Field Guide to Geometrical Optics

John E. Greivenkamp

University of Arizona

SPIE Field Guides Volume FG01

John E. Greivenkamp, Series Editor

Bellingham, Washington USA

Downloaded From: http://ebooks.spiedigitallibrary.org/ on 08/30/2013 Terms of Use: http://spiedl.org/u

Library of Congress Cataloging-in-Publication Data

Greivenkamp, John E.
Field guide to geometrical optics / John E. Greivenkamp p. cm.-- (SPIE field guides)
Includes bibliographical references and index.
ISBN 0-8194-5294-7 (softcover)
1. Geometrical optics. I. Title II. Series.

QC381.G73 2003 535'. 32--dc22

2003067381

Published by

SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360 676 3290 Fax: +1 360 647 1445 Email: spie@spie.org Web: http://spie.org

Copyright $\ensuremath{\mathbb{C}}$ 2004 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

Welcome to the *SPIE Field Guides*! This volume is one of the first in a new series of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the *SPIE Field Guides* is to distill this information, providing readers with a handy desk or briefcase reference that provides basic, essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each *SPIE Field Guide* addresses a major field of optical science and technology. The concept of these *Field Guides* is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each *Field Guide* provide additional information such as related material outside the main scope of the volume, key mathematical relationships and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The SPIE Field Guides are intended to be living documents. The modular page-based presentation format allows them to be easily updated and expanded. We are interested in your suggestions for new *Field Guide* topics as well as what material should be added to an individual volume to make these Field Guides more useful to you. Please contact us at fieldguides@SPIE.org.

> John E. Greivenkamp, *Series Editor* Optical Sciences Center The University of Arizona

Field Guide to Geometrical Optics

The material in this *Field Guide to Geometrical Optics* derives from the treatment of geometrical optics that has evolved as part of the academic programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This material is included in both our undergraduate and graduate programs. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.

Special acknowledgement must be given to Roland V. Shack and Robert R. Shannon. They first taught me this material "several" years ago, and they have continued to teach me throughout my career as we have become colleagues and friends. I simply cannot thank either of them enough.

I thank Jim Palmer, Jim Schwiegerling, Robert Fischer and Jose Sasian for their help with certain topics in this *Guide*. I especially thank Greg Williby and Dan Smith for their thorough review of the draft manuscript, even though it probably delayed the completion of their dissertations. Finally, I recognize all of the students who have sat through my lectures. Their desire to learn has fueled my enthusiasm for this material and has caused me to deepen my understanding of it.

This *Field Guide* is dedicated to my wife, Kay, and my children, Jake and Katie. They keep my life in focus (and mostly aberration free).

John E. Greivenkamp Optical Sciences Center The University of Arizona

Table of	of Coi	ntents
----------	--------	--------

Glossary	
Fundamentals of Geometrical Optics	1
Sign Conventions	1
Basic Concepts	2
Optical Path Length	3
Refraction and Reflection	4
Optical Spaces	5
Gaussian Optics	6
Refractive and Reflective Surfaces	7
Newtonian Equations	8
Gaussian Equations	9
Longitudinal Magnification	10
Nodal Points	11
Object-Image Zones	12
Gaussian Reduction	13
Thick and Thin Lenses	14
Vertex Distances	15
Thin Lens Imaging	16
Object-Image Conjugates	17
Afocal Systems	18
Paraxial Optics	19
Paraxial Raytrace	20
YNU Raytrace Worksheet	21
Cassegrain Objective Example	22
Stops and Pupils	24
Marginal and Chief Rays	25
Pupil Locations	26
Field of View	27
Lagrange Invariant	28
Numerical Aperture and F-Number	29
Ray Bundles	30
Vignetting	31
More Vignetting	32
Telecentricity	33
Double Telecentricity	34
Depth of Focus and Depth of Field	35
Hyperfocal Distance and Scheimpflug Condition	36

Optical Systems	37
Parity and Plane Mirrors	37
Systems of Plane Mirrors	38
Prism Systems	39
More Prism Systems	40
Image Rotation and Erection Prisms	41
Plane Parallel Plates	42
Objectives	43
Zoom Lenses	44
Magnifiers	45
Keplerian Telescope	46
Galilean Telescope	47
Field Lenses	48
Eyepieces	49
Relays	50
Microscopes	51
Microscope Terminology	52
Viewfinders	53
Single Lens Reflex and Triangulation	54
Illumination Systems	55
Diffuse Illumination	56
Integrating Spheres and Bars	57
Projection Condenser System	58
Source Mirrors	59
Overhead Projector	60
Schlieren and Dark Field Systems	61
Chromatic Effects	62
Dispersion	62
Optical Glass	63
Material Properties	64
Dispersing Prisms	65
Thin Prisms	66
Thin Prism Dispersion and Achromatization	67
Chromatic Aberration	68
Achromatic Doublet	69

Table of Contents (cont.)

