Field Guide to

Lidar

Paul McManamon

SPIE Field Guides Volume FG36

John E. Greivenkamp, Series Editor

SPIE PRESS Bellingham, Washington USA Library of Congress Preassigned Control Number: 2015931195

for

Field Guide to Lidar (ISBN 9781628416541).

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1.360.676.3290 Fax: +1.360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright $\ensuremath{\mathbb{C}}$ 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing

Introduction to the Series

Welcome to the SPIE Field Guides—a series of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic, essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The SPIE Field Guides are intended to be living documents. The modular page-based presentation format allows them to be updated and expanded. We are interested in your suggestions for new Field Guide topics as well as what material should be added to an individual volume to make these Field Guides more useful to you. Please contact us at fieldguides@SPIE.org.

> John E. Greivenkamp, *Series Editor* College of Optical Sciences The University of Arizona

Keep information at your fingertips with the SPIE Field Guides: Adaptive Optics, Second Edition, Robert Tyson & Benjamin Frazier Atmospheric Optics, Larry Andrews Binoculars and Scopes, Paul Yoder, Jr. & Daniel Vukobratovich Diffractive Optics, Yakov Soskind Digital Micro-Optics, Bernard Kress Displacement Measuring Interferometry, Jonathan D. Ellis Fiber Optic Sensors, William Spillman, Jr. & Eric Udd Geometrical Optics, John Greivenkamp Holography, Pierre-Alexandre Blanche Illumination, Angelo Arecchi, Tahar Messadi, & John Koshel Image Processing, Khan M. Iftekharuddin & Abdul Awwal Infrared Systems, Detectors, and FPAs, 2nd Edition, Arnold Daniels Interferometric Optical Testing, Eric Goodwin & Jim Wyant Laser Pulse Generation, Rüdiger Paschotta Lasers, Rüdiger Paschotta Lens Design, Julie Bentley & Craig Olson Linear Systems in Optics, J. Scott Tyo & Andrey Alenin *Microscopy*, Tomasz Tkaczyk Nonlinear Optics, Peter Powers **Optical Fabrication**, Ray Williamson Optical Fiber Technology, Rüdiger Paschotta *Optical Lithography*, Chris Mack Optical Thin Films, Ronald Willey Optomechanical Design and Analysis, Katie Schwertz & James Burge Physical Optics, Daniel Smith Polarization, Edward Collett Probability, Random Processes, and Random Data Analysis, Larry C. Andrews & Ronald L. Phillips Radiometry, Barbara Grant Special Functions for Engineers, Larry Andrews Spectroscopy, David Ball Terahertz Sources, Detectors, and Optics, Créidhe O'Sullivan & J. Anthony Murphy Visual and Ophthalmic Optics, Jim Schwiegerling

Field Guide to Lidar

This *Field Guide* covers active electro-optical sensing, in which a sensor sends out a laser pulse and then measures the parameters of the return signal. Various groups refer to this type of sensor as a ladar, lidar, LIDAR, LADAR, or laser radar. For simplicity, only the term lidar is used throughout this book.

The book is presented from the perspective of a lidar engineer. It covers a wide breadth, from simple 2D directdetection lidars to multiple subaperture synthetic aperture lidars. It also covers a broad range of objects to be viewed, and distances from which to view the objects. Lasers and modulation are discussed in the context of their use in lidars. Other topics covered include receivers, apertures, and atmospheric effects in the context of lidar use and design.

All lidars will be limited by the media between the lidar and the target, but atmospheric compensation techniques can often mitigate this limitation. These limitations and compensation approaches are presented. Many types of lidars are included along with appropriate data processing techniques. The lidar range equation in its many variations is discussed along with receiver noise issues that determine how much signal must be received to detect an object.

This *Field Guide* is a handy reference to quickly access information on any aspect of lidars. It will be useful to students and lidar scientists or engineers who need an occasional reminder of the correct approaches or equations to use in certain applications. It will also be useful to systems engineers gaining a perspective on this rapidly growing technology.

