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Absorptance, absorptivity, absorption (fraction)
Absorption attenuation coefficient with units [m~!]
Spectral absorption with units [m~!]

Temperature coefficient of resistance with units [K~!]
Diode p-n junction nonideal factor (unitless)

Optical thickness (unitless)

Attenuation coefficient with units [m~!]

I' point: smallest energy difference in bandgap (condition)
Dirac delta function (unitless)

Spatial texture variation in emissivity (unitless)

Spatial texture variation in reflectivity (unitless)

Change in optical flux with units [W] or [q/s]

Change in radiant optical flux with units [W]

Change in optical photon flux with units [q/s]

Noise equivalent bandwidth with units [Hz]

Change in number of electrons with units [quanta]
Change in number of holes with units [quanta]

Change in temperature with units [K]

Emissivity (unitless)

Electric field across a distance with units [V /m]

Spectral emissivity (unitless)

Detector quantum efficiency (unitless)

Image fill efficiency along the a and b directions (unitless)
Scanning efficiency in an image-forming system (unitless)
Angle with units [rad]

Dimensional symbol for temperature, or thermal (unitless)
Wavelength with units [pm]

Cutoff wavelength with units [pm]

Carrier mobility with units [cm?/(s-V)]

Electron carrier mobility with units [em?/(s-V)]

Hole carrier mobility with units [em?/(s-V)]

Frequency with units [Hz] or [s71]

Wavenumber with units [em™!]

Material density with units [g/m3]
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0 Reflectance, reflectivity, reflection (fraction)

[ Spectral reflection (unitless)

04 Diffuse reflection (unitless)

0s Specular reflection (unitless)

o Material electrical conductivity with units [0/m]

o Scattering attenuation coefficient with units [m~!]

o Surface roughness (root-mean-square) with units [m]

e Stefan-Boltzmann constant with units [W/(m?-K*)]

o Stefan-Boltzmann constant with units [q/(s-m?-K?)]

T Transmittance, transmissivity, transmission (fraction)

T\ Spectral transmittance (unitless)

Ty Thermal time constant with units [s]

Ta Atmospheric transmittance (unitless)

T Contrast transmittance (unitless)

T Electron lifetime with units [s]

T Hole lifetime with units [s]

TRC Electronic resistor—capacitor time constant with units [s]
o Optical flux with units [W] or [q/s]

D, Optical flux spectral density with units [W/pm]

o, Radiant optical flux with units [W]

D, Optical photon flux with units [q/s]

D, Optical photon flux with units [q/s]

P Solar irradiance geometry factor with units [sr/sr]

P Wave function for a free electron (unitless)

w Electrial frequency with units [rad/s]

w Geometric solid angle with units [sr]

w Pixel field of view solid angle with units [sr]

(@) Projected solid angle with units [sr]

O, Field of regard in an image-forming system with units [sr]
A Area with units [m?]

Ay Detector area with units [m?]

As Source area in units [m?]

Ay Voltage gain of an amplifier or filter with units [V/V]
BRDF Bidirectional reflection distribution function with units [sr—!]
c Specific heat with units [J/(g-K)]

c Speed of light in vacuum with units [m/s]

C Contrast (unitless)

C, C; Thermal detector element heat capacity with units [J/K]
C, Contrast threshold (unitless)

CODATA Committee on Data for Science and Technology

D Diameter of an optical aperture or lens with units [m]
D Detectivity with units W]
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D Diffusion constant with units [m?/s]

D* Specific detectivity with units [cm- VHz/W]

Dy Spectral specific detectivity with units [cm-v/Hz/W]

D Wideband specific detectivity with units [cm-+/Hz/W]

D, Diffusion constant for electrons with units [cm?/s]

Dy, Diffusion constant for holes with units [cm?/s]

e Electron with charge g with units [C]

E Energy (semiconductor energy level) with units [J] or [eV]
E Irradiance (Areance) with units [W/m?]

E, Irradiance (Areance) spectral density with units [W/(m?-pm)]
Ec Lowest conduction band energy level with units [J] or [eV]
Er Fermi level with units [J] or [eV]

Eg Semiconductor energy bandgap with units [J] or [eV]

E; Background photon flux with units [q/(s-m?)]

