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Abstract. We present an adaptive and efficient background modeling
strategy for real-time object detection in multicamera systems. The pro-
posed approach is an innovative multiparameter adaptation strategy of
the mixture of Gaussian (MoG) background modeling algorithm. This ap-
proach is able to efficiently adjust the computational requirements of the
tasks to the available processing power and to the activity of the scene.
The innovative approach allows one to adapt the MoG without a signifi-
cant loss in the detection accuracy while contemporarily adhering to the
real-time constraints. The adaptation strategy works at the local level by
modifying, independently, the MoG parameters of each task, and then,
whenever the results of the local strategy are not satisfactory, a global
adaptation strategy starts that aims at balancing the workload among
the tasks. Our approach has been tested on three different data sets,
including several image sizes, heterogeneous environments (indoor and
outdoor scenarios), and different real-time constraints. The results show
that the proposed adaptive system is well suited for multicamera appli-
cations thanks to this efficiency and adaptability; it guarantees real-time
highly accurate detections. C© 2011 Society of Photo-Optical Instrumentation Engineers
(SPIE). [DOI: 10.1117/1.3662422]
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1 Introduction
The growing computer-processing capabilities and the de-
creasing prices of high-quality cameras enable the use of
multicamera systems in several computer-vision applications
and broaden their market into new promising areas. In fact,
multicamera systems are very attractive because they can
avoid problems encountered with monocamera systems, such
as occlusions and limited field of view; moreover, they al-
low are to extract 3-D information from the scene. Thus,
3-D scene information extraction and reconstruction through
multicamera systems are currently used in several practi-
cal applications. In particular, they are well suited for video
surveillance applications for object tracking and positioning
in 3-D environments. Usually, independent 2-D tracking al-
gorithms are applied to each camera node and then this infor-
mation is fused by a 3-D tracking module. In Ref. 1, the 2-D
tracking is performed combining Gabor filters and templates
of human silhouettes, whereas the 3-D tracking is obtained
using geometrical correspondence on the detected objects.
In Ref. 2, the mixture of Gaussian (MoG) algorithm is used
to detect moving objects in each view and then they are pro-
jected into the floor plane and combined with the projection
of other views. In this way, it is possible to identify candidate
moving objects that are tracked with Kalman filters.

Another interesting application is related to immersive
videoconferencing environments, where the acquired images
of conference participants are rendered in a shared virtual
3-D environment. Examples of this application can be found
in Refs. 3 and 4. Similar applications are constituted by

0091-3286/2011/$25.00 C© 2011 SPIE

remote and collaborative environments where the users can
interact with 3-D virtual objects; an example can be found
in Ref. 5. In general, in these works, the objects of interest
(user’s body) are separated from the background scene and
projected in a 3-D virtual world.

Novel video game platforms based on controllers that are
sensitive to user motion and speed are becoming more and
more popular. In fact, multicamera systems can be used to
extract information about movements and position of the
user, such as the one presented in Ref. 6. The main idea is to
separate the user silhouette from the background and convert
its pose in a game command.

Another important application for multicamera systems is
sport game monitoring, where the information from different
cameras is fused in order to track all the objects in the scene
and collect information and statistics of players and teams.
Example of these kind of applications can be found in Ref. 7,
where particle filters are used to track objects in each single
view and an unscented Kalman filter is used to combine the
information provided by the particle filters and to calculate
the trajectory of the final players. Another example is
Ref. 8, where the images provided by several cameras (from
8 to 15 cameras) are processed by a hybrid system that
combines graphic processing units (GPUs) and classical
CPUs: Mixture of Gaussian algorithms have been used to
segment the football players that are subsequently classified
and tracked.

Starting from the continuously increasing interest for
these systems, the demand of new and more efficient so-
lutions is posing challenging issues to the research commu-
nity. New systems and architectures are required in order
to efficiently manage the huge amount of data coming from
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different sensors: networks of smart cameras,9 peer-to-peer
network of computers or centralized architectures10 are the
most used solutions.

Moreover, new and optimized approaches for video pro-
cessing are needed in order to merge and fuse the informa-
tion acquired by the cameras. In particular, these approaches
are mainly based on two fundamental steps: 2-D informa-
tion extraction (from each data stream) and 2-D information
combination for 3-D environment characterization. Indepen-
dent of the implementation of the second step, the first one
usually includes modules such as background modeling, ob-
ject detection, and segmentation that are able to separate the
objects of interest from the overall scene. The accuracy of
the object-detection phase is very important and deeply af-
fects the performance of high-level tasks, such as tracking
and object recognition, because it has also been highlighted
in Ref. 11.

Therefore, to successfully accomplish complex tasks in
multicamera applications, the object-detection modules must
guarantee a good trade-off between detection accuracy and
real-time performance. This is the challenge that has been
addressed in the work described in this paper.

Object detection is one of the basics of video processing
and analysis and is generally performed by estimating a
model of the background of the scene, and then, any devi-
ation from the background model is considered as a moving
object. Different background modeling techniques have
been presented in the literature.12 One of the most popular
ones is the Gaussian mixture model presented by Stauffer
and Grimson.13 The MoG is very attractive because it allows
one to accurately estimate the background model in the
presence of varying backgrounds and gradual illumination
changes. MoG aims at estimating a background model of
the scene where each pixel is independently modeled as a
mixture of Gaussian distributions. This pixelwise approach
is computationally demanding because, for each pixel,
all the parameters of the distributions must be stored and
updated.

The use of the MoG in real-time applications is a challeng-
ing issue and can represent a bottleneck in video-processing
applications; for this reason, several variants of this algo-
rithm have been presented in literature (see Sec. 2.1 for more
details and the survey presented in Ref. 14). Nevertheless,
these approaches are strictly related to a specific applica-
tion, showing a low degree of adaptability because they are
based on the modification of one characteristic of the algo-
rithm, for example, by modifying the number of Gaussians
distributions15–17 or by reducing the number of operations
considering a smaller images18, 19 or using a different feature
space.20

Moreover, MoG and its derivations are widely used in
multicamera applications as first stage of video processing
(see, for example, Refs. 2,5,8, and 21). However, their effec-
tive applicability under real-time constraints is quite limited
(especially for centralized servers architectures) and, above
all, the impact on the system performance and on the over-
all processing time has not been clearly investigated and
considered in the development of these systems. Therefore,
being the object-detection accuracy a fundamental issue,11 in
our view, it is very important the investigation of innovative
approaches are able to adapt MoG through multiparametric
variation strategies for the operation in real-time multicamera
applications.

To address these problems, our research activity has been
focused on the optimization of the object-detection stages in
a multicamera environment, based on a centralized server ar-
chitecture, for real-time applications: we present an adaptive
and efficient background-modeling strategy based on MoG.
The proposed approach is based on a multiparametric modi-
fication of the MoG algorithm: this strategy is able to adapt
the computational requirements of the object detection tasks
as a function of the scene activity and the available process-
ing resources in order to respect the real-time constraints of
the desired application without a significant loss of detection
accuracy. Algorithm accuracy should be understood here not
only as the capability to accurately detect new objects in the
scene, but also as the ability to keep a continuously updated
and accurate model of the quasi-static background. In our
view, not to process one or more frames (frame skipping) to
fulfill the real-time constraints is the worst solution in terms
of performance because no information about the moving
object(s) is extracted and, at the same time, the background
model is not correctly updated and cumulative errors could
affect the algorithm performance.

Another advantage of the proposed parameters adaptation
policy is that it follows a multilevel approach. It works at
local (camera) level by adapting the MoG parameters inde-
pendently for each processing task. If the changes done at
local level are not sufficient, then a global-level adaptation
strategy balances the processing load among all the tasks.

The paper is structured as follows: in Sec. 2, the theoretical
background of the MoG algorithm is given and, with the aim
of clarifing the added value of the proposed technique with
respect to existing approaches, an overview of the state of the
art is presented. In Sec. 3 the proposed novel adaptive strategy
is described in detail; in Sec. 4, the multicamera system is
presented. Results are shown in Sec. 5, and conclusions are
drawn in Sec. 6.