> Paul McManamon March 2015

Glossary of Symbols and Acronyms	x
Introduction	1
Introduction	1
Terms for Active Electro-optic Sensing	2
Types of Lidars	3
Lidars for Surface-Scattering (Hard) Targets	4
Lidars for Volume-Scattering (Soft) Targets	5
History of Lidar	6
Lidar Detection Modes	7
Spatial Coherence	8
Temporal Coherence	9
Eye Safety Considerations	10
Laser Safety Categories	11
Monostatic versus Bistatic Lidar	12
Transmit/Receive Isolation	13
Lidar Range Equation	14
Lidar Range Equation	14
Lidar Cross Section	15
Cross Section of a Corner Cube	16
Speckle	17
Atmospheric Absorption	18
Atmospheric Scattering	19
Atmospheric Turbulence	20
Aero-optical Effects on Lidar	21
Extended (Deep) Turbulence	22
Laser Power for Lidar	23
Lidar Signal-to-Noise Ratio	24
Direct Detection Signal-to-Noise Ratio	25
Noise Probability Density Functions	26
Thermal Noise	27
Shot Noise	28
The Sun as Background Noise	29
Dark Current, 1/f, and Excess Noise	30
Avalanche Photodiodes and Direct Detection	31
Number of Photons Required for a GMAPD Lidar	
Camera	32
Heterodyne Detection	33

Temporal Heterodyne Detection Heterodyne Mixing Efficiency Quadrature Detection Carrier-to-Noise Ratio for Temporal	34 35 36
Heterodyne Detection	37
Spatial Heterodyne Detection/Digital Holography	38
SNR for Spatial Heterodyne Detection	39
Types of Lidars	40
1D Range-Only Lidar	40
Tomographic Imaging Lidar	41
Range-Gated Active Imaging (2D Lidar)	42
3D Scanning Lidar	43
3D Flash Imaging	44
Geiger-Mode APD Flash Lidar	45
Linear-Mode APD Flash Lidar	46
Polarization-based Flash Lidar using Framing	
Cameras	47
Laser Vibration Detection	48
Synthetic Aperture Lidar	49
Inverse Synthetic Aperture Lidar	50
Range Doppler Imaging Lidar	51
Laser-Induced Breakdown Spectroscopy	52
Laser-Induced Fluorescence Lidar	53
Active Multispectral Lidar	54
Lidars Using Polarization as a Discriminant	55
Speckle Imaging Lidar	56
Phased Array of Phased-Array Imaging Lidar	57
Multiple Subapertures on Receive for Lidar	58
Multiple-Input, Multiple-Output Lidar	59
Methods of Phasing MIMO Lidars	60
	6.5
Lidar Sources and Modulations	61
Lidar Sources and Modulations	61
Laser Resonators	62
Three-Level and Four-Level Lasers	63
Bulk Solid State Lasers for Lidar	64
Fiber Lasers for Lidar	65
Higher-Peak-Power Waveguide Lasers for Lidar	66
Diode Lasers for Lidar	67

Quantum Cascade Lasers for Lidar	68
Laser Pumping Considerations	69
Nonlinear Devices to Change the Lidar Wavelength	70
Q-Switched Lasers for Lidar	71
Pockels Cells	72
Mode-Locked Lasers for Lidar	73
Laser Seeding for Lidar	74
Laser Amplifiers for Lidar	75
Multiple Coherent Laser Transmitters	76
Laser Waveforms for Lidar	77
Polypulse Laser Waveforms	78
Linear Frequency Modulation for Lidar	79
Pseudo-random-Coded Lidar	80
RF Modulation of a Direct Detection Lidar	81
Lidar Receivers	82
Linear-Mode APD Arrays for Lidar	82
Geiger-Mode APD Arrays for Lidar	83
Receivers for Coherent Lidars	84
Acousto-optic Frequency Shifting	85
Long-Frame-Time Framing Detectors for Lidar	86
Gated Framing Cameras for 2D Lidar Imaging	87
Lidar Image Stabilization	88
Range Resolution of Lidar	89
Velocity Resolution of Lidar	90
Unambiguous Range	91
Point Spread Function	92
Beam Steering for Lidars	93
Gimbals for Use with Lidar	93
Fast-Steering Mirrors	94
Risley Prisms and Gratings	95
Rotating Polygonal Mirrors	96
Modulo 2π Beam Steering	97
Largest Steering Angle for an Optical Phased Array	
Liquid Crystal Optical Phased Arrays	99
LC Fringing-Field Effect on Steering Efficiency	100
Reduction in Steering Efficiency Due to	100
Quantization	101
Chip-Scale Optical Phased Arrays	101
MEMS Beam Steering for Lidar	$\frac{102}{103}$
MILINIO DEALII DICELIIIS IUL LIUAI	100