Ey Highest valence band energy level with units [J] or [eV]

f Electrical frequency with units of [Hz]

f Focal length with units [m]

F View factor or configuration factor with units [sr/sr]

frin Fill factor, fraction of area filled (unitless)

Fr Frame rate in an image-forming system with units [Hz]
fr Bidirectional reflection distribution function with units [sr—!]
Fr Fourier transform

f-348 —3 dB electronic bandwidth with units [Hz]

f/# F-number, alternative notation (unitless)

Fy F-number of a lens, with numerical value # (unitless)
FAR False alarm rate with units [s™']

FOM Figure of merit

FOV Field of view with units [rad]

FTIR Fourier transform infrared

G Detector photon gain with units [electrons/photon]

G Heat conductance with units [W/K]

Ge Bias circuit gain (unitless)

Gpn Photoconductive gain with units [electrons/photon]

Sth Rate of thermal carrier generation with units [quanta/s]

h Planck constant with units [J-s]

h h = h/(2m) with units [J-s], where h is the Planck constant

i Current with units [A]

i Noise current density with units [A/ VHz]

I Intensity (Pointance) with units [W/sr]

T Incident ray unit vector (unitless)

Io Reverse-bias-saturation current with units [A]

I Intensity (Pointance) spectral density with units [W/(sr-pum)]
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Iy Bias current with units [A]

lgr Generation-recombination noise with units [A] or [A/+/Hz]
iy Noise current with units [A] or [A/v/Hz]

Lpn Photocurrent with units [A]

Isat Reverse-bias-saturation current with units [A]

i Diffusion current density with units [A/ m?]

Ja Drift current density with units [A/ m?]

k Boltzmann constant with units [J/K]

Kx Spectral photopic luminous efficacy with units [Im/W]

K Spectral scotopic luminous efficacy with units [Im/W]

K, Sky-ground radiance ratio in thermal spectral bands (unitless)
K, Sky-ground radiance ratio in the visual spectral band (unitless)
kg Time-bandwidth product with units [s-Hz]

ke Reciprocal lattice sphere radius with units [m]

ky Ratio of noise equivalent bandwidth to —3 dB bandwidth

L Radiance (Sterance) with units [W/(m?-sr)]

Ly Radiance (Sterance) spectral density with units [W/(m?-sr-pm)]
Ly, Diffusion length for carriers with units [cm]

L, Diffusion length for electrons with units [cm]

Ly Diffusion length for holes with units [cm]

L, Detector packaging inductance with units [H]

LWIR Long-wave infrared

m Mass with units [g] or [kg]

M Exitance (Areance) with units [W/m?]

M, Exitance (Areance) spectral density with units [W/(m?-pm)]
M, Radiant exitance with units [W/m?]

M, Electron mass with units [g]

my Effective electron mass in units of

my Effective hole mass in units of m,

MDT Minimum detectable temperature with units [K]

MRT Minimum resolvable temperature with units [K]

MTF Modulation transfer function

MTV Magnesium-Teflon®-Viton®

MWIR Medium-wave infrared

n Electron concentration with units [cm ™3]

n Index of refraction (unitless)

N Number of objects, pixels, or detector elements (unitless)

N Surface normal unit vector (unitless)

n, Acceptor concentration with units [em 3]

ng Donor concentration with units [cm 3]

e Number of electrons (unitless)

ny, Number of holes (unitless)
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n;

d

A

Intrinsic carrier concentration with units [cm 3]

Electron concentration in n-type material with units [cm 3]
Electron concentration in p-type material with units [cm 3]
Real component of the complex index of refraction (unitless)
Numerical aperture (unitless)

Noise equivalent reflectance (unitless)

Noise equivalent temperature difference with units [K]
Noise equivalent irradiance with units [W/ m?]

Noise equivalent radiance with units [W/(m?-sr)]

Noise equivalent exitance with units [W/ m?]

Noise equivalent power with units [W]

Noise equivalent reflectance (unitless)

Noise equivalent target contrast with units [K]

Noise equivalent temperature difference with units [K]

Near infrared

Optical transfer function

Hole concentration with units [cm 3]

Scattering phase function (unitless)

Probability of detection (unitless)

Hole concentration in n-type material with units [em 3]
Probability of false detection (unitless)

Hole concentration in p-type material with units [cm 3]
Power spectral density with units [A?/Hz] or [V?/Hz]

Point spread function (unitless)

Absolute humidity with units [g/m?]