2 Background Modeling and Object Detection
with Mixture of Gaussians

Object detection can be obtained estimating a representation
of the background of the scene, and typically, any deviation
form the background model is considered as a moving ob-
ject. Different background modeling techniques have been
presented in the literature,12 being one of the most popular
ones the Gaussian mixture model introduced by Stauffer and
Grimson.13 This strategy, the MoG algorithm, is very attrac-
tive because it allows one to accurately estimate the back-
ground model even for varying backgrounds. Even more, its
pixel-based operation provides high flexibility to implement
strategies to adapt the accuracy of the model to the detection
needs and available computational resources. Therefore, we
propose using it as the core of the object-detection approach.
We first introduce the basic concepts and operation details
of the MoG background subtraction strategy to further focus
on state-of-the-art proposals for its real-time application that
motivate the need for our work.

2.1 Mixture of Gaussian Background Subtraction
The MoG algorithm is composed by two fundamental steps.
The first step is the estimation of whether or not a pixel
belongs to the background model. In the second step, the
model parameters are recursively updated. The probability
to find a pixel at time t of intensity X is modeled as
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P (Xt ) =
K∑

i=1

ωi,t · η(Xt , μi,t , �i,t ), (1)

where K is the number of Gaussians, ωi, t is the weight as-
sociated at time t to the i’th Gaussian with mean μi,t , and
covariance matrix �i,t . If the RGB planes are considered
independent, then form of the covariance matrix can be con-
sidered as �i,t = σ 2

i,t I. The weight of a Gaussian measures
the accuracy with which it models the value of the corre-
sponding pixel.

In the first step, for each incoming pixel, whether or not
it belongs to the background model is estimated. The multi-
modal background model is considered to be formed by the
distributions that have a high ratio between their weight and
variance values (ri = ωi/σ i). A high value for ri means that
the distribution has modeled the pixel in the past (ωi is high)
very well and that it has shown low variability (low σ i) with
values close to the mean (μi ) of the Gaussian. The first B
distributions that exceed a certain threshold T are used for
the background model,

B = arg min
b

(
b∑

i=1

ωi,t ≥ T

)
. (2)

T is a measure of the minimum portion of the data that should
be accounted for by the background. For small values of T,
a background modeled by few distributions is obtained; the
limit is a unimodal Gaussian distribution. If T is high, then
a multimodal background model is obtained that can include
more than one color in it. A pixel belongs to one of the K
distributions if Eq. (3) is satisfied,√

(Xt+1 − μi,t )T �−1
i,t (Xt+1 − μi,t ) < λσi,t . (3)

A pixel is considered as belonging to one distribution if its
value is within λ standard deviations of the distribution; in
this way, a per-pixel/per-distribution threshold is defined.13

A common choice (proposed in Ref. 13) is to set λ equal
to 2.5, thus discarding only the pixel values that are very
far from the mean of the distribution. It has been shown
in Ref. 13 that the MoG algorithm performance does not
present a high sensitivity to λ, and for this reason, in our
implementation we fix its value to 2.5. If the pixel belongs to
one of the background distributions, then it is classified as a
background pixel; otherwise, it is classified as a foreground
pixel. If a match is found, the parameters of the matching
Gaussian are updated with the following equations:

ωi,t+1 = ωi,t (1 − α) + α, (4)

ρ = α · η(Xt+1, μi,t , �i,t ), (5)

μi,t+1 = μi,t (1 − ρ) + ρXt+1, (6)

σ 2
i,t+1 = σ 2

i,t (1 − ρ) + ρ(Xt+1 − μi,t+1)(Xt+1 − μi,t+1)T ,

(7)

where α is the so-called learning rate. The learning rate α
determines the speed of adaptation to changes in the scene
(i.e., illumination) and the speed of the incorporation of fore-
ground objects to the background. It indicates the influence

that the last image has on the Gaussian distribution param-
eters. For the unmatched Gaussians, all their parameters re-
main unchanged except the weight,

ωi,t+1 = ωi,t (1 − α). (8)

If no match is found, then the least probable distribution
with the lowest ratio r is substituted by a new one with low
weight, high variance, and a mean equal to the pixel value.
When all the parameters have been updated, the weights are
normalized such that

K∑
i=1

ωi,t+1 = 1. (9)

The original version of the algorithm of Stauffer and
Grimson13 has been widely studied and modified to over-
come several problems, such as sudden change of illumi-
nation, shadows of moving objects, moving background
objects, real-time constraints, and memory requirements. A
recent and complete survey of the proposed algorithms can
be found in Ref. 14.

In our experiments, we use the original algorithm except
for Eq. (5). In order to reduce the processing time, we modi-
fied it with the following:

ρ = α

ωi,t
. (10)

The choice of the learning parameter α and ρ has been widely
explored in order to solve different problems of the original
algorithm (see again Ref. 14). In particular, Eq. (10) was
proposed in Ref. 22 to speed up the computation of ρ. In
fact, Eq. (5) requires the calculation of a more complex term.
As explained in Ref. 22, the update of Eq. (10) is faster than
the update of Eq. (5) and it represents a good approximation
of it for the matching distributions.

2.2 Real-Time Application
As previously mentioned, the pixelwise approach of the algo-
rithm is demanding in terms of processing power and memory
occupancy because it requires a continuous update of the pa-
rameters of each distribution. In literature, several optimized
versions of the algorithm have been proposed to reduce the
processing time. However, these approaches are focused only
on the modification of one parameter of the MoG, thus pre-
senting a low degree of adaptability.

One common solution to speed up processing is to dy-
namically adapt the number of distributions used to model
the pixels. The main idea of these approaches is to reduce
K in the image area where there is a static background. Ex-
amples of these techniques can be found in Refs. 15 and 16,
where a threshold on ω is applied to decide what distribu-
tion must be removed. Another similar approach is the one
presented in Ref. 17 that selects the number of Gaussians us-
ing the Dirichlet prior. Although this approach is efficient in
terms of MoG algorithm speed up, it is limited in situations
where a significant part of the images is wrapped by new ob-
jects. Moreover, some errors can be introduced because K is
modified for each pixel individually, without considering any
information related to the moving object position. For this
reason, in the proposed strategy K is modified, also taking
into account the region occupied by the foreground objects
(for more details, see Sec. 3).
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Because the update step of the MoG is a time-critical
phase of the entire algorithm, some authors propose not to
update the background model for each processed frame. In
particular, in Ref. 23 the update is completed only if in the
image there are significant illumination changes. In Ref. 24
the update frequency is tuned independently for each pixel,
in particular pixels that have been recently classified as fore-
ground are updated faster than pixels that belong to the back-
ground. In the proposed strategy, we partially use the latter
approach considering also the region occupied by the fore-
ground objects (for more details, see Sec. 3).

Other works reduce the computational time by applying
the algorithm on a subset of the image pixels. In Ref. 18,
a hierarchical approach has been implemented where the
image is subdivided into blocks and MoG is applied to the
random pixels of each block: when a foreground pixel is
found in a block, it is recursively subdivided and new pixels
of the block are analyzed. In Ref. 19, MoG has been applied
at subblock level and then the obtained foreground objects
are refined to a silhouette detector. Other authors suggest
applying the algorithm only in regions of interest that are
typically smaller compared to the entire image and, in this
way, it is possible to reduce the computational time of the
MoG. In Ref. 25, the region of interest has been identified
by an experiential sampling technique system that has to be
continuously reinitialized in order to detect new objects in the
scene. In Ref. 26, the regions of interest have been detected
via frame differencing.

A recent and interesting approach is based on the
adaptation of the MoG algorithm to the mosaic-bayer space
Ref. 20. In this way, it is possible to obtain a MoG based
on color information that operates in a reduced space
(approximately reduced 66%). Even if this approach reduces
the processing time of the MoG, it is not flexible, does not
present any adaptation to the content of the scene, and is only
applicable to cameras that provide a bayerlike data stream.

Another work27 proposes to switch from the MoG algo-
rithm to a faster algorithm based on a background model
obtained by frame averaging. One critical issue of this algo-
rithm is related to the memory occupancy of both models.
Moreover, the switching policy has not been adequately in-
vestigated.

In many applications, the real-time constraints are accom-
plished by implementing adhoc versions of the MoG on ded-
icated hardware platforms like FPGA and DSP.28 Recently,
a great attention has been paid to MoG algorithms based on
Compute Unified Device Architecture (CUDA).29, 30 These
types of solutions are very efficient, but they cannot be easily
adapted to consumer applications, where conventional cam-
eras are used and specific and expensive hardware is avoided.
An increase of the real-time performance of these approaches
is obtained with the use of more powerful hardware rather
than being achieved through improved versions of MoG.

