
F
m
i
f
H
A
a
U
E
R
E

A
g
d
t
m
c
E
n
t
p
s
�

S
i

P
r
p

1

T
n
G
m
w
h
c

b
m
p
m
v
s
a
v
c
f
i
f
b

b
e

0

OE LETTERS

O

ast subpixel motion esti-
ation based on the

nterpolation effect on dif-
erent block sizes for
264/AVC

bdelrahman Abdelazim, MEMBER SPIE, Mingyuan Yang,
nd Christos Grecos, SENIOR MEMBER SPIE

niversity of Central Lancashire, School of Computing,
ngineering and Physical Sciences, ADSIP
esearch Centre, Preston PR1 2HE United Kingdom
-mail: CGrecos@uclan.ac.uk

bstract. We propose a fast subpixel motion estimation al-
orithm for the H.264 advanced video coding �AVC� stan-
ard. The algorithm utilizes the correlation of the spatial in-
erpolation effect on the full-pixel motion estimation best
atches between different block sizes in order to reduce the

omputational cost of the overall motion-estimation process.
xperimental results show that the proposed algorithm sig-
ificantly reduces the CPU cycles in the various motion es-
imation schemes by up to 16% with similar rate-distortion
erformance when weighed up against the H.264/AVC
tandard. © 2009 Society of Photo-Optical Instrumentation Engineers.

DOI: 10.1117/1.3095795�

ubject terms: H.264; fast motion estimation; block matching;
nterpolation.

aper 080867LR received Nov. 7, 2008; revised manuscript
eceived Dec. 23, 2008; accepted for publication Jan. 13, 2009;
ublished online Mar. 12, 2009.

Introduction

he H.264 advanced video coding �AVC� standard1 is the
ewest standard from the ITU-T Video Coding Experts
roup and the ISO/IEC Moving Pictures Experts Group. Its
ain advantages are the great variety of applications in
hich it can be used and its versatile design. This standard
as shown significant rate-distortion �RD� improvements as
ompared to other standards for video compression.

The standard provides great flexibility in the selection of
lock sizes for motion estimation/compensation, with a
inimum luma block size as small as 4�4. Although most

rior standards enable half-pixel motion vector accuracy at
ost, the H264/AVC further allows quarter-pixel motion

ector accuracy for improved performance. Although the
tandard has shown significant RD improvements, it has
lso increased the overall encoding complexity due to the
ery refined motion-estimation �ME� process. The ME pro-
ess consists of two stages: integer-pixel motion search and
ractional-pixel motion search. Because the complexity of
nteger-pixel ME has been greatly reduced by numerous
ast ME algorithms,2,3 the computation overhead required
y fractional-pixel ME has become relatively significant.

Different fast fractional-pixel ME algorithms3–6 have
een proposed, and some of them are used by the JM ref-
rence software.7 Their common idea is to simplify the

091-3286/2009/$25.00 © 2009 SPIE
ptical Engineering 030504-
search pattern by applying very refined prediction algo-
rithms and improved adaptive threshold schemes to termi-
nate unnecessary search positions.

In this paper, we focus on decreasing the complexity of
fractional-pixel ME by effectively applying a two-step al-
gorithm. First, we examine the 16�16 macroblock
fractional-pixel ME best match, derived from the outcome
we eliminate the fractional-pixel motion search for 16�8
and 8�16 macroblock partitions. Likewise, in the second
step we examine the 8�8 macroblock partitions fractional-
pixel ME best matches and, derived from the outcome, we
eliminate the fractional-pixel motion search for 8�4, 4
�8, and 4�4 macroblock partitions.

Our algorithm differs from the previous methods in two
aspects: �i� It uses the similarities between the interpolation
effect on the macroblock and its partitions to completely
eliminate the fractional-pixel ME. �ii� The proposed algo-
rithm is adaptive and can be applied to any combination of
integer and fractional-pixel ME schemes.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the ME algorithms proposed in
the H.264/AVC. Section 3 describes the proposed ME al-
gorithm. Section 4 contains a comprehensive list of experi-
ments and a discussion. Section 5 concludes the letter.