Electron charge with units [C]

Quanta, as in photon count (unitless)

Energy with units [W-s] or [J]

Radius with units [m]

Range or distance with units [m]

Responsivity with units [A/W] or [V/W]

Mirror reflection unit vector (unitless)

Detector responsivity scaling factor with units [A/W] or [V /W]
Equivalent path length with units [m]

Normalized spectral shape of spectral responsivity (unitless)
Detector spectral responsivity with units [A/W] or [V/W]
Dynamic resistance under zero-bias conditions with units [()]
Detector resistance with units [()]

Spectral detector responsivity with units [A/W] or [V/W]
Spectral detector responsivity with units [C] or [J/A]
Effective (wideband) responsivity with units [A/W] or [V/W]
Load resistor or bias resistor with units [(]
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Ry Meteorological range (visibility) with units [km]

RH Relative humidity, unitless expressed as %

rms Root-mean-square (unitless)

S, 51, S2  Seebeck coefficients for thermoelectricity with units [V /K]

S Sensor response

S Reflected ray unit vector (unitless)

Sy Sensor spectral response (unitless)

S(w), S(f) Power spectral density with units [A%2/Hz] or [V?/Hz]

SCR
SNR
SWIR

T
T
Ty
Tfilter
tp

Signal-to-clutter ratio (unitless)

Signal-to-noise ratio (unitless)

Short-wave infrared

Time with units [s]

Temperature with units [K]

Throughput or étendue with units [sr-m?]
Background temperature [K]

Temperature of an optical filter with units [K]
Signal pulse width with units [s]

Source temperature with units [K]

Technical performance measure

Voltage (signal or noise) with units [V]

Volume with units [m?]

Spectral photopic luminous efficiency (unitless)
Spectral scotopic luminous efficiency (unitless)
Bias voltage across a device with units [V]
Internal potential in a p-n diode with units [V]
Noise expressed as voltage with units [V] or [V/ VvHz]
Energy density with units [J/m?]



Preface

If you have an apple and I have an apple
and we exchange apples,
then you and I will still each have one apple.
But if you have an idea and I have an idea
and we exchange these ideas,
then each of us will have two ideas.
George Bernard Shaw

On Sharing

Teachers cross our paths in life. Some teachers have names, others leave
their marks anonymously. Among my teachers at the Optical Sciences
Center at the University of Arizona were James Palmer, Eustace Dereniak,
and Jack Gaskill. They freely shared their knowledge with their students.
Some teachers teach through the pages of their books, and here I have
to thank Bill Wolfe, George Zissis, and many more. Many years ago,
R. Barry Johnson presented a short course which influenced my career
most decisively.

The intent with this book is to now share some of my experience, ac-
cumulated through years of practical radiometry: design, measurements,
modeling, and simulation of electro-optical systems. The material pre-
sented here builds upon the foundation laid at the Optical Sciences Center.
I had the opportunity to share this material in an academic environment
at graduate level in an engineering school, thereby clarifying key concepts.
Beyond the mathematics and dry theory lies a rich world full of subtle in-
sights, which I try to elucidate. May this book help you, the reader, grow
in insight and share with others.

Reductionism, Synthesis, and Design

The reductionist approach holds the view that an arbitrarily complex sys-
tem can be understood by reducing the system to many, smaller systems
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that can be understood. This view is based on the premise that the com-
plex system is considered to be the sum of its parts, and that by under-
standing the parts, the sum can be understood. While the reductionist
approach certainly has weaknesses, this approach works well for the class
of problems considered in this book. The methodology followed here is to
develop the theory concisely for simple cases, developing a toolset and a
clear understanding of the fundamentals.

The real world does not comprise loose parts and simple systems.
Once the preliminaries are out the way, we proceed to consider more com-
plex concepts such as sensors, signatures, and simple systems comprising
sources, a medium, and a receiver. Using these concepts and the tools de-
veloped in this book, the reader should be able to design a system of any
complexity. Two concurrent themes appear throughout the book: frag-
menting a complex problem into simple building blocks, and synthesizing
(designing) complex systems from smaller elements. In any design pro-
cess, these two actions take place interactively, mutually supporting each
other. In this whirlpool of analysis and synthesis, uncontrolled external
factors (e.g., the atmosphere, noise) influence the final outcome. This is
where the academic theory finds engineering application in the real world.
This book aims to demonstrate how to proceed along this road.

Toward the end of the book, the focus shifts from a component-level
view to an integrated-system view, where the ‘system’ comprises a (sim-
ple or composite) source, an intervening medium, and a sensor. Many
real-world electro-optical applications require analysis and design at this
integrated-system level. Analysis and design, as a creative synthesis of
something new, cannot be easily taught other than by example. For this
purpose several case studies are presented. The case studies are brief and
only focus on single aspects of the various designs. Any real design pro-
cess would require a much more detailed process, beyond the scope of this
book.

