the NN with the BIF-based data selection, (3) the GPR
model without the BIF-based data selection, and (4) the pro-
posed BIF-based model. The error histograms of models trained
with different methods on the testing data set are shown in
Fig. 4. Results show that compared with NN, the GPR-based
model shows a better learning ability. By using the training data
selected by the BIF, both the NN and GPR can have a higher
accuracy compared with the model learned from the randomly
selected data.

Considering the training time, we train these models with
48 GB of 2400 MHz RAM and an Intel Core i9-9900k
3.6 GHz CPU. For the NN-based and GPR-based EDFA mod-
els, the needed training time with 500 training data is 28 and
15 s, respectively. The training time of the NN is primarily based
on the configuration of the training procedure, including factors
such as the batch size, the number of epochs, and the patience
threshold. The training time of the GPR model mainly depends
on the size of the covariance matrix, of which the complexity
isOðN3Þ. If the training data size is large, the calculation time of
the GPR can be long. Nevertheless, since the BIF significantly
reduces the needed data size, the training time of the GPR in our
experiment can be effectively managed within a reasonable
range.

3.2 Constructing DT of RAs Based on BIF

Besides EDFA modeling, the performance of the BIF for RA
modeling is also investigated through simulations. We consider
a more complex situation by modeling the generalized signal-to-

Fig. 3 The modeling performance of the proposed BIF for EDFA and RA. (a) and (c) The RMSEs
of the models under different data sizes for EDFA modeling and RA modeling, respectively.
(b) and (d) The violin plots of the modeling errors under different data sizes for EDFA modeling
and RA modeling, respectively. The maximum and minimum errors are plotted. (e) The error
histograms of the EDFA gain models trained with 70 data with or without BIF-based modeling
design and data selection.
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noise ratio (GSNR) of arbitrary signals under a certain pump
configuration of an RA. The GSNR can be expressed as

GSNR ¼ PRx
S

PRx
ASE þ PRx

NLI

; (8)

where PRx
S , PRx

ASE, and PRx
NLI denote the power of signal, ASE

noise, and NLI noise before the receiver, respectively. In such
a situation, both the ASE noise and fiber nonlinearity are mod-
eled, which is more challenging, since they are strongly related
to both the signal and pump configurations. Similar to the EDFA
modeling, we apply the exploration-preferred BIF using syn-
thetic data for evaluation.

The data set for training is generated by simulations based on
the GNPy,50 which is a commonly-utilized Python tool for
calculating the fiber nonlinearity based on Gaussian noise
model.22,51 The simulation setup is shown in Fig. 2(b).
Arbitrary C+L-band signal spectra are generated by randomly
selecting a flat launch power from −3 to 4 dBm, with a ripple
of �3 dB of each channel. For each signal, the baud rate is
142.8 GBaud and the channel spacing is 150 GHz. The trans-
mitted fiber is the standard single-mode fiber (SSMF). The
pump number in the RA is 6, of which the wavelengths are
1513, 1496, 1477, 1458, 1432, and 1420 nm, respectively.
As with the EDFA modeling, the pump powers are fixed to
set a relatively flat gain spectrum of 10 dB. The pump powers
are 40, 30, 20, 120, 300, and 300 mW, respectively. In total,
3997 data are generated. We use 500 data as the testing data
set and 3497 are used as the data repository for the BIF-based
data selection.

Similar to EDFA modeling, the compared baseline model is
based on NN and trained by a data set generated randomly. For
both the NN-based model and the BIF-based model, the input
features are the 80-dimensional vector representing the signal
power of each channel. The outputs are the GSNR of each
signal. Considering the influence caused by the randomness
of the initial data set, the training process for each method is
conducted 5 times to reduce the performance fluctuations. The
mean RMSEs of the models obtained under different data sizes
are plotted in Fig. 3(c). The differences among these training
processes are shown as the error bar. The results show that
the proposed method can achieve higher accuracy with different
data sizes. To achieve a similar accuracy, the BIF can reduce
more than 60% of the training data, demonstrating its efficient
learning ability. Additionally, the error bar of the BIF-based
model is much smaller, demonstrating its higher stability. The
violin plot of the estimation error is shown in Fig. 3(d) with the
maximum and minimum errors. The results show that the BIF-
based model can converge faster with smaller extreme errors,
proving its better learning ability.

3.3 Controlling EDFAs Based on BIF

For ADONs, efficiently shaping the signal/gain power spectrum
is desired to assist dynamic network optimizations. To achieve
this, BIF-based online controlling is proposed. For EDFA, the
flat or tilted signal spectrum after amplification can be realized
by adjusting the input signal power spectrum. For RA, the target
gain spectrum can be realized by adjusting the pump powers.
For both EDFA and RA systems, we perform experiments to
demonstrate the effectiveness of the BIF for controlling the
OPE.