Polarization Birefringent Grating Beam Steering 1 Step Angle Steering with LC Polarization Gratings 1 Multiple-Stage LCPGs 1	$106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113$
Step Angle Steering with LC Polarization Gratings 1 Multiple-Stage LCPGs 1	108 109 110 111 111
Multiple-Stage LCPGs 1	109 110 111 112
1 0	110 111 112
Lenslet-based Beam Steering	$\frac{111}{112}$
	112
^U	
0	1 1 ''
0 1 0 0	
Geometrical Optics 1	114
Lidar Processing 1	115
Inertial Measurement Units 1	115
Microscanning of Lidar Images for Improved	
Sampling 1	116
Range Measurement Processing 1	117
	118
Threshold, Leading Edge, and Peak Detectors 1	119
Range Resolution, Precision, and Accuracy 1	120
Fourier Transforms	121
Developing 3D Maps from Lidar 1	122
	123
Multiple-Subaperture Spatial Heterodyne	
	124
0	125
	126
	127
Equation Summary 1	128
Figure Sources 1	138
Bibliography 1	141
Index 1	143

a	amplitude of the (super) Gaussian
A	length of one side of a tetrahedral
$A_{ m illum}$	area illuminated by the transmitter
AO	acousto-optic
AOM	acousto-optic modulator
$A_{ m p}$	area of the pixel at the target location
APD	avalanche photodiode
APS	active-pixel sensor
$A_{ m rec}$	area of the receiver aperture
b	zero position, or offset, of the (super)
	Gaussian beam
B	bandwidth
С	Gaussian, or super-Gaussian, beam width
С	speed of light
cw	continuous wave
C_1	coherence length
CCD	charge-coupled device
CDMA	code-division multiple access
CMOS	complementary metal-oxide semiconductor
CNR	carrier-to-noise ratio
d	cross-range resolution
d	required lens thickness
d	width of the individual radiator or receiver
D	aperture diameter
$D_{ m Airy}$	diameter out to the zeros of the diffraction-
	limited spot at the focus for a circular
	aperture
DAS	detector angular subtense
DFLC	dual-frequency liquid crystal
DIAL	differential absorption lidar
DM	deformable mirror
DOP	degree of polarization
e	charge on an electron
E	energy at range
E_0	initial energy before traveling through the
	atmosphere
$\operatorname{EBAPS}^{\operatorname{\tiny{I\!\!R}}}$	electron-bombarded active-pixel sensor
EBS	electron-bombarded semiconductor
$E_{ m in}$	input electric field into a Jones matrix

Field Guide to Lidar

$E_{ m LO}$	local oscillator field
E_{LO}	electromagnetic
EO	0
-	electro-optic
$E_{ m out}$	input electric field into a Jones matrix
$E_{ m p}$	energy in a photon
E_{R}	received energy per pulse
$E_{ m sig}$	returned signal field
E_{T}	transmitted energy per pulse
$E_{ m th}$	thermal energy
Ex_{in}	x portion of the input electric field
Ex_{out}	x portion of the output electric field
$Ey_{ m in}$	y portion of the input electric field
Ey_{out}	y portion of the output electric field
f	focal length of the lens
f/#	F-number of an optical element
f_1	focal length of a lenslet
f(x)	Gaussian or super-Gaussian beam profile in
	one dimension
F	excess noise factor associated with the
	preamplifier gain
FDMA	frequency-division multiple access
\mathbf{FFT}	fast Fourier transform
FLC	ferroelectric liquid crystal
FLIR	forward-looking infrared (camera)
\mathbf{FM}	frequency modulated
FOV	field of view
FPA	focal plane array
FSM	fast-steering mirror
G	avalanche gain
GIQE	general image quality equation
GMAPD	Geiger-mode avalanche photodiode
GML	Geiger-mode lidar
h	Planck's constant
HWP	half-wave plate
$i_{ m bk}$	background current
$i_{\rm dk}$	dark current
$i_{\rm n}$	noise current in the detector
i.	signal current in the detector
$\dot{i}_{ m shotLO}$	shot noise from the local oscillator
51101110	