2 ME in the H.264/AVC

In the first stage of ME, integer-pixel motion search is per-
formed for each square block of the slice to be encoded in
order to find one �or more� displacement vector�s� within a
search range. The best match is the position that minimizes
the Lagrangian cost function Jmotion

Jmotion = Dmotion + �motionRmotion �1�

where �motion is the Lagrangian multiplier, Dmotion is an er-
ror measure between the candidate macroblock taken from
the reference frame�s� and the current macroblock, and
Rmotion is the number of bits required to encode the differ-
ence between the motion vector�s� and its prediction from
the neighboring macroblocks �differential coding�. A simi-
lar functional to Eq. �1� is used to decide the optimal block
size for ME. The most common error measures are the sum
of absolute difference �SAD� and the sum of absolute trans-
formed differences �SATD�.

After the integer-pixel motion search finds the best
match, the values at half-pixel positions around the best
match are interpolated by applying a one-dimensional six-
tap finite impulse response �FIR� filter horizontally and ver-
tically. Then the values of the quarter-pixel positions are
generated by averaging pixels at integer and half-pixel po-
sitions. Figure 1 illustrates the interpolated fractional pixel
positions. Uppercase letters indicate pixels on the full-pixel
grid, while numeric values indicate elements at half-pixel
positions and lowercase letters indicate pixels in-between,
at quarter-pixel positions.

For example, in Fig. 1, if the integer best match is po-
sition E, the half-pixel positions 1–8 are searched using Eq.
�1�. Suppose position 7 is the best match of the half pixel
search. Then the quarter-pixel positions a–h are searched,
again using Eq. �1�.
March 2009/Vol. 48�3�1

3

I
m
b
w
m
m
f
b
c
l
s
1

t
t
p
b
p
p
t
g
i
P
�
m
8
f
P
q
i

a
m
t

OE LETTERS

O

Proposed Scheme

n slow-motion video sequences or in the slow motion seg-
ents of fast video sequences, the ME process might find a

est-match position during the integer-pixel motion search,
hich does not change after the subsequent fractional-pixel
otion search. Furthermore, if the integer-pixel ME best
atch for a bigger block size does not change during

ractional-pixel motion search, it is “highly likely” that this
locks’ partitions integer-pixel ME result will also not
hange during the fractional-pixel motion search. How
ikely, depends on the difference in block sizes as demon-
trated below. The above observations are shown in Table
.

Table 1 is divided into three rows. The first row shows
he probability that the 16�8 and 8�16 macroblock par-
itions have the same best match in integer- and fractional-
ixel ME, given that the 16�16 macroblock has the same
est match in integer- and fractional-pixel ME. We call this
robability PROB�1�. Similarly, the second row shows the
robability of 8�8, 8�4, 4�8, and 4�4 blocks having
he same best match in integer and fractional-pixel-ME,
iven that the 16�16 macroblock has the same best match
n integer- and fractional-pixel ME. We call this probability
ROB�2�. The third row shows the probability of 8�4, 4
8, 8�4, and 4�4 blocks partitions having the same best
atch in integer- and fractional-pixel ME, given that the
�8 blocks have the same best match in integer- and

ractional-pixel ME. We call this probability
ROB�3�.These probabilities are averaged across se-
uences with different motion characteristics and are shown
n the second column of Table 1.

From Table 1, it can be seen that the conditional prob-
bilities are reasonably high ��70% � only when the
acroblock/block and their partitions do not differ much in

erms of size. For example, we cannot safely say that the

A B C

1 2 3

D 4 E 5 F

a b c

6 d 7 e 8

f g h

G H I

Fig. 1 Fractional pixel search positions.

Table 1 Evaluation of the conditional probabilities.

Probabilities Average

PROB�1� 70%

PROB�2� 59%

PROB�3� 70%
ptical Engineering 030504-
8�4, 4�8, and 4�4 partitions would find the same best
match in the integer- and fractional-pixel motion search,
given that enclosing 16�16 macroblock does so. In this
case, the difference in size is big, because the 16�16 mac-
roblock is 8, 8, and 16 times bigger with respect to the
aforementioned block sizes. Using the above insights, we
have developed the following scheme:

If the 16�16 macroblock finds the same best match in
the integer- and fractional-pixel motion searches, then we
disable the fractional-pixel motion search for all the en-
closed 16�8 and 8�16 blocks. Thus, we can save all the
fractional-pixel search, SAD, and Hadamard transform cal-
culations for these blocks, Otherwise, the fractional-pixel
motion search is performed.

