Crystal growth is the art and science of growing crystals that are pillars of modern technological developments. It acts as a bridge between science and technology. Crystals are used in lasers, semiconducting devices, computers, magnetic and optical devices, optical processing applications, pharmaceuticals, and a host of other devices. Crystal growth requires technical skills in chemistry, physics, and materials science.
This Field Guide covers the basic phenomena and techniques for growing bulk single crystals of high-technology materials from solution, melt, and vapors. Some techniques for growing crystal in the microgravity environment of space are also presented. The idea of electronic miniaturization was developed during the mid-1950s due to the understanding and growth of doped silicon crystals. In principle, atoms are stacked in three dimensions in saturated solutions, melt, and vapors. It requires knowledge of temperature control, motion control, heating-furnace design, raising and lowering mechanisms, and phase diagrams.
We hope that the included examples inspire readers with ideas to grow new materials for new devices. Any crystal growth process is complex; it depends on many parameters that can interact. The complexity makes it difficult to reproduce a process that is known to work and makes the processing of new materials much more difficult than it appears superficially. Crystal growth is sometimes frustrating, but like other crafts, it can provide great satisfaction.