General Comments

The purpose with this book is to enable the reader to find solutions to real-
world problems. The focus is on the application of radiometry in various
analysis and design scenarios. It is essential, however, to build on the foun-
dation of solid theoretical understanding, and gain insight beyond graphs,
tables and equations. Therefore, this book does not attempt to provide an
extensive set of ready-to-use equations and data, but rather strives to pro-
vide insight into hidden subtleties in the field. The atmosphere provides
opportunity for a particularly rich set of intriguing observations.
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The strict dictionary definition of ‘radiometry” is the measurement
of optical flux. In this book, the term ‘radiometry” is used in its wider
context to specifically cover the calculation of flux as well. This wider
definition is commonly used by practitioners in the field to cover all forms
of manipulation, including creation, measurement, calculation, modeling,
and simulation of optical flux. The focus of this book is not on radiometric
measurement but on the analysis and modeling of measured data, and the
design of electro-optical systems.

Antoine de Saint-Exupery once wrote, “You know you’ve achieved
perfection in design, not when you have nothing more to add, but when
you have nothing more to take away.” The painful aspect of writing a book
is to decide what not to include. This book could contain more content on
radiometric measurement, emissivity measurement, properties of different
types of infrared detectors, or reference information on optical material
properties; however, these topics are already well covered by other excel-
lent books, much better than can be achieved in the limited scope of this
book.

The book provides a number of problems, some with worked solu-
tions. The scope of problems in the early chapters tend to be smaller,
whereas the problems in later chapters tend to be wider in scope. The
more-advanced problems require numerical solutions. Although it is cer-
tainly possible to read the book without doing the advanced problems, the
reader is urged to spend time mastering the skills to do these calculations.
This investment will pay off handsomely in the future. Some of the prob-
lems require data not readily found in book format. The data packages
are identified (e.g., DP01) and are obtainable from the pyradi website (see
Section D.3.4).

To the uninitiated, the broader field of radiometry is dangerous terri-
tory, with high potential for errors and not-so-obvious pitfalls. Our work in
the design labs, on field measurement trials, and in the academic environ-
ment led to the development of a set of best practices, called the ‘Golden
Rules,” which strives to minimize the risk error. Some of these principles
come from James Palmer’s class, while most were stripes hard earned in
battle. The readers are urged to study, use, and expand these best practices
in their daily work. Any feedback, on the golden rules or any other aspect
of the book, would be appreciated.

A book is seldom the work of one mind only; it is the result of a road
traveled with companions. Along this road are many contributors, both
direct and inadvertent. My sincere thanks to all who made their precious
time and resources available in this endeavor. My sincere thanks goes to
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Riana Willers for patience and support, as co-worker on our many projects
— her light footprints fall densely on every single page in this book: advis-
ing, scrutinizing every detail, debating symbols and sentences, editing text
and graphics, compiling the nomenclature and index, and finally, acting as
chapter contributor. Riana is indeed the ghost writer of this book! Fiona
Ewan Rowett for permission to use her exquisite “Karoo Summer” on the
front cover. The painting beautifully expresses not only the hot, semi-arid
Karoo plateau in South Africa, but also expresses radiated light and vi-
brant thermal energy, the subject of this book. My teachers at the Optical
Sciences Center who laid the early foundation for this work. Ricardo San-
tos and Fabio Alves for contributing to the chapter on infrared detector
theory and modeling. The pyradi team for contributing their time toward
building a toolkit of immense value to readers of this book. Derek Griffith
for the visual and near-infrared reflectance measurements. Hannes Calitz
for the spectral measurements, and Azwitamisi Mudau for the imaging
infrared measurements. Dr Munir Eldesouki from KACST for permis-
sion to use the Bunsen flame measured data in the book. The many col-
leagues, co-workers, and students at Kentron (now Denel Dynamics), the
CSIR, KACST, and the University of Pretoria for influencing some aspect
of the book. Scott McNeill and Tim Lamkins for patience and guiding me
through the publication process. Scott’s untiring patience in detailed cor-
rection deserves special mention. Eustace Dereniak for encouraging me
to submit the book for publication. Barbara Grant, Eustace Dereniak and
an anonymous reviewer for greatly influencing the book in its final form.
Finally, Dirk Bezuidenhout, and the CSIR for supporting the project so
generously in the final crucial months before publication.

Mark Twain wrote that he did not allow his schooling to get in the
way of his education. It is my wish that you, my esteemed reader, will
delve beyond these written words into the deeper insights. Someone else
said that the art of teaching is the art of assisting in discovery. May you
discover many rich insights through these pages.

Nelis Willers
Hartenbos
March 2013
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