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bstract. We propose a fast subpixel motion estimation al-
orithm for the H.264 advanced video coding �AVC� stan-
ard. The algorithm utilizes the correlation of the spatial in-
erpolation effect on the full-pixel motion estimation best
atches between different block sizes in order to reduce the

omputational cost of the overall motion-estimation process.
xperimental results show that the proposed algorithm sig-
ificantly reduces the CPU cycles in the various motion es-
imation schemes by up to 16% with similar rate-distortion
erformance when weighed up against the H.264/AVC
tandard. © 2009 Society of Photo-Optical Instrumentation Engineers.
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Introduction

he H.264 advanced video coding �AVC� standard1 is the
ewest standard from the ITU-T Video Coding Experts
roup and the ISO/IEC Moving Pictures Experts Group. Its
ain advantages are the great variety of applications in
hich it can be used and its versatile design. This standard
as shown significant rate-distortion �RD� improvements as
ompared to other standards for video compression.

The standard provides great flexibility in the selection of
lock sizes for motion estimation/compensation, with a
inimum luma block size as small as 4�4. Although most

rior standards enable half-pixel motion vector accuracy at
ost, the H264/AVC further allows quarter-pixel motion

ector accuracy for improved performance. Although the
tandard has shown significant RD improvements, it has
lso increased the overall encoding complexity due to the
ery refined motion-estimation �ME� process. The ME pro-
ess consists of two stages: integer-pixel motion search and
ractional-pixel motion search. Because the complexity of
nteger-pixel ME has been greatly reduced by numerous
ast ME algorithms,2,3 the computation overhead required
y fractional-pixel ME has become relatively significant.

Different fast fractional-pixel ME algorithms3–6 have
een proposed, and some of them are used by the JM ref-
rence software.7 Their common idea is to simplify the

091-3286/2009/$25.00 © 2009 SPIE
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search pattern by applying very refined prediction algo-
rithms and improved adaptive threshold schemes to termi-
nate unnecessary search positions.

In this paper, we focus on decreasing the complexity of
fractional-pixel ME by effectively applying a two-step al-
gorithm. First, we examine the 16�16 macroblock
fractional-pixel ME best match, derived from the outcome
we eliminate the fractional-pixel motion search for 16�8
and 8�16 macroblock partitions. Likewise, in the second
step we examine the 8�8 macroblock partitions fractional-
pixel ME best matches and, derived from the outcome, we
eliminate the fractional-pixel motion search for 8�4, 4
�8, and 4�4 macroblock partitions.

Our algorithm differs from the previous methods in two
aspects: �i� It uses the similarities between the interpolation
effect on the macroblock and its partitions to completely
eliminate the fractional-pixel ME. �ii� The proposed algo-
rithm is adaptive and can be applied to any combination of
integer and fractional-pixel ME schemes.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the ME algorithms proposed in
the H.264/AVC. Section 3 describes the proposed ME al-
gorithm. Section 4 contains a comprehensive list of experi-
ments and a discussion. Section 5 concludes the letter.

2 ME in the H.264/AVC

In the first stage of ME, integer-pixel motion search is per-
formed for each square block of the slice to be encoded in
order to find one �or more� displacement vector�s� within a
search range. The best match is the position that minimizes
the Lagrangian cost function Jmotion

Jmotion = Dmotion + �motionRmotion �1�

where �motion is the Lagrangian multiplier, Dmotion is an er-
ror measure between the candidate macroblock taken from
the reference frame�s� and the current macroblock, and
Rmotion is the number of bits required to encode the differ-
ence between the motion vector�s� and its prediction from
the neighboring macroblocks �differential coding�. A simi-
lar functional to Eq. �1� is used to decide the optimal block
size for ME. The most common error measures are the sum
of absolute difference �SAD� and the sum of absolute trans-
formed differences �SATD�.

After the integer-pixel motion search finds the best
match, the values at half-pixel positions around the best
match are interpolated by applying a one-dimensional six-
tap finite impulse response �FIR� filter horizontally and ver-
tically. Then the values of the quarter-pixel positions are
generated by averaging pixels at integer and half-pixel po-
sitions. Figure 1 illustrates the interpolated fractional pixel
positions. Uppercase letters indicate pixels on the full-pixel
grid, while numeric values indicate elements at half-pixel
positions and lowercase letters indicate pixels in-between,
at quarter-pixel positions.