;	abot mains from the simul
$i_{ m shot,sig}$	shot noise from the signal
$\dot{i}_{ m th}$	thermal noise current
Ι	intensity of the beat between the local
7	oscillator and the return signal
$I_{ m dkb}$	bulk dark current
$I_{ m dks}$	surface dark current
IF	intermediate frequency
IMU	inertial measurement unit
IR	infrared
k	effective elastic constant
k	number of photons in M events
k	Boltzmann constant
L	distance flown
L	length of the laser cavity
LCPG	liquid crystal polarization grating
LFM	linear frequency modulation
LIBS	laser-induced breakdown spectroscopy
LIF	laser-induced fluorescence
LIMAR	laser imaging and ranging
LMAPD	linear-mode avalanche photodiode
LO	laser oscillator
LWIR	long-wave infrared
L_{λ}	radiance per wavelength
M	number of events
M^2	measure of the spatial coherence of a laser
	beam. An M^2 of 1 means it is diffraction limited.
MEMS	micro-electro-mechanical system
MIMO	multiple input, multiple output
MO	master oscillator
MPE	maximum permissible exposure
MWIR	midwave infrared
n	index of refraction
n	number of individual radiators or receivers
n_m	diffraction efficiency of the m^{th} order
N	number of photons per pixel received during
	a measurement time
N	super-Gaussian beam number. Higher num-
	bers mean a more flat-topped beam shape.

NA	numerical aperture
NEPh	noise-equivalent photons
NIIRS	National Imagery Interpretability Rating
NIIIIO	Scale
NIR	near infrared
OPA	optical parametric amplifier
OPA	optical phased array
OPD	optical path difference
OPO	optical parametric oscillator
p(k)	Gaussian probability distribution
P_{\perp}	number of modes
PAPA	phased array of phased arrays
$P_{ m LO}$	local oscillator power
PPLN	periodically poled lithium niobate
$P_{\rm S}$	signal power received
PSD	power spectral density
\mathbf{PSF}	point spread function
P_{T}	power transmitted
$P_{ m thdbm}$	thermal noise power
q	Poisson distribution probability
q	number of discrete steps
QCL	quantum cascade laser
QWP	quarter-wave plate
r_0	Fried parameter
R	range to the target
R	detector responsivity
\mathbf{RF}	radio frequency
$R_{ m L}$	load resistance
ROIC	readout integrated circuit
$R_{ m unambig}$	unambiguous range
$S'_{3}=S_{3}\!/S_{0}$	normalized Stokes parameter corresponding
	to ellipticity of incident light
SNR	signal-to-noise ratio
SPGD	stochastic parallel gradient descent
SS	solid state
SWIR	short-wave infrared
t	cell thickness
$t_{\rm lens}(w_{\rm az}, w_{\rm al})$	lens phase profile
T	temperature
	-

Т	time separation between pulses
TDMA	time-division multiple access
$T_{\rm m}$	time period over which a measurement is
- 111	made
υ	velocity of the lidar with respect to the
	surrounding air
V	platform velocity
V	relative velocity between the lidar and the
	target
V	voltage on an electrode
VCSEL	vertical-cavity surface-emitting laser
$V_{ m t}$	threshold voltage
$W_{az}^2 + W_{el}^2$	beam width in azimuth and elevation for a
	Gaussian profile
β	angle between the slow axis of the half-wave
_	plate and the <i>x</i> axis in the Jones matrix
β	atmospheric decay constant
γ	viscosity
Δf	change in frequency due to the Doppler shift
Δn	change in index of refraction
$\Delta z \ \Delta R$	surface roughness
$\Delta \kappa$ Δt	range resolution
$\Delta l \Delta V$	mode-locked pulse width velocity resolution
Δv Δx	lenslet motion
$\Delta \vartheta$	angular resolution for a synthetic aperture
1 0	lidar
Δλ	linewidth of the laser in wavelength
$\Delta \phi$	angular motion used in an inverse synthetic
— T	aperture lidar image
η	steering efficiency due to quantization error
η_{atm}	transmission of the atmosphere in one
, actin	direction
$\eta_{\rm h}$	heterodyne mixing efficiency
$\eta_{\rm sys}$	total transmission of the lidar system, both
~	in and out
θ	angular motion created by the lenslet
$\theta_{\rm max}$	maximum steering angle

ϑ	angle of deflection for an AO modulator
θ	full beam width, half maximum diffraction
	limit
λ	wavelength
λ_i	wavelength of the idler laser
$\lambda_{\rm p}$	wavelength of the pump laser
λ_{s}	wavelength of the signal laser
Λ	acousto-optical wavelength
Λ	width between resets
$\Lambda_{ m F}$	width of the flyback region
ν	carrier frequency of light ($\omega = 2\pi\nu$)
ρ	radius of the microlens
$ ho_t$	reflectance of the area
σ	cross section
$ au_0$	coherence time
$ au_{d}$	time required to return to no-voltage state
τ_{m}	mode-locked pulse separation
φ	phase retardation of the half-wave plate
$\omega_{ m sig}$	frequency (in radians) of the return signal
$\omega_{\rm LO}$	frequency (in radians) of the local oscillator