Similarly, if the 8�8 block partitions of the 16�16
macroblock find the same best match in the integer- and
fractional-pixel motion searches, we disable the fractional-
pixel motion search for all the enclosed 8�4, 4�8, and
4�4 blocks. Otherwise, the fractional-pixel motion search
is performed.

4 Experiments

To assess the proposed algorithm, a comprehensive set of
experiments for a variety of video sequences with different
motion characteristics was performed. In this experiment,
the source code for the H.264 Reference Software Version
JM12.27 was used in a Pentium-4 PC running at 2.8 GHz
with 1.0 GB RAM. Table 2 illustrates the conditions of the
experiments.

Table 3 shows the percentage cycle savings, the Bjonte-
gaard Delta bit rate �BDBR� percentage differences, and the
Bjontegaard Delta Peak signal-to-noise ratio �BDPSNR�
differences �in decibels�8 between the H264/AVC and the
algorithm we propose when full search �FS�, enhanced pre-
dictive zonal search �EPZS�,2 and unsymmetrical-cross
multi-hexagon-grid search �UMHEXS�3 are used as full
and fractional-pixel ME schemes.

The Intel VTune performance analyzer was used to mea-
sure the number of machine cycles differences. Table 3
shows that the BDBR percentage differences are in the
range of �−0.5,1.2�, while the BDPSNR differences are in
the range of �−0.04,0.02�. The minus signs denote PSNR
degradation and bit-rate savings, respectively.

Table 2 Encoder experiment conditions

Parameter Value Parameter Value

Profile 100
�Main�

YUV
format

YUV
4:2:0

Level IDC7 40 B-Frame Not used

Entropy
coding

CABAC Frame
skip

0

References 5 Search
range

32

ME metric
level 0

SAD ME metric
levels 1&2

Hadamard
SAD
March 2009/Vol. 48�3�2

s
p
c
o
i
m
s

5

I
t
A
s
t
s
s

S

OE LETTERS

O

This clearly shows that the proposed algorithm has very
imilar RD performance to the H.264/AVC. Furthermore,
ercentage cycle savings up to 16% are observed. It also
an be seen that the reduction in the CPU cycles depends
n the characteristics of the image sequences. For a slow
mage sequence with a simple background, the reduction is

uch more significant than for a fast image sequence or
equences with a more complex background.

Conclusion

n conclusion, we proposed a fast Subpixel ME based on
he interpolation effect on different block sizes for H264/
VC standard. For RD performance very similar to the
tandard, the proposed technique can reduce up to 16% of
he CPU cycles required for different ME schemes. Our
cheme is very relevant to low-complexity video-coding
ystems.

Table 3 Exp

equence Size

Full
pixel
ME

Sub
pixel
ME

Full
pixel
ME

Sub
pixel
ME

FFS FS
UM
HEX

UM
HEX

BDPSNR
(db)

BDBR
(%)

Cycles
(%)

BDPSNR
(db)

BDBR
(%)

Cycles
(%)