First, Fig. 4(a) shows the experimental verification with
a C-band EDFA. We employ an experimental setup similar
to the one used in the previous section for modeling EDFA.
The EDFA is configured in the AGC mode with a gain of
17 dB. During online controlling, we adjust the signal spectrum
prior to amplification to obtain the target signal spectrum after
amplification. Specifically, we adjust the attenuation factors of
the WaveShaper as the control parameters, with one attenuation
factor for every five consecutive WDM signals. So, in total,
there are eight parameters to control. This type of adjustment
can be realized in real systems by controlling the wave-
length-selective switch (WSS) at the beginning of each optical
multiplex section (OMS).

Figure 4(b) shows the amplified signal power spectra with
and without the BIF-based online control. The first line shows
the measured spectra controlled with traditional simple adjust-
ments. Specifically, the mean value and tilt values of the
measured signal spectrum are calculated through linear fitting.
Subsequently, the differences in mean and tilt values between
the measured and the target spectra are calculated and adjusted
by the optical spectrum processor. The second line shows the
spectra achieved by BIF. Three scenarios are considered with
different target spectra. The corresponding RMSEs are shown
in Fig. 4(c). Both the signal spectra and the error histograms
can prove that, compared with the traditional spectrum control-
ling method, the BIF can achieve a better performance. To
illustrate the changes of the spectrum during online control,
Fig. 4(d) shows the changes of the RMSEs between the mea-
sured spectra and the target spectra when the target spectrum
is flat with a value of –3 dB. Results show that the BIF can
quickly adjust the signal spectrum within 30 iterations, demon-
strating the efficiency of the BIF for online controlling.

3.4 Controlling RAs Based on BIF

The performance of the BIF for online controlling is also evalu-
ated in systems with RA. For the OA controlling schemes,
previous controlling strategies for controlling RAs can be cat-
egorized into two types. The first type relies on online heuristic
algorithms, especially evolutionary algorithms.52–54 For this type
of method, one round of generation could include tens of can-
didates, necessitating several rounds of measurements for one
iteration. The second type is based on the offline pretrained
NN for optimization.55–59 However, this type of method requires
a pretrained model that needs a substantial number of measured
spectra (hundreds to thousands). In our work, the BIF is utilized
to adjust the power of each pump to obtain the target gain profile
in a data-efficient manner. The experimental setup of the RA
system is shown in Fig. 5(a). First, an ASE source is used to
emulate the C+L-band signal spectra. After attenuation, the total
signal power is set as 15.5 dBm. The transmitted fiber length is
82.8 km. In our experiment, we consider the counter-Raman
amplification, which means only the backward pumps are
utilized for amplification. The RA has four pumps, of which
the wavelengths are 1428, 1454, 1490, and 1509 nm. Since
the power of each Raman pump cannot be directly controlled,
we control the pump power by adjusting the current of the
digital-to-analog converter (DAC). Then, the on-off gain spectra
are collected by an OSA. All the control and data processing are
through a host computer.

In Fig. 5(d), 460 sets of pump configurations are generated
randomly, and the corresponding on–off gain spectra are
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plotted. As shown in Fig. 5(d), the on–off gain constructed by
different pump powers can range from 0 to 10 dB with different
shapes. This result proves that, if directly searching for the pump
configuration, the best configuration may be hard to achieve.
Therefore, an efficient online controlling method is desired to
realize various gain spectra without human intervention.

By applying the BIF in this use case, the size of the precol-
lected initial data set is set as five. Afterwards, the exploitation-
preferred BIF is employed with the EI optimizer. The RMSE of
each iteration when setting a flat 7-dB gain spectrum as the
target gain is plotted in Fig. 5(e). The results show that the
BIF can quickly find the correct direction to adjust the pump
power combinations and then converge to a low RMSE of
∼0.3 dB. In Fig. 5(f), the on–off gain spectra of each iteration
are plotted. We observe that the gain spectra gradually converge
to the target gain, which demonstrates the effectiveness of the
proposed method. In most cases, the BIF can approach the target
spectrum within 10 iterations and then slightly fine-tune the
pump configurations to obtain the optimum performance.

As shown in Figs. 5(g)–5(j), we plot some gain spectra dur-
ing the online controlling as examples. First, the gain spectra are

far away from the target gain spectrum before the fifth iteration.
But then it quickly gets closer to the target in the tenth iteration
by increasing the powers of all pumps. Afterwards, it starts
fine-tuning the pump configuration and gradually achieves the
optimal design. In Figs. 5(b) and 5(c), the online controlling
performance based on the BIF under different target gain spectra
is shown. The BIF can work well in multiple scenarios, and
the convergence speed is relatively stable.