For example, in Fig. 1, if the integer best match is po-
sition E, the half-pixel positions 1–8 are searched using Eq.
�1�. Suppose position 7 is the best match of the half pixel
search. Then the quarter-pixel positions a–h are searched,
again using Eq. �1�.
March 2009/Vol. 48�3�1
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Proposed Scheme

n slow-motion video sequences or in the slow motion seg-
ents of fast video sequences, the ME process might find a

est-match position during the integer-pixel motion search,
hich does not change after the subsequent fractional-pixel
otion search. Furthermore, if the integer-pixel ME best
atch for a bigger block size does not change during

ractional-pixel motion search, it is “highly likely” that this
locks’ partitions integer-pixel ME result will also not
hange during the fractional-pixel motion search. How
ikely, depends on the difference in block sizes as demon-
trated below. The above observations are shown in Table
.

Table 1 is divided into three rows. The first row shows
he probability that the 16�8 and 8�16 macroblock par-
itions have the same best match in integer- and fractional-
ixel ME, given that the 16�16 macroblock has the same
est match in integer- and fractional-pixel ME. We call this
robability PROB�1�. Similarly, the second row shows the
robability of 8�8, 8�4, 4�8, and 4�4 blocks having
he same best match in integer and fractional-pixel-ME,
iven that the 16�16 macroblock has the same best match
n integer- and fractional-pixel ME. We call this probability
ROB�2�. The third row shows the probability of 8�4, 4
8, 8�4, and 4�4 blocks partitions having the same best
atch in integer- and fractional-pixel ME, given that the
�8 blocks have the same best match in integer- and

ractional-pixel ME. We call this probability
ROB�3�.These probabilities are averaged across se-
uences with different motion characteristics and are shown
n the second column of Table 1.

From Table 1, it can be seen that the conditional prob-
bilities are reasonably high ��70% � only when the
acroblock/block and their partitions do not differ much in

erms of size. For example, we cannot safely say that the

A B C

1 2 3

D 4 E 5 F

a b c

6 d 7 e 8

f g h

G H I

Fig. 1 Fractional pixel search positions.

Table 1 Evaluation of the conditional probabilities.

Probabilities Average

PROB�1� 70%

PROB�2� 59%

PROB�3� 70%
ptical Engineering 030504-
8�4, 4�8, and 4�4 partitions would find the same best
match in the integer- and fractional-pixel motion search,
given that enclosing 16�16 macroblock does so. In this
case, the difference in size is big, because the 16�16 mac-
roblock is 8, 8, and 16 times bigger with respect to the
aforementioned block sizes. Using the above insights, we
have developed the following scheme:

If the 16�16 macroblock finds the same best match in
the integer- and fractional-pixel motion searches, then we
disable the fractional-pixel motion search for all the en-
closed 16�8 and 8�16 blocks. Thus, we can save all the
fractional-pixel search, SAD, and Hadamard transform cal-
culations for these blocks, Otherwise, the fractional-pixel
motion search is performed.

Similarly, if the 8�8 block partitions of the 16�16
macroblock find the same best match in the integer- and
fractional-pixel motion searches, we disable the fractional-
pixel motion search for all the enclosed 8�4, 4�8, and
4�4 blocks. Otherwise, the fractional-pixel motion search
is performed.

4 Experiments

To assess the proposed algorithm, a comprehensive set of
experiments for a variety of video sequences with different
motion characteristics was performed. In this experiment,
the source code for the H.264 Reference Software Version
JM12.27 was used in a Pentium-4 PC running at 2.8 GHz
with 1.0 GB RAM. Table 2 illustrates the conditions of the
experiments.

Table 3 shows the percentage cycle savings, the Bjonte-
gaard Delta bit rate �BDBR� percentage differences, and the
Bjontegaard Delta Peak signal-to-noise ratio �BDPSNR�
differences �in decibels�8 between the H264/AVC and the
algorithm we propose when full search �FS�, enhanced pre-
dictive zonal search �EPZS�,2 and unsymmetrical-cross
multi-hexagon-grid search �UMHEXS�3 are used as full
and fractional-pixel ME schemes.

The Intel VTune performance analyzer was used to mea-
sure the number of machine cycles differences. Table 3
shows that the BDBR percentage differences are in the
range of �−0.5,1.2�, while the BDPSNR differences are in
the range of �−0.04,0.02�. The minus signs denote PSNR
degradation and bit-rate savings, respectively.