Akiyo QCIF �
0.02

�
0.45

6.5 �
0.01

�
0.34

14.32

CIF �
0.04

�
0.12

8.2 �
0.01

�
0.43

16.06

Foreman QCIF �
0.05

�
1.2

2.45 �
0.02

�
0.49

2.94

CIF �
0.01

�
0.28

2.77 �
0.03

�
0.72

3.17

Mobile QCIF �
0.03

�
0.43

1.98 �
0.05

�
0.51

2.09

CIF �
0.01

�
0.12

1.68 �
0.02

�
0.31

1.08

Stefan QCIF �
0.03

�
0.51

1.88 �
0.03

�
0.52

2.2

CIF �
0.03

�
0.51

1.87 �
0.01

�
0.12

1.7

Silent QCIF �
0.02

�
0.48

6.2 �
0.01

�
0.1

13.16

CIF �
0.02

�
0.55

6.01 �
0.01

�
0.37

11.79

Tempete QCIF �
0.01

�
0.2

1.9 �
0.02

�
0.25

4.5

CIF �
0.01

�
0.01

1.15 �
0.01

�
0.16

1.08

Opening
ceremony

720�
480

�
0.01

�
0.2

2.89 �
0.01

�
0.22

3.67

Driving 720�
480

�
0.01

�
0.16

1.3 �
0.01

�
0.12

1.45
ptical Engineering 030504-
References

1. T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Over-
view of the H.264/AVC video coding standard,” IEEE Trans. Circuits
Syst. Video Technol. 13�7�, 560–577 �2003�.

2. A. Tourapis, “Enhanced predictive zonal search for single and mul-
tiple frame motion estimation,” In Proc. of VCIP 2002, pp.1069–
1079, SPIE, Jan. 2002.

3. Z. B. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional pel
motion estimation for JVT,” JVT-F017, 6th meeting, Awaji, Japan,
Dec. 5–13 2002.

4. P. Yin, H. Y. C. Tourapis, A. M. Tourapis, and J. Boyce, “Fast mode
decision and motion estimation for JVT/H.264,” in Proc. of ICIP
2003, pp. 853–856, IEEE, Sep. 2003

5. Z. B. Chen, C. Du, J. H. Wang, and Y. He, “PPFPS—a paraboloid
prediction based fractional pixel search strategy for H.26L,” In Proc.
of ISCAS 2002, pp. 9–12, IEEE, May 2002.

6. Z. B. Chen and Y. He, “Prediction based directional refinement
�PDR� algorithm for fractional pixel motion search strategy,” JVT-
D069, 4th meeting, Klagenfurt, Austria, July 22–26, 2002

7. K. Sühring, H.264/AVC Reference Software Version JM12.2, http://
iphome.hhi.de/suehring/tml/download/, Joint Video Team �2003�.

8. G. Bjontegaard, “Calculation of average PSNR differences between
RD-curves,” Doc. VCEG-M33, Apr. 2001.

ntal results.

Full
ixel

ME

Sub
pixel
ME

Full
pixel
ME

Sub
pixel
ME

Full
pixel
ME

Sub
pixel
ME

UM
EX FS EPZS EPZS EPZS FS

R BDBR
(%)

Cycles
(%)

BDPSNR
(db)

BDBR
(%)

Cycles
(%)

BDPSNR
(db)

BDBR
(%)

Cycles
(%)

0.0 14.85 �
0.01

�
0.24

10.9 �
0.01

�
0.11

14.9

�
0.49

15.89 �
0.01

�
0.25

11.04 �
0.02

�
0.49

15.14

�
0.67

3 �
0.03

�
0.84

3.61 �
0.01

�
0.24

6.7

�
0.6

3.23 �
0.04

�
0.81

3.23 �
0.01

�
0.29

3.35

�
0.35

2 �
0.03

�
0.39

2.03 �
0.03

�
0.28

1.3

�
0.17

1.21 �
0.01

�
0.16

1.36 �
0.02

�
0.38

1.29

�
0.01

2.1 �
0.13

�
0.2

2.07 �
0.02

�
0.4

2.4

�
0.23

2 �
0.01

�
0.2

1.89 �
0.01

�
0.24

2.2

�
0.48

11.6 �
0.02

�
0.43

8.92 �
0.01

�
0.14

11.71

�
0.47

12.65 �
0.02

�
0.46

9.37 �
0.02

�
0.43

12.6

�
0.33

1.92 �
0.03

�
0.37

2.14 �
0.01

�
0.29

1.44

�
0.06

1.4 �
0.01

�
0.02

1.34 �
0.01

�
0.18

3.05

�
0.17

4.1 �
0.01

�
0.22

2.56 �
0.01

�
0.15

3.2

�
0.05

1.9 0 �
0.05

1.80 �
0.02

�
0.08

1.1
erime

p

H

BDPSN
(db)

0.0

�
0.02

�
0.02

�
0.02

�
0.04

�
0.01

�
0.04

�
0,01

�
0.03

�
0.02

�
0.03

0.0

�
0.01

0

March 2009/Vol. 48�3�3