From our point of view, all these optimization strategies
are very application specific and show a low degree of adapt-
ability because speed up is achieved by the modification of
only one characteristic of MoG. Furthermore, their direct
applicability to multicamera systems is very limited, and
therefore, more efficient and adaptive strategies are required.

3 Adaptive Background Modeling
As previously mentioned MoG has been widely used for
background modeling and objects detection because it

presents several advantages, such as the possibility to suc-
cessfully model varying backgrounds and gradual illumi-
nation changes. However, it is a computational demanding
algorithm in terms of memory usage and processing power.
For this reasons, in case of multicamera applications based
on the MoG algorithm, the respect of real-time constraints is
a challenging issue.

The proposed multilevel adaptation strategy aims at the
dynamic modification of the MoG parameters to reduce the
computational requirements while keeping an acceptable re-
duction of the detection accuracy. In a first stage, it allows
efficiently tuning, individually, the MoG parameters that are
used to process each camera data stream. This adaptation at
camera level is identified as the local-level adaptation (LLA).
In a second stage, if LLA does not guarantee meeting the real-
time constraints, a global-level adaptation (GLA) strategy is
enabled to balance the processing load among all the data
streams.

The main idea of this approach is to modify the parame-
ters of the MoG algorithm independently for each pixel by
using a less precise but faster algorithm in the image regions
where there are no foreground objects. On the contrary, in
the regions with foreground objects, the MoG is modified to
use a more precise but slower algorithm. The parameters of
the MoG algorithm, which are adaptively modified for each
pixel, are the number of Gaussian distributions per pixel (K),
the frequency with which the parameters are updated (Fu),
and the size of the processed area: the algorithm can work
either at block-size level (Bmode option enabled) rather than
at pixel level (Bmode option disabled).

In the following sections, the multilevel adaptation strat-
egy for background modeling is described: the main blocks
are first introduced, followed by the details of the background
modeling parameters variation policy, and finally, the mul-
tilevel adaptation strategy modeled as a finite state machine
(FSM) is described.

3.1 Main Blocks of the Adaptive Background
Modeling Strategy

In Fig. 1, the block diagram of the proposed adaptive strat-
egy is shown. It is composed of three main blocks: the MoG
block represents the background modeling algorithm; the
2-D tracking module is in charge of tracking all the detected
objects through a Kalman filter; finally, the multilevel adap-
tation block is the module that manages how the parameters
of the MoG algorithm have to be modified for each pixel.

3.1.1 Mixture of Gaussian
This block is in charge of applying the MoG algorithm to
each incoming frame It according to the parameters set by
the multilevel adaptation block. It generates the foreground
(FGt) and background (BGt) images, which are binary masks
(with a size equal to that of It) that indicate the foreground
and background pixels in the image. Moreover, this block
updates the background model. As previously mentioned,
each pixel is modeled independently using different param-
eters (set by the multilevel adaptation block) for the MoG
algorithm; for this reason, the parameters K, Fu, Bmode,
and the region of interest (ROI) information represented in
Fig. 1 must be considered as matrices (with a size equal to that
of It) containing for each pixel the corresponding parameter
value.
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Fig. 1 Block diagram of the adaptive background modeling strategy.

3.1.2 Two-dimensional tracking
The 2-D tracking module is in charge of tracking each ob-
ject detected by the MoG block and present in FGt. For each
detected object, one Kalman filter is used to track its tra-
jectory. In particular, a linear Kalman filter, which uses the
centroid and the size of the object bounding box as mea-
sured state variables, has been employed (for more details
about tracking an object with Kalman filtering, see Ref. 31).
Kalman filtering is used to track the detected objects and to
estimate the size and position of their bounding boxes in the
next frame. Thus, the FG positiont+1 presented in Fig. 1 is a
vector containing the predicted state variables (position and
size) relative to each object bounding box.

3.1.3 Multilevel adaptation—finite state machine
The proposed multilevel adaptation strategy is in charge of
modifying the MoG parameters for each image pixel to find
a trade-off between processing speed and detection accuracy.
The multilevel strategy has been modeled with a FSM, which
analyzes the foreground masks FGt, the information provided
by the 2-D tracking block FG positiont+1 and the information
related to the processing time required by the MoG block
(proc_info) to tune the MoG parameters (K, Fu, and Bmode).
It is worth noting that, for the sake of simplicity, in Fig. 1
we connect the FSM with only one MoG module, but it is
actually connected with all the MoG modules that process
the video streams coming from the different cameras in the
multicamera system.

As previously mentioned, the FSM aims to reduce the
computational requirements of the MoG algorithm using
a less precise but faster algorithm for those image regions
where it is not expected to have a moving object. The pre-
dicted moving objects position, provided in FG positiont+1,
is used to identify ROI that likely corresponds to moving
objects; consequently, the FSM tunes the MoG parameters
for each image pixel according to whether or not it belongs
to the ROI.

3.2 Background Modeling Parameters Variation
The update phase in the MoG algorithm is a time-consuming
operation that has a great impact on the MoG algorithm per-
formance. For this reason, the approach presented in this
paper proposes a default adaptation policy that aims to re-
duce the update frequency (Fu) for those pixels that belong to

the background and present a stable value. On the contrary,
the pixel update phase is accomplished for each frame only
on the pixels that belong to the detected ROIs. Moreover,
the FSM modifies the learning rate as a function of the Fu
value; in fact, low update rates will require a larger value of
α to improve the influence of the last image on the Gaus-
sian parameters. As will be shown in Sec. 5, the adaptation
of (Fu) guarantees an excellent trade-off between detection
accuracy and algorithm speed up. The second parameter that
is modified is K, the number of Gaussians, for each pixel in
the image. In fact, pixels that belong to the static background
can be modeled with few distributions. On the contrary, the
pixels that have been recently detected as part of the fore-
ground will be modeled with more distributions. The FSM
can also activate the Bmode to further reduce the computa-
tional requirements on image areas that do not belong to
the detected ROIs; however, this approach also reduces the
spatial accuracy of the detection algorithm.

FSM monitors continuously proc info of the MoG blocks
and, if required, can modify the parameters in order to speed
up the algorithm. As will be shown in detail in Sec. 4 the
acquired images are stored temporarily in a buffer until
they have been processed by the object detectors. Therefore,
increasing (decreasing) buffer occupancy corresponds to a
MoG processing that is slower (faster) than the acquisition
rate. The adaptation strategy aims at preventing overflow con-
ditions and, consequently, frame skipping. We define Bmax as
the buffer size, Bovfl and Bocp as the maximum allowed buffer
occupancy (smaller than Bmax), and the occupancy level dur-
ing normal working condition (usually set to a small value).
The proposed strategy modifies the MoG parameters to keep
buffer occupancy close to Bocp and prevent it from exceeding
Bovfl.

As previously explained, the FSM tries to speed up the
algorithm in the regions that belong to a stable background
and to maintain a more accurate, but slower algorithm, in
the ROI regions. It is clear that, in cases where there are no
objects in the scene and the detected foreground pixels are
mainly due to noise and small changes in the images, it is
convenient to use a very fast algorithm. These situations are
identified analyzing the overall activity in the scene.

3.2.1 Low-Pixel Activity Threshold (TLPA)
The scene activity is measured as a function of pixels that
belong to the foreground. The threshold TLPA is used to eval-
uate the presence of significant objects in the scene: when
the pixel activity level (Actl) is smaller than TLPA, the cur-
rent frame is said to be characterized by a low-pixel activity
(LPA). On the contrary, when Actl > TLPA, this means that
moving objects have been detected and the current frame is
said to be characterized by a high-pixel activity (HPA). In
the case of LPA, it is useful to reduce the computational re-
quirements using a less accurate but faster algorithm. On the
contrary, when HPA is detected, a more accurate but slower
algorithm is required, particularly for those areas where the
foreground objects are located.

Actl is evaluated as the sum of the area of the detected
objects, normalized by the image size (IMsize),

Actl =
∑Ndet

i=1 Ai h(Ai )

IMsize
, (11)
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where Ndet is the number of the detected objects, Ai is the
area of the i’th object and h(Ai) is a function [described in
Eq. (12)] introduced to remove from the pixel activity statis-
tics isolated foreground pixels (very small areas) and objects
that are not compact enough,

h(Ai ) =
{

1 if Ai > Amin ∧ Ai/Abb > Aratio,

0 otherwise
(12)

where Amin and Aratio are respectively the minimum accepted
value of object area and the minimum accepted ratio between
object area and the area of the corresponding bounding box
(Abb).