To further investigate the generalization of the proposed BIF,
we validate the online controlling performance by considering
situations with different pump numbers and wavelengths. We
conduct simulations considering four, five, and six pumps in
an RA system based on the GNPy. In simulations, more scenar-
ios with different types of target gain spectra are investigated.
First, the flat on–off gain spectra of 6, 8, 10, 12, and 14 dB are
set for evaluation. In addition, the tilted gain spectra for com-
pensating the SRS are set as the target gain. As shown in Fig. 6,
the dashed lines are the target spectra and the solid lines are the
spectra obtained by the BIF. The results show that the BIF can
identify the best pump configurations to generate the desired
gain spectra with various pump configurations.

Fig. 4 The experimental setup for online controlling in an EDFA system. (a) The controlling work-
flow of the automatic EDFA measuring system. (b) The signal power of each channel after
amplification with different controlling targets. The solid lines are the results obtained by BIF and
the dashed lines are the target signal spectra. Figures in the first line show the measured spectra
when only adjusting the mean power and the tilt of the transmitted signal spectra. The second
line shows the measured spectra when utilizing BIF. (c) The RMSEs’ comparison between the
traditional adjustment and BIF-based online controlling. (d) The changes of RMSEs between
the measured spectra and the target spectra during BIF-based online controlling when the target
gain is flat and set each channel as −2 dBm.
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4 Discussion
In this work, the Bayesian inference is utilized for modeling and
controlling the OPE in optical fiber communication systems.
The incorporation of Bayesian probability enriches the model’s
output by estimating both the mean and variance. Therefore,
more comprehensive information is available for data selection.
Additionally, the online iterative sampling scheme ensures that
each piece of data is utilized to guide the subsequent data
collection. Consequently, the efficiency of the data collection is
enhanced to reduce the needed data size. Moreover, the BIF
allows for flexible design of diverse data collecting objectives
for both DT modeling and OA control. It shows the potential in
constructing a DT during OA controlling, thereby facilitating
future autonomous network operations.

The next critical step involves modeling the OPE during signal
transmission across cascaded fiber spans and OAs. Considering
a practical long-haul transmission system, the optical power is
attenuated by fibers, connectors, and other devices, such as

WSSs, and amplified by OAs. Therefore, modeling the OPE
over a long-haul link requires the accurate modeling of each
optical device and its cascaded effects.

Moreover, the complexity of OPE control arises due to the
heterogeneous parameters from various devices in these long-
haul links. This complexity is further compounded in scenarios
with different wavelength loadings in each OMS. The control
sequence and step size among different parameters in different
OMSs should be carefully designed.

Additionally, frequent network operations impose higher
reliability requirements. The control of OPE should not disrupt
existing services, highlighting the need for a precise assessment
of reliability in both modeling and controlling processes.

The BIF holds the potential to address the above challenges
effectively. Its inherent ability to estimate probabilities makes it
well suited for reliable assessment and data selection. Therefore,
it can contribute to achieving efficient and highly reliable
autonomous OPE modeling and control, aligning with the de-
mands of future ADONs.

Fig. 5 The experimental setup for controlling the gain spectrum of an RA. (a) The controlling work-
flow of the automatic RA controlling and gain measurement system. (b) The obtained flat gain
spectra of the RA based on proposed BIF. (c) The obtained tilted gain spectra of the RA based
on proposed BIF. (d) The randomly generated gain spectra of the RA under various combinations
of pump powers. (e) The RMSEs for each iteration during the online controlling. (f) The measured
gain spectra after each iteration during the online controlling. The gray lines are the precollected
gain spectra, and the solid lines are the collected gain spectra during the online controlling.
Different colors denote different iterations. The dashed black line is the target gain spectrum.
Some obtained gain spectra during the online controlling, i.e., the red points in panel (e) are plotted
in (g), (h), (i), and (j), respectively. The pump DAC values of each iteration are plotted in the second
line accordingly.
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5 Conclusion
Constructing the DT and controlling OPE is crucial for enabling
multiband ADONs. To accomplish these goals, modeling and
controlling OAs are the main challenges. In this work, we pro-
pose BIF to model and control OAs in a data-efficient manner.
The BIF employs a selective data collection strategy that effec-
tively balances exploration and exploitation in the search space.

Simulations and experiments have demonstrated the effec-
tiveness of the BIF in modeling OAs. Compared to traditional
NN-based models that use randomly selected data, the proposed
BIF significantly reduces the data requirements for accurate
modeling. Specifically, it can reduce the required data by
80% for EDFA and 60% for RA. This reduction in data require-
ments enhances the feasibility of deploying data-driven models
in commercial OAs.