Table 2 Encoder experiment conditions

Parameter Value Parameter Value

Profile 100
�Main�

YUV
format

YUV
4:2:0

Level IDC7 40 B-Frame Not used

Entropy
coding

CABAC Frame
skip

0

References 5 Search
range

32

ME metric
level 0

SAD ME metric
levels 1&2

Hadamard
SAD
March 2009/Vol. 48�3�2
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This clearly shows that the proposed algorithm has very
imilar RD performance to the H.264/AVC. Furthermore,
ercentage cycle savings up to 16% are observed. It also
an be seen that the reduction in the CPU cycles depends
n the characteristics of the image sequences. For a slow
mage sequence with a simple background, the reduction is

uch more significant than for a fast image sequence or
equences with a more complex background.

Conclusion

n conclusion, we proposed a fast Subpixel ME based on
he interpolation effect on different block sizes for H264/
VC standard. For RD performance very similar to the
tandard, the proposed technique can reduce up to 16% of
he CPU cycles required for different ME schemes. Our
cheme is very relevant to low-complexity video-coding
ystems.

Table 3 Exp

equence Size

Full
pixel
ME

Sub
pixel
ME

Full
pixel
ME

Sub
pixel
ME

FFS FS
UM
HEX

UM
HEX

BDPSNR
(db)

BDBR
(%)

Cycles
(%)

BDPSNR
(db)

BDBR
(%)

Cycles
(%)

Akiyo QCIF �
0.02

�
0.45

6.5 �
0.01

�
0.34

14.32

CIF �
0.04

�
0.12

8.2 �
0.01

�
0.43

16.06

Foreman QCIF �
0.05

�
1.2

2.45 �
0.02

�
0.49

2.94

CIF �
0.01

�
0.28

2.77 �
0.03

�
0.72

3.17

Mobile QCIF �
0.03

�
0.43

1.98 �
0.05

�
0.51

2.09

CIF �
0.01

�
0.12

1.68 �
0.02

�
0.31

1.08

Stefan QCIF �
0.03

�
0.51

1.88 �
0.03

�
0.52

2.2

CIF �
0.03

�
0.51

1.87 �
0.01

�
0.12

1.7

Silent QCIF �
0.02

�
0.48

6.2 �
0.01

�
0.1

13.16

CIF �
0.02

�
0.55

6.01 �
0.01

�
0.37

11.79

Tempete QCIF �
0.01

�
0.2

1.9 �
0.02

�
0.25

4.5

CIF �
0.01

�
0.01

1.15 �
0.01

�
0.16

1.08

Opening
ceremony

720�
480

�
0.01

�
0.2

2.89 �
0.01

�
0.22

3.67

Driving 720�
480

�
0.01

�
0.16

1.3 �
0.01

�
0.12

1.45
ptical Engineering 030504-
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ixel

ME

Sub
pixel
ME

Full
pixel
ME

Sub
pixel
ME

Full
pixel
ME

Sub
pixel
ME

UM
EX FS EPZS EPZS EPZS FS

R BDBR
(%)

Cycles
(%)

BDPSNR
(db)

BDBR
(%)

Cycles
(%)

BDPSNR
(db)

BDBR
(%)

Cycles
(%)

0.0 14.85 �
0.01

�
0.24

10.9 �
0.01

�
0.11

14.9

�
0.49

15.89 �
0.01

�
0.25

11.04 �
0.02

�
0.49

15.14

�
0.67

3 �
0.03

�
0.84

3.61 �
0.01

�
0.24

6.7

�
0.6

3.23 �
0.04

�
0.81

3.23 �
0.01

�
0.29

3.35

�
0.35

2 �
0.03

�
0.39

2.03 �
0.03

�
0.28

1.3

�
0.17

1.21 �
0.01

�
0.16

1.36 �
0.02

�
0.38

1.29

�
0.01

2.1 �
0.13

�
0.2

2.07 �
0.02

�
0.4

2.4

�
0.23

2 �
0.01

�
0.2

1.89 �
0.01

�
0.24

2.2

�
0.48

11.6 �
0.02

�
0.43

8.92 �
0.01

�
0.14

11.71

�
0.47

12.65 �
0.02

�
0.46

9.37 �
0.02

�
0.43

12.6

�
0.33

1.92 �
0.03

�
0.37

2.14 �
0.01

�
0.29

1.44

�
0.06

1.4 �
0.01

�
0.02

1.34 �
0.01

�
0.18

3.05

�
0.17

4.1 �
0.01

�
0.22

2.56 �
0.01

�
0.15

3.2

�
0.05

1.9 0 �
0.05

1.80 �
0.02

�
0.08

1.1
erime

p

H

BDPSN
(db)

0.0

�
0.02

�
0.02

�
0.02

�
0.04

�
0.01

�
0.04
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0,01

�
0.03

�
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0.03

0.0
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0.01
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