3.3 Multilevel Adaptation Strategy
In this section, we present a detailed description of how
the proposed strategy works at different levels and in what
cases the parameters are modified. The proposed multilevel
adaptation strategy is based on a local-level adaptation (LLA)
and a global-level adaptation (GLA).

In the LLA, each video data stream is monitored indepen-
dently from the other video data streams. Information about
scene activity and buffer occupancy level is acquired, and
consequently, the MoG parameters are adapted.

The GLA is activated only in critical situations: its behav-
ior will be explained with the following example. We refer
to MoGopt as the optimal algorithm configuration that works
without any parameters adaptation (maximum Fu, maximum
K and Bmode disabled). On the contrary MoGmin is the fastest
algorithm that does not compromise the detection accuracy
(minimum Fu, minimum K, and Bmode enabled). Let us sup-
pose that the MoG module that processes the i’th video data
stream is working at MoGmin. However, its measured buffer
occupancy is close to Bi

ovfl. In this case, it is not possible to
further modify the algorithm parameters because this would
dramatically decrease the background model quality and,
therefore, the detection accuracy: then, a global strategy is
required to adapt the parameters taking jointly into account
the status of all video stream processing tasks.

In this case, GLA selects the processing task that is using
more processing resources and forces it to reduce its compu-
tational cost (i.e., enabling Bmode option in the algorithm). As
a consequence, the i’th processing task can use these newly
available processing resources and consequently reduce the
buffer occupancy. It is worth noting that, if this first mod-
ification is not sufficient to reduce the buffer occupancy of
the i’th video data stream, the GLA strategy can be applied
iteratively to the others processing tasks.

In Secs. 3.1.1 and 3.1.2, a detailed description of the state
transitions of the FSM is given and then, for each state, the
adaptation mechanism is described.

3.3.1 Finite State Machine–State Transition
The multilevel adaptation policy has been modeled as a FSM;
its states and the transitions are shown in Fig. 2. The first state
is AQ_START, where the acquisition and processing modules
are initialized. When the first frame (event first_frame) is
acquired and processed, the FSM changes state and it goes
to the LPA_STATE.

The LPA_STATE is characterized by LPA frames: this is
a typical case where a static background is present in the
scene and there are no new objects to detect; therefore, it is
possible to decrease the computational requirements of the

AQ_START
first_frame

LPA

LPA_STATE

over_flowON

LPA

HPA_STATE

HPA

HPA HPA

over_flowOFF

buff_maxSizeON

buff_maxSizeON

buff_maxSizeOFF

MAX_SIZE

GLA

LLA

HPA_OVER

Fig. 2 FSM state transitions.

process independently of the buffer occupancy level. If the
incoming frames have been identified as HPA, the next state
will be HPA_STATE.

The FSM during normal condition operation stays in the
HPA_STATE. This state is characterized by frames where
there are significant detections, high precision in the detec-
tion algorithm is required, and the algorithm parameters are
adapted with the target to keep buffer occupancy close to
Bocp. In case the parameters adaptation strategy that is ap-
plied to ensure highly accurate detections does not allow to
keep the buffer occupancy close to Bocp, for example if there
are too many detected objects, buffer occupancy will start to
increase. If it increases up to Bovfl an over_flowON event oc-
curs and the FSM changes state to HPA OVER. On the other
side, if the incoming frames have been identified as LPA the
next state will be LPA_STATE.

The HPA_OVER is characterized by HPA frames and
buffer occupancy greater than Bovfl. In this case, moving
objects have been accurately detected but still, to avoid frame
skipping, it is further necessary to reduce the computational
requirements of the algorithm. Once that buffer occupancy
is below Bovfl (over_flowOFF event), FSM changes state to
HPA_STATE.

All these states are part of the LLA strategy (enclosed in
the dashed square in Fig. 2). As previously mentioned, when
local parameter adaptation is not sufficient to keep buffer
occupancy below Bovfl, it is necessary to start the GLA. In
particular, the choice Bovfl < Bmax gives a margin in which
it is still possible to modify the adaptation strategy in order
to further decrease the processing requirements of the tasks
and then avoid frame skipping and buffer overflow. The event
buff_maxSizeON occurs when the FSM is in the HPA_OVER
state and the buffer occupancy is still increasing up to the
buffer maximum size. In this case, the FSM changes state
to MAX SIZE, which is the only state that belongs to the
GLA. Let us identify the detection process that has reached
this state as the i’th process.

When the FSM is in the MAX SIZE state, the processing
task that is using more processing resources apart from the
i’th process (let us call it the j’th process) is selected and
forced to reduce its computational cost. It must be noted
that the GLA stops the normal execution of the FSM for
the j’th process and modifies its parameters regardless of its
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current state. When the buffer occupancy of the i’th process
has decreased (buff_maxSizeOFF event), the state machine
moves again to HPA_OVER states and the FSM of the j’th
process is restored to its previous state. In case the results
are not sufficient, the FSM remains in this state and another
process is forced to reduce its computational requirements.
It must be noted that for the sake of simplicity of Fig. 2, we
have reported the LLA states (enclosed in the square) only
for one data stream. The same FSM model is used to manage
parameters adaptation for all the video data streams in the
multicamera system.

3.3.2 Finite State machine-parameters modification
policy

The parameters of the MoG algorithm are modified according
to the current state of the FSM. In this section, a detailed
description of how they are modified in each state of the
FSM is given. The range of parameter values for each state
is set according to the analysis of the results obtained in
the detection-accuracy experiments carried out modifying
individually the different MoG parameters (see Sec. 5.1).

In the LPA_STATE, Fu is first decreased down to a min-
imum value Fmin (typically, one every four frames). If the
FSM remains in this state and Fu = Fmin, then K is decreased
down to a minimum value of 3. Finally, if the FSM still stays
in this state and the buffer occupancy keeps on increasing,
then the Bmode option is enabled.

In the HPA_STATE, the algorithm parameters are tuned
in order to obtain a more accurate detection while keeping
the buffer occupancy close to Bocp. Initially for the whole
image, the Bmode option is disabled first; then, K is gradually
increased up to Kmax and, finally, Fu is increased. During
this parameter modification, if the buffer occupancy evolu-
tion shows up a risk for the real-time performance of the
algorithm, then the highest detection quality is kept only for
those image areas that include moving objects (see ROI in
Fig. 1). For the rest of the image areas, first Fu and then K are
decreased. If necessary, the Bmode option is finally enabled.

In the HPA_OVER the parameters are modified to reduce
the computational requirements even for pixels correspond-
ing to moving objects. Therefore, for all the pixels, first K is
decreased up to a minimum value of 2. Then, Fu is decreased
down to Fmin. Finally, if still the FSM state is HPA_OVER ,
Bmode is enabled.

When GLA is enabled, which means that FSM is in the
MAX SIZE state, the process that is using more computa-
tional power is selected and forced to reduce its computa-
tional requirements. First of all, the parameters are modi-
fied in the regions that do not contain moving objects as
for the case of HPA_STATE; then if this approach is not
sufficient, the same parameters modification strategy of the
HPA_OVER state is applied.

4 Multicamera System Software Architecture
The proposed adaptive strategy has been implemented in a
multicamera system composed by a central node connected
with several cameras. We have developed a modular and
scalable software architecture for on-line multicamera video
processing (see Ref. 32 for more details). The software archi-
tecture is scalable because it can efficiently manage multiple
data streams, adding small overhead and saving useful com-
putational resources. It is modular because it is composed

by functional blocks that operate independently in different
phases of the overall processing chain. The architecture is
hardware independent: it can be easily ported on different
host machines and is not related to any particular model or
type of camera. It is also flexible from the point of view of
the data; in fact, all the modules are automatically adapted to
different image formats or sizes. Moreover, the architecture
is designed to operate in off-the-shelf machines with com-
mercial operating systems (no real-time operating systems
are required) and without the use of any dedicated hardware.
The software architecture is fully developed in C + + and
the management of image data and the processing tasks is
based on OpenCV libraries33 (version 2.1). The architecture
is composed of two main modules: a processing unit (PU)
and a controller unit (CU).