In terms of controlling, the BIF assists network controllers in
adjusting OA configurations and transmitted signal profiles to
achieve a target profile. Within a maximum of 30 iterations,
the BIF successfully realizes the desired signal/gain profiles
with RMSEs of <0.5 dB in most cases. Importantly, the pro-
posed BIF is not limited to specific link conditions or OA types,
making it applicable to a wide range of scenarios in various
ADON systems.

6 Appendix: Methods

6.1 Simulation Details for RA Systems

The power propagation along a fiber with RA can be described
by ODEs,60 which can be written as

dPs

dz
¼ −2αsPs þ CRðfs; fpÞðPþ

p þ P−
pÞPs; (9)

� dP�
p

dz
¼ −2αpP�

p −
�
fp
fs

�
CRðfs; fpÞPsP�

p ; (10)

where Pp and Ps represent the Raman pump power and signal
power, respectively. z is the transmission distance. CR is the
Raman gain efficiency. fs and fp are the frequency of the signal
and pump, respectively. αs and αp are the attenuation of the
signal and pump, respectively. The on–off gain can be calcu-
lated by

GON−OFF ¼
Ps;pumpsONðLÞ
Ps;pumpsOFFðLÞ

; (11)

where Ps;pumpsONðLÞ and Ps;pumpsOFFðLÞ represent the signal
power at the distance of L with Raman pumps on and off,
respectively.

The simulation verifications are conducted using the GNPy.50

The fiber in simulations is SSMF with an attenuation of
0.2 dB∕km, a nonlinearity coefficient of 1.3 W−1 km−1, and
a chromatic dispersion coefficient of 16.7 ps nm−1 km−1.

6.2 Training Details for EDFA DT Models

In the use case of EDFA modeling, two types of models are
trained. First, the baseline NN-based model has two hidden fully
connected layers with 40 neurons in each layer. The activation
functions are sigmoid.61 The optimizer is Adam.62 During train-
ing, 80% of the available data are used for training, and 20% are
used for validation. The total epoch number is set as 106, and
early stop is employed with a patience of 100. For the proposed
GPR-based model, the utilized kernel is the radial basis function
(RBF).61 The noise hyperparameter, i.e., alpha, is set as 10−5.

Fig. 6 The simulation performance of the BIF for online controlling with different on–off gain spec-
tra. (a)–(c) The performance of the BIF with flat target gain. The simulated RAs have four, five, and
six pumps, respectively. The solid lines are the experimental results and the dashed lines are the
target spectra. (d)–(f) The performance of the BIF with tilt target gain. The simulated RAs have four,
five, and six pumps, respectively. The solid lines are the results obtained by BIF, and the dashed
lines are the target gain spectra.
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To conduct a fair comparison, the two models share the same
input and output. Specifically, the input feature is a vector rep-
resenting the power value of each WDM signal before ampli-
fication. Since 40 channels are considered, the feature vector
has 40 dimensions. The output is the gain value of the signal
in each WDM channel. Min-max normalization is conducted
for both the input features and labels because we found that this
type of preprocessing can achieve the best performance. RMSE
is calculated for accuracy evaluation. Moreover, since some of
the channels are idle, the estimations of these channels are de-
leted for RMSE calculation.

6.3 Training Details for RA DT Models

The training processes of RA modeling are similar to those for
EDFA modeling but with different input/output data dimensions
and hyperparameters. For training data, the input features in-
clude the signal power of each WDM channel, represented as
an 80-dimensional vector. The outputs are the GSNRs of each
WDM signal, represented as an 80-dimensional vector as well.
The NN-based baseline models have two hidden layers with
80 neurons in each layer. The activation function is sigmoid.
The optimizer is Adam. 80% of the data are used for training
and 20% of the data are used for validation. The total epoch
number is set as 106, and early stop is employed with a patience
of 1000. The GPR-based surrogate model employs an RBF
kernel. Min-max normalization is utilized to process both the
input and output of the data set.

6.4 Parameters for Controlling the EDFA System

The controlling objectives are the attenuation factors of the
WaveShaper for every five consecutive WDM signals. For the
total 40 channels, there are eight parameters. The online control-
ling is realized by utilizing the Bayesian-optimization Python
tool.63 During online controlling based on the BIF, the surrogate
GPR model has a noise hyperparameter of 10−4. The number of
initial sampling data is 2, and an EI optimizer with a ξ of 10−9 is
employed. Domain reduction64 with a minimum window length
of 0.2 is used to speed up convergence.

6.5 Parameters for Controlling the RA System

To control Raman pump powers, the configured parameters are
the DAC values of four pumps. The Bayesian-optimization
Python tool63 is utilized for conducting online controlling, and
the initial sampling number is 5. The hyperparameter of the sur-
rogate GPR model is 10−5. The EI optimizer with a ξ of 10−5 is
employed. Domain reduction with a minimum window length
of 0.01 is used.

Code and Data Availability
The source data and code are available from authors upon the
reasonable request.
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