Table of Contents (cont.)

Monochromatic Aberrations	70
Monochromatic Aberrations	70
Rays and Wavefronts	71
Spot Diagrams	72
Wavefront Expansion	73
Tilt and Defocus	74
Spherical Aberration	75
Spherical Aberration and Defocus	76
Coma	77
Astigmatism	78
Field Curvature	79
Distortion	80
Combinations of Aberrations	81
Conics and Aspherics	82
Mirror-Based Telescopes	83
Appendices	84
Radiometry	84
Radiative Transfer	85
Photometry	86
Sources	87
Airy Disk	88
Diffraction and Aberrations	89
Eye	90
Retina and Schematic Eyes	91
Ophthalmic Terminology	92
More Ophthalmic Terminology	93
Film and Detector Formats	94
Photographic Systems	95
Scanners	96
Rainbows and Blue Skies	97
Matrix Methods	98
Common Matrices	99
Trigonometric Identities	100
Equation Summary	101
Bibliography	107
Index	111

Glossary

Unprimed variables and symbols are in object space. Primed variables and symbols are in image space.

Frequently used variables and symbols:	
a	Aperture radius
A, A'	Object and image areas
B'	Image plane blur criterion
BFD	Back focal distance
с	Speed of light
C	Curvature
CC	Center of curvature
d, d'	Front and rear principal plane shifts
D	Diopters
D	Diameter
D	Airy disk diameter
DOF	Depth of focus, geometrical
E, E_V	Irradiance and illuminance
EFL	Effective focal length
EP	Entrance pupil
ER	Eye relief
f, f_E	Focal length or effective focal length
f_F, f'_R	Front and rear focal lengths
f/#	F-number
$f/\#_{W}$	Working F-number
δf	Longitudinal chromatic aberration
F, F′	Front and rear focal points
FFD	Front focal distance
FFOV	Full field of view
FOB	Fractional object
FOV	Field of view
h, h'	Object and image heights
H	Lagrange invariant
H	Normalized field height
H, H_V	Exposure
HFOV	Half field of view
Ι	Optical invariant
I, I_V	Intensity and luminous intensity
L	Object-to-image distance
L, L_{V}	Radiance and luminance

Glossary (cont.)

L_{H}	Hyperfocal distance
$L_{\scriptscriptstyle NEAR}^{\scriptscriptstyle \Pi}, L_{\scriptscriptstyle FAR}$	Depth of field limits
LA	Longitudinal aberration
т	Transverse or lateral magnification
\overline{m}	Longitudinal magnification
m_v	Visual magnification (microscope)
$\dot{M, M_{v}}$	Exitance and luminous exitance
MP	Magnifying power (magnifier or telescope)
MTF	Modulation transfer function
n	Index of refraction
N, N'	Front and rear nodal points
NA	Numerical aperture
OPL	Optical path length
OTL	Optical tube length
Ρ	Partial dispersion ratio
P, P′	Front and rear principal points
PSF	Point spread function
Q	Energy
r_p	Pupil radius
\dot{R}	Radius of curvature
8	Surface sag or a separation
s, s'	Object and image vertex distances
S	Seidel aberration coefficient
SR	Strehl ratio
t	Thickness
Т	Temperature
TA	Transverse aberration
TA _{CH}	Transverse axial chromatic aberration
TIR	Total internal reflection
Δt	Exposure time
u, \overline{u}	Paraxial angles; marginal and chief rays
U	Real marginal ray angle
V	Abbe number
V, V′	Surface vertices
W	Wavefront error
W_{LIK}	Wavefront aberration coefficient
WD	Working distance
<i>x</i> , <i>y</i>	Object coordinates
x', y'	Image coordinates

Glossary (cont.)

x_P, x_P	Normalized pupil coordinates
XP	Exit pupil
y, \overline{y}	Paraxial ray heights; marginal and chief rays
z	Optical axis
z, z'	Object and image distances
δz	Image plane shift
δz	Depth of focus, diffraction
$\Delta z, \Delta z'$	Object and image separations
α	Dihedral angle or prism angle
δ	Prism deviation
δ_{MIN}	Angle of minimum deviation
δφ	Longitudinal chromatic aberration
Δ	Prism dispersion
ε	Prism secondary dispersion
$\varepsilon_X, \varepsilon_Y$	Transverse ray errors
ε_{Z}	Longitudinal ray error
θ	Angle of incidence, refraction or reflection
θ	Azimuth pupil coordinate
θ_{C}	Critical angle
$\theta_{1/2}$	Half field of view angle
κ	Conic constant
λ	Wavelength
ν	Abbe number
ρ	Reflectance
ρ	Normalized pupil radius
τ	Reduced thickness
φ	Optical power
Φ, Φ_V	Radiant and luminous power
ω, ϖ	Optical angles; marginal and chief rays
Ω	Solid angle
Ж	Lagrange invariant