4.1 Processing Unit
The PU is a scalable module that can be connected with
several cameras; it is in charge to manage the incoming
data streams and process them, and it is constituted by three
functional blocks as shown in Fig. 3: the acquisition module
(AM), the image buffer manager (IBM), and the processing
module (PM). The AM continuously acquires images that
are temporally stored in the image buffer. The PM reads
the acquired images from the buffer and processes them by
applying the MoG algorithm. Basically AM is in charge of
continuously acquiring the images and delivering them to the
IBM. The IBM is the module one that manages the buffer (of
fixed size). It takes care of the buffer accesses and manages
undesired situations, such as buffer overflows. These
modules operate independently, and this aspect confers a
great modularity to the global software architecture.

The AM allows acquiring images from the devices and
delivering them to the IBM. It initializes the acquisition tasks
and then starts a continuous process that is activated when
a new image is available. When a new image is acquired, it
is labeled with a time stamp; the data are converted to an
OpenCV data structure, and then the images are delivered to
the IBM.

The image buffer is used to compensate the different rates
with which the flow of data is acquired by the AM and
processed by the PM. In fact, whereas the acquisition rate
remains constant, the processing rate can present deviations
from a fixed value. This aspect is particularly relevant in our
application because it is based on general purpose processors,
where the available computational resources must be shared
among different applications. The IBM manages the accesses
to the buffer; in fact, the buffer access is thread safe because a
semaphore system guarantees that only one process can write
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   Module

Processing 
   Module

Image Buffer
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   Module
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   Module
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Fig. 3 Scheme of the multicamera system.
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on the buffer (the AM) and one process can read an image
from it (the PM). A specific policy to handle buffer overflow
is defined in this module: it is possible to eliminate the oldest
frame or to skip the newest one. The IBM communicates to
the central unit the presence of new frames and the occurrence
of the overflow condition.

The PM has one main task: continuously reading images
from the buffer and processing them. It is the most customiz-
able module of the entire software architecture and can be
constituted by any processing task, including visualization
or image storage. In this application, the PM implements the
MoG algorithm. It communicates with the controller unit,
which is in charge of modifying the parameters of the MoG
as a function of the overall system state

4.2 Controller Unit
The controller unit initializes, monitors, and closes all the
processes. It starts and stops the acquisition, gets the camera
settings (i.e., frame size, gain, etc.), and using this informa-
tion, it initializes the PU. It is also in charge of correctly
closing all modules and shutting down the system. During
the acquisition, it gathers the information about all the mod-
ules of the system, such as acquisition frame rate, processing
time, the state of the image buffers, and the scene activity. The
controller unit is also in charge of dynamically adapting the
background subtraction parameters following the adaptation
strategy presented in Sec. 4.1.

5 Results
We have tested the proposed adaptation strategy in a
multicamera system composed of three cameras and one
workstation as a central processing node. Camera models
are JAI CB-080 GE. It is a Giga Ethernet camera model that
offers a maximum resolution of 1032 × 778 pixels with a
maximum frame rate of 30 fps. The data provided by the cam-
era are 8-bit Bayer format. The workstation is equipped with
two quad core processors of the Intel Xeon family, 16 GB of
RAM, and fast HD (15 krpm) in RAID-0 configuration.

It is important to highlight that this kind of multicamera
application requires a high accuracy of camera-acquisition
synchronization to guarantee a correct fusion of the 2-D in-
formation extracted by the object-detection modules. For this
reason, we have developed an external triggering system that
allows minimizing the synchronization error. In particular,
the cameras have been connected in a master–slave configu-
ration, where the timing circuit of the master camera is used
to generate the trigger of the system. Image acquisition for
all cameras, master included, is governed by the generated
trigger signal. The symmetry of the connection circuit guar-
antees that all the cameras are tightly synchronized with a
synchronization error on the order of microseconds. This er-
ror value guarantees a very accurate synchronization in our
indoor application, where the cameras typically acquire im-
ages at 25 fps (40 ms) and the shutter time of the camera is
generally set at 10 ms. By considering these settings, it is
clear that a synchronization error of few microseconds does
not affect the overall performance of the system much; in
fact, even if the cameras start the image acquisition (open
shutter) with a misalignment of microseconds, they are in
practice acquiring information about the same scene.

The presented results have been obtained using, as bench-
mark, three different data sets: the first one is composed by

sequences acquired by our multicamera system (we call this
database D1); the second one is composed by sequences from
the Performance Evaluation of Tracking and Surveillance
2006 data set, that is freely available on the Internet34 (hence-
forth we refer to this database as D2); and the third one (D3) is
composed by three sequences, provided with a hand-labeled
ground truth, of the database presented in Ref. 35, which is
freely available on the Internet.36 D2 has been selected be-
cause it provides medium-high resolution images of a mul-
ticamera system in an indoor environment—characteristics
that are typical of a multicamera video surveillance applica-
tion. On the contrary, D3 is composed of three sequences that
present different scenarios with respect to D1 and D2; in fact,
we select two outdoor scenarios (called, respectively, Cam-
pus and Fountain) and one indoor scenario with challeng-
ing lighting conditions (Lobby sequence). Moreover, each
sequence of D3 is provided with a set of 20 hand-labeled
ground-truth frames that we have extended to 60 ground-
truth frames; in this way, it has been possible to provide
an objective evaluation of the performance of the proposed
approach.

As a measure of algorithm performance, we compare the
following values: False positive (FP), that is the fraction
of the background pixels that are marked as foreground;
false negative (FN), the fraction of foreground pixels that
are marked as background; and the total error (TE), the total
number of misclassified pixels (normalized with respect to
the image size). Moreover, we consider also the similarity
measure S introduced in Ref. 35, which fuses into one metric
the FP and FN information, and is defined as follows:

S(A, B) = A ∩ B

A ∪ B
, (13)

where A is a detected region and B the corresponding ground-
truth region. The similarity measure S is a nonlinear measure
that is very close to 1 if A and B are very similar and close to
0 when the two regions are completely different.

The use of several databases and the application of two dif-
ferent performance metrics helps one to undertake a thorough
evaluation of the proposed approach under different condi-
tions: variable illumination (indoor/outdoor environments),
different moving object sizes (cars, humans) that lead to dif-
ferent activity levels, and challenging background conditions
(strong moving backgrounds). Moreover, we individually test
different aspects of our approach to demonstrate its strengths
and capabilities. In Sec. 5.2, we investigate how the mod-
ification of individual MoG parameters affects the original
MoG algorithm performance, and how the proposed adap-
tive strategy based on the tracked ROIs achieves a very good
trade-off between detection error and algorithm speed up.
Section 5.2 presents the advantages of introducing LLA in
real-time scenarios; in particular, it is shown how the system
is able to adapt the MoG to various processing loads obtain-
ing detections with different accuracy levels. The avoidance
of frame skipping, guaranteed by the LLA, improves the
results obtained using only the ROI adaptation approaches.
Finally, in Sec. 5.3, the results obtained by using GLA in a
multicamera environment are presented.

5.1 Region-of-Interest Parameter Adaptation
The results obtained with the ROI adaptive strategy proposed
in this paper have been compared to those obtained using the
MoG algorithm without any parameter adaptation (MoGopt)
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and with the MoG algorithm varying individually K, Fu, and
Bmode on all the image areas. In this section, we use two
data sets: D1 and D3. The disadvantage of using D1 is that
no hand-labeled ground truth is available. For this reason,
the foreground detected objects obtained with MoGopt have
been used as ground truth to test the detection accuracy of the
other algorithms. It is worth noting that although this com-
parison cannot give an absolute measure of the algorithm
performance because the reference is itself affected by er-
rors, it does provide a relative measure of detection accuracy.
Moreover, we use the analysis of these results to motivate
the parameter adaptation policy, as presented in Sec. 3, in
terms of their adequate values and the order in which they
must be modified. D3 is a subset of the videos presented in
Ref. 35, which has been widely used in literature. As pre-
viously mentioned, it has been selected because it provides
detection mask ground truth and contains examples of dif-
ferent environments. The Campus and Fountain videos cor-
respond to outdoor scenarios that pose challenging detection
conditions, such as nonstatic backgrounds (waving trees and
moving water). The third video, Lobby, is an indoor scenario
where sudden illumination changes occur (light switched
off and on). D3 is composed of low-resolution videos
(160 × 128 pixels).

The objective of the first set of tests is to evaluate the
impact introduced using the proposed adaptation strategy
but modifying only one parameter at time. For this reason,
this simulation is performed processing one frame at time
without real-time constraints, thus, guaranteeing that no er-
rors associated to possible frame-skipping conditions affect
the statistics. In fact, the frame-skipping condition would
affect the error statistics, producing a substantial contribu-
tion to the error for each discarded frame (i.e., considering
an empty foreground mask frame produces the highest FN).
Moreover, frame skipping would progressively degrade the
background model quality. An estimation of the processing
speed of each algorithm is given by the average frame rate
(AFR). It is worth noting that for each sequence, the same
MoG parameters (such as α, T, weight initialization, etc.) and
the same postprocessing routines (basically, morphological
closing operations) have been used for all the approaches.

Table 1 reports the performance of the MoG algorithm
on dataset D1 varying Fu (reported in the first column). The
first row (Fu = 1) represents MoGopt, and the last one reports
the results of the ROI-based parameter adaptation varying

Table 1 Detection accuracy and AFR obtained varying Fu. Data
set D1.

Fu TE FN FP S AFR

1 13.73

2 1.08 25.9 0.13 0.72 18.90

4 1.34 31.15 0.20 0.63 23.72

6 1.45 33.15 0.24 0.62 25.60

8 1.51 34.33 0.26 0.62 26.58

10 1.53 35.07 0.25 0.61 27.17

varFu 0.66 12.68 0.20 0.85 24

Fig. 4 (a) Data set D1 frame 497 detail, (b) object detected with
MoGopt, (c) object detected with Fu = 4, and (d) object detected with
varFu.

Fu (varFu). As can be noted, varFu guarantees the lowest
TE because it allows one to considerably reduce the FN rate
and then to increase the detection accuracy. The FP rate is
low (0.2, as in the case of Fu = 4), and the achieved AFR
(24 fps) is satisfactory for many real-time applications. For
example, the multicamera application used for the immer-
sive 3-D system,5 presented in Sec. 1, has been successfully
tested with a frame rate between 15 and 20 fps, whereas sport
game monitoring applications vary from 14 fps in Ref. 7 to
25 fps.37 As can be noted, the obtained value of S is the high-
est, confirming the trend identified by the other indicators.

In Fig. 4, detection results using different configurations
of Fu are presented. To highlight the differences between the
foreground masks obtained with MoGopt (Fu = 1 and the
others approaches, FP pixels are painted in light gray, FN
pixels in dark gray and correctly classified ones in white.
(This color labeling is used also for Figs. 5, 6, and 9). As can
be noted in Fig. 4(d), the precision accuracy obtained with
varFu is higher than that obtained with MoGopt [Fig. 4(b)] and
clearly over performs the case of Fu = 4 [Fig. 4(c)], which
presents a high level of FN. Moreover, varFu guarantees the
same AFR as Fu = 4 (see Table 1). As can be noted from
Fig. 4(c), the accuracy of the silhouette detected with varFu
is very high, even helping to remove some detection errors,
such as, for example, the discontinuities in the object’s left
part (that are marked as FP).

Table 2 reports the performance of the MoG algorithm
with data set D1 for different values of K (reported in the first

Fig. 5 (a) Data set D1 frame 283 detail, (b) object detected with
MoGopt, (c) object detected with K = 2, and (d) object detected with
varK.
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Fig. 6 (a) Data set D1 frame 303 detail, (b) object detected with
MoGopt, (c) object detected with Bmode, and (d) object detected with
varBmode.

column). The first row (K = 5) corresponds to MoGopt, and
the last one reports the results of the ROI adaptive strategy
varying only K (see Sec. 3.2).

The variation of K according to the ROI information (varK
in Table 2) allows a good increase of the AFR, similar to the
one obtained with K = 2, but improving its TE and S values.
Figure 5(a) shows a detail of frame 283. As can be noted, the
precision accuracy obtained with varK [Fig. 5(d)] is similar
to the one obtained with MoGopt [Fig. 5(b)]. Moreover, the
detected object with varK fills the small hole near the right
arm present in the reference-detected object. The filled space
between the legs does not have to be considered a relevant
error because it does not affect the object silhouette and
makes it more compact as required in video-surveillance
applications.

Table 3 reports the performance of the MoG algorithm
with Bmode enabled (2 × 2 pixel blocks) for the D1 data set.
The first row (Bmode disabled) represents MoGopt, and the
last row (VarBmode) reports the results of the ROI parameter-
adaptation strategy varying only Bmode. It is worth noting
that VarBmode not only obtains a similar AFR value to that
with Bmode enabled for the whole image (second row), but
also significantly reduces FN, thus resulting in much more
accurate detected object silhouettes, as shown also in Fig. 6.
The precision accuracy obtained with VarBmode [Fig. 6(d)]
is similar to the result obtained with MoGopt [Fig. 6(b)].
Moreover, the detected object silhouette in Fig. 6(d) does not
show the blocking effects that appear when Bmode is enabled
for all the images [Fig. 6(c)]. In fact, the silhouette obtained
with Bmode enabled contains several FP pixels (shown in light
gray) which form the blocking effects.

Table 2 Detection accuracy and AFR obtained varying K. Data
set D1.

K TE FN FP S AFR

5 13.73

4 0.12 0.97 0.09 0.94 15.06

3 0.51 2.32 0.44 0.78 16.27

2 0.82 4.75 0.67 0.70 17.32

1 2.80 70.35 0.23 0.22 18.15

varK 0.76 6.68 0.53 0.72 17.18

Table 3 Detection accuracy and AFR obtained varying Bmode. Data
set D1.

Bmode TE FN FP S AFR

Bmode disabled 13.73

Bmode enabled 0.85 13.7 0.36 0.72 29.5

VarBmode 0.92 4.69 0.77 0.69 28.3

To complete the evaluation of the error introduced by the
proposed ROI parameter-adaptation strategy with respect to
the MoGopt algorithm, we test the different ROI approaches
(varK, varFu and varBmode) on data set D3 (for which an
extended hand-labeled detection ground truth is available).
For each sequence, the same MoG parameters (such as α, T,
weight initialization, etc.) and the same postprocessing rou-
tines (basically, morphological closing operations) are used.
In Table 4, the results of the performance of the different
ROI approaches and the MoGopt with respect to the available
ground truth are reported. For the Campus sequence, the TE
values obtained with ROI parameter-adaptation strategies
are low and close to the values obtained by MoGopt; this
clearly confirms previous results where the relative error
introduced by the ROI approach with respect to the MoGopt
was low. Also, the comparison of the similarity measure S
confirms that the foreground regions obtained with the ROI
adaptation strategies have a similar quality to those generated
by MoGopt. The AFR column shows that, also in this case,
the ROI approaches lead to a higher AFR. However, in this
case the increment obtained with varK and varF is smaller
than the one obtained in the previous experiments (see
Tables 1 and 2). This lower AFR gain is due to the particular
nature of the Campus sequence. It presents a highly moving
background (weaving trees) that result in the detection of

Table 4 Detection accuracy and AFR of MoGopt and ROI parameter
adaptation. Data set D3.

Sequence Mode TE FN FP S AFR

Campus MoGopt 1.45 6.68 1.31 0.57 324.98

varK 1.62 5.71 1.51 0.56 344.82

varFu 2.38 3.20 2.36 0.46 357.14

varBmode 1.33 9.59 1.11 0.52 623.61

Fountain MoGopt 1.86 16.13 1.35 0.64 501.26

varK 1.91 10.76 1.59 0.63 599.09

varFu 1.93 10.50 1.62 0.62 838.39

varBmode 2.26 10.62 1.96 0.58 906.14

Lobby MoGopt 1.40 20.52 0.95 0.54 494.66

varK 3.39 32.13 2.70 0.48 595.41

varFu 2.32 30.61 1.65 0.49 854.30

varBmode 21.74 10.94 22.00 0.30 692.38
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Fig. 7 Foreground masks results for Campus, Fountain, and Lobby videos.

several objects, simultaneously. Consequently, the number
of image pixels for which it is possible to modify the MoG
parameters is reduced, thus limiting the computational
improvement of these adaptive approaches. Also in the case
of the Fountain sequence, the TE and S values obtained with
the ROI approaches are very close to the one obtained by
MoGopt; an increase of FP is observed, but it is balanced
by a reduction of FN. Higher AFR values are also achieved
with respect to the MoGopt algorithm. The same results have
been observed when analyzing the Lobby sequence, except
for the varBmode. In fact, by using this approach, a high
TE (≈ %20) is caused by the FP. These data are confirmed
also by a low value for S (0.3). This effect is caused by the
fast illumination changes in the Lobby sequence that affect,
particulary, the varBmode approach.

In Fig. 7, example frames of the sequences and the corre-
sponding foreground masks are presented. In the row, from
top to bottom, the frames relative to Campus, Fountain, and
Lobby are shown; from left to right, the original sequence
frame, the ground-truth foreground mask, and the resulting
masks obtained with MoGopt, varK, varFu, and varBmode are
presented. As expected, foreground masks obtained with the
ROI adaptive strategies are very similar to the MoGopt ones
except for varBmode and, particularly, for the Lobby sequence:
the lowest part of the body is not correctly detected. Although
some noisy detections are also present in Campus, due to the
strongly moving background, they can be easily eliminated
by fitering the objects with a very small area. On the other
hand, it is relevant the robustness of the adaptive approaches
in the presence of softly moving backgrounds, as the one in
the Fountain sequence: variations produced by the moving
water are adequately modeled as background, keeping one of
the main strengths of MoG background modeling strategies:
the capability to model quasi-static backgrounds.

These results demonstrate that the tracked ROI-based pa-
rameter adaptation guarantees accurate detection and a con-
siderable speed up of the algorithm performances with re-
spect to parameter modifications applied to the whole image.
However, a more flexible strategy is still necessary to modify
the MoG parameters as a function of the available processing
resources and fulfill the real-time constraints.

5.2 Local-Level Adaptation
In this section, the functionalities of LLA (see Sec. 3) are
presented with different examples of the three data sets. In

particular, we investigate how the proposed system automat-
ically adapts the MoG parameters to keep real-time perfor-
mance while guaranteeing high detection accuracy. More-
over, we test LLA with sequences at different frame rates to
show the effect on the detection accuracy. It is worth noting
that LLA improves the detection performance with respect to
simple ROI adaptation approaches because frame skipping
is avoided.

The first example shows the results for data set D1 when
the video data stream has to be processed at 20 fps: the
performance of the ROI adaptation strategies is compared
to the proposed LLA approach. In Fig. 8, the pixels activ-
ity evolution (black curve) for one camera is reported, to-
gether with the evolution of the buffer occupancy (light gray
curve). Dashed lines represent the activity threshold value
to move from LPA to HPA, the target buffer occupancy for
the HPA STATE (Bocp) and the buffer occupancy threshold
to switch to the HPA OVER state (Bovfl).

This example shows how the FSM moves across all the
states of LLA. Let us analyze, in detail, the curves in Fig. 8.
At the beginning of the acquisition, there are no detected ob-
jects. Therefore, the FSM is in the LPA STATE and the buffer
occupancy is close to zero. After 10 s, a moving object enters
in the scene and the pixel activity quickly exceeds TLPA. As a
consequence, the FSM moves to the HPA STATE and the pa-
rameters are tuned in order to keep the buffer occupancy close
to Bocp and to guarantee a good detection accuracy. However,
the pixel activity is high and the parameters adaptation strat-

Fig. 8 Pixel activity and buffer occupancy evolution. Data set D1.
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Table 5 Detection accuracy obtained with LLA. Dataset D1.

MODE TE FN FP S

varK 1.91 20.49 0.46 0.69

varFu 2.79 65.20 0.03 0.2

varBmode 2.42 1.66 2.44 0.68

LLA 0.84 8.72 0.54 0.72

egy associated to the HPA STATE is not sufficient to keep
the buffer occupancy close to Bocp. In fact, the buffer occu-
pancy rapidly reaches the upper bound (Bovfl), thus forcing
the FSM to move to the HPA OVER. In this state, algorithm
parameters are tuned significantly to force reducing the buffer
occupancy to prevent frame skipping. The result is that buffer
occupancy slowly decreases and remains close to Bocp.

Detailed results of the detection accuracy are shown in
Table 5 for the different ROI-based adaptation and LLA
strategies. We must keep in mind that, in this simulation,
we are considering a real-time application. Therefore, the
results of the ROI adaptation strategies are expected to be
significantly worse than those in Sec. 5.1 because they are
affected by frame skipping. In particular, when a frame is
discarded and not processed, we compare the previous avail-
able foreground mask to the reference ground truth. It is
clear that the higher the number of discarded frames there
are; the greater the error introduced is. On the contrary, the
LLA algorithm, through the combined modification of dif-
ferent algorithm parameters, adapts the required processing
resources to the real-time constraints, thus avoiding frame
skipping and keeping a very good detection accuracy. As can
be noted, LLA guarantees the lowest value of TE and the
highest value of S.

In Fig. 9, a foreground object detected by the adaptive
algorithm when the FSM is in the HPA STATE is shown. In
particular Fig. 9(a) reports the details of the acquired original
frame, Fig. 9(b) shows the foreground object detected with
MoGopt, and Fig. 9(c) shows the foreground object detected
with the adaptive strategy, which reduces the computational
requirements down to the required values to keep the real-
time operation. As can be noted, also in this case, when full
parameter adaptation is required, highly accurate detection
results are obtained.

Fig. 9 (a) Data set D1 frame 421 detail, (b) object detected with
MoGopt, and (c) object detected with the adaptive strategy.

In the second example, D2 is used. This example shows
how the LLA adequately adapts the MoG algorithm to dif-
ferent real-time conditions: in one case, the system is fed
with a sequence at 21 fps and, in the other case, the se-
quence is provided at 31 fps. Results are reported in Fig.
10 where the evolution of the pixels activity (in black) and
the buffer occupancy (in light gray) are shown for both real-
time conditions. As can be noted, for the sequence at 21 fps
[Fig. 10(a)] the activity at the beginning of the sequence is
low and the buffer occupancy is kept low. A sudden change
in the pixel activity (which appears between 40 and 50 s)
causes an increase of the computational time and, conse-
quently, an increase of the buffer occupancy. The proposed
strategy adapts the MoG parameters dynamically to smoothly
reach the target value of Bocp, providing accurate detection,
and it controls the computational requirements so that buffer
occupancy is maintained close to this Bocp value. On the
contrary, in the case of the sequence provided at 31 fps
[Fig. 10(b)], the initial pixel activity is high enough to lead
the buffer occupancy to Bocp. It is worth noting that scales for
the pixel activity and buffer occupancy axes for this plot are
larger than the one that corresponds to the sequence at 21 fps
[Fig. 10(a)]. The proposed strategy perfectly adapts the pa-
rameters to keep the buffer occupancy close to this value.
Between 30 and 40 s, the activity increases sharply. At
the beginning, parameters are adapted to try to compen-
sate for this increase (smooth increase of buffer occu-
pancy). However, the continuous increase in activity leads
buffer occupancy to reach Bovfl, thus making the FSM
to move from the HPA STATE to the HPA OVER. The
adaptation policy defined for this state, imposing further
adaptations of the parameters to prevent from critical sit-
uations such as frame skipping, works perfectly, buffer
occupancy is decreased down to Bocup, detection accu-
racy is increased, and the defined adaptation strategy al-
lows keeping the computational requirements bounded and
controlled.

Detection accuracy results with respect to the MoGopt
algorithm using the proposed LLA are reported in Table 6.
As expected, better results are obtained for the sequence
with less real-time constraints (21 fps). It shows a smaller
TE value and higher similarity measure S value. However,
the average accuracy of the detections is kept high even when
harder real-time restrictions appear (31 fps).

For the third example, we use the Fountain sequence of the
D3 data set, which provides ground-truth detections. The use
of the ground-truth detections as reference allows providing
objective measurements of the detection accuracy obtained
with the proposed LLA under real-time constraints. As previ-
ously mentioned, the image size of the videos in the D3 data
set is very small and using them directly to fed the processing
system does not allow one to generate realistic real-time con-

Table 6 Detection accuracy obtained with LLA at different frame
rates. Data set D2.

Frame Rate TE FN FP S

LLA (21 fps) 1.4731 4.8648 1.3340 0.67

LLA (31 fps) 1.5054 6.4745 1.3017 0.64
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Fig. 10 Data set D2. Pixel activity and buffer occupancy evolution: (a) Sequence at 21 fps. (b) Sequence at 31 fps.

straints. For this reason, we create a new sequence joining
30 low-resolution original videos arranged as a matrix with
five rows and six columns. The images of this new sequence
are 960×640 pixels, and they are provided to the system at
20 fps.

Figure 11(a) reports the evolution of the pixels activity
(in black) and the buffer occupancy (in light green) for the
sequence at a frame rate of 20 fps. As can be noted, the buffer
occupancy trend is correlated with the pixel-activity values.
This means that the FSM moves from the LPA STATE to
the HPA STATE, hence trying to guarantee a good detection
accuracy, and parameters adaptation generates smooth
buffer occupancy profiles. It is particularly relevant that
the fast adaptation of the system to LPA states: the lack
of activity does not require highly accurate background
models, thus leaving buffer room for smooth adaptation
through locally fast parameters tuning—improving the
detection accuracy—when HPA occurs. In Fig. 11(b) a
zoom of the two curves in (a) is shown; additionally, the S
values obtained using the MoGopt strategy (black diamonds-
tested without real time constraints) and the proposed LLA
approach (gray squares - tested with real time constraints)
are displayed. As can be observed, the S values obtained
with LLA, keeping the real-time constraints, are very
close to those that are theoretically optimum MoGopt (that
cannot fulfill real-time constraints). These results show
that, even if during the processing, the LLA modifies the
parameters of the background modeling strategy to reduce
the accuracy (i.e., using few Gaussians per pixel when the
activity level is low), it demonstrates to rapidly modify
the parameters when required (i.e., new objects entering
in the scene) to ensure a high detection accuracy. In

Table 7, are reported the performance of LLA and MoGopt
(this strategy tested without real-time constraints) with re-
spect to the ground truth detections. The values of TE and S
observed for LLA are very close to the MoGopt. The proposed
strategy demonstrates an excellent capability to adapt to
the available resources while keeping an adequate trade-off
between detection quality and computational efficiency.

5.3 Global-level adaptation
In this section, the functionalities of GLA are demonstrated
and the results with data sets D1 and D2 are presented.

In a first example, D1 is used, in particular, the three cam-
eras of the system are acquiring images at a frame rate of
18 fps. As introduced previously, GLA is required when
LLA is not sufficient to reduce the buffer occupancy in crit-
ical situations. In Fig. 12 the buffer occupancy for the three
cameras is shown: as it can be noticed the buffer occupancy
of camera 0 (light gray line) exceeds Bovfl. The FSM is in the
HPA OVER state, and the algorithm parameters are sequen-
tially tuned to try to reduce the buffer occupancy. However,
buffer occupancy keeps increasing even when algorithm pa-
rameters have reached their minimum values. In these situa-
tions, GLA is activated to reduce the buffer occupancy and
to avoid frame skipping: the most consuming processes are
selected and forced to reduce their processing requirements.
In this example, GLA first modifies parameters of camera 1
and then modifies those of camera 2 so that the new available
processing resources are used for camera 0, thus reducing its
buffer occupancy. As it can be noticed in Fig. 12 the buffer
occupancy of camera 1(black line) and camera 2 (dark gray
line) are reduced too.

Fig. 11 Data set D3. (a) Pixel activity and buffer occupancy evolution and (b) Pixel activity and buffer occupancy evolution with S measure for
LLA and MoGopt.
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Table 7 Detection accuracy obtained with LLA and with MoGopt. Data
set D3.

Mode TE FN FP S

MoGopt 1.63 14.6 1.17 0.64

LLA (21 fps) 1.98 14.6 1.54 0.58

Figure 13 shows how the detection accuracy of cameras
1 and 2 is reduced to avoid the frame-skipping condition of
camera 0. Figures 13(a)–(c) show the detected object in the
three cameras before starting the GLA strategy. Parameter
adaptation for camera 0 has reached minimum values (in
HPA OVER), introducing some distortion—blocking–in the
detected objects silhouette, as shown in Fig. 13(a). Silhou-
ettes corresponding to the same object detected in cameras 1
and 2 show higher accuracy as the adapted parameters corre-
spond to the HPA STATE. To prevent from frame skipping
in camera 0, GLA is applied. As defined in the proposed
strategy, parameters for cameras 1 and 2 are modified to
force reduction of their computational requirements. Conse-
quently, the accuracy of the detected object in camera 1 [Fig.
13(e)] and camera 2 [Fig. 13(f)] is slightly affected and the
effect of the subblock processing can be noted. However, this
approach allows reducing the global computational require-
ments of the application and avoids frame skipping in camera
0. It is worth noting that the detection accuracy of camera 0
remains the same before [Fig. 13(a)] and after [Fig. 13(d)]
the application of GLA. In fact, the parameters of MoG for
camera 0 cannot be further modified during GLA because
the MoG algorithm is already in its minimal configuration
(MoGmin).

In the second example, we show how the GLA strategy
affects the detection accuracy on the D2 data set considering a
two-camera system. In Figs. 14–16, the results of the adaptive
strategy applied to this data set are reported. In particular, the
evolution of the detection accuracy during the GLA phase
is shown. Figure 14 shows the detected objects in the two
views; in this case, the FSM is in HPA STATE, only LLA is
applied to control the algorithm parameters, and then highly
accurate detections are obtained. However, later on in the
sequence, the FSM reaches the MAX SIZE state and the

Fig. 12 Data set D1 with a three-camera system: Buffer occupancy
evolution for camera 0 (light gray), camera 1 (black), and camera 2
(dark gray).

Fig. 13 Data set D1 with a three-camera system. Detail of a detected
object: (a–c) before GLA; (e–f) after GLA.

GLA strategy is applied: Bmode is enabled, thus reducing
the computational requirements and avoiding frame skipping
but slightly affecting to the detection accuracy (see, in Fig. 15
the subblocks effect for some silhouettes). When the buffer
occupancy level has reached acceptable values, the GLA
strategy is disabled and parameters are adapted to provide
higher quality detections (see Fig. 16).

6 Conclusions
Background modeling is a fundamental task in many
computer-vision applications and becomes a time-critical
task in a multicamera system, where a huge amount of data
must be processed. In this paper, we have presented an inno-
vative and efficient adaptive strategy for background mod-
eling for real-time object detection in multicamera systems.
The proposed approach is particularly attractive because it
can dynamically adapt the algorithm parameters in order to
respect the real-time constraints of the application and with-
out a significant loss in detection accuracy. In particular, the
proposed parameter adaptation policy is a multilevel strategy.
It works at the local (camera) level by adapting the back-
ground model parameters independently for each processing
task. If the changes done at local level are not sufficient, then
the global-level adaptation strategy balances the processing
load among all the tasks.

The proposed approach is highly innovative because it
is more flexible and customizable than state-of-the-art solu-
tions, which are too application specific, offers reduced adap-
tation capabilities, and whose applicability to multicamera
systems is very limited. It has been successfully tested with
different sequences, and the results show that the proposed
strategy guarantees an excellent trade-off between detection
accuracy and real-time processing capabilities in a multicam-
era environment. In particular, three different data sets have
been considered in the evaluation process, including differ-
ent image sizes, different environments (indoor and outdoor
scenarios), and various real-time scenarios.

The proposed approach is currently being successfully
used for object detection and tracking purposes for video
surveillance in a multicamera system based on a centralized
server. Its modular and adaptive structure makes it partic-
ularly attractive to seamlessly integrate additional features,
such as shadows removal, consistent labeling for multiple
objects tracking, and 3-D positioning. In this way, a com-
plete adaptive 3-D positioning system for real-time video-
surveillance applications is being built, where the differ-
ent tasks are tuned according to the available processing
resources to keep the real-time constraints.
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Fig. 14 Data set D2 with a two-camera system. Frames 121 corresponding to (a) camera 3, (b) camera 4; (c), (d) detected objects for both
images during LLA.

Fig. 15 Data set D2 with a two-camera system: (a), (b) Frames 991 and (c), (d) detected objects for both images during GLA.
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Fig. 16 Data set D2 with a two-camera system: (a), (b) Frames 2299 and (c), (d) detected objects for both images when back to LLA.
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8. M. Montañés Laborda, E. Torres Moreno, J. Martı́nez del Rincón, and
J. Herrero Jaraba, “Real-time GPU color-based segmentation of football

players,” J. Real-Time Image Process., 1–13 (2011).
9. C. H. Lin, M. Wolf, X. Koutsoukos, S. Neema, and J. Sztipanovits,

“System and software architectures of distributed smart cameras,” ACM
Trans. Embed. Comput. Syst. 9, 1–30 (2010).

10. N. Bellotto, E. Sommerlade, B. Benfold, C. Bibby, I. Reid, D. Roth,
C. Fernández, L. V. Gool, and J. Gonzàlez, “A distributed camera system
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