

Jim Schwiegerling

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Schwiegerling, Jim, author.
Optical specification, fabrication, and testing / Jim Schwiegerling. pages cm
Includes bibliographical references and index.
ISBN 978-1-62841-366-3 (alk. paper)
1. Optical instruments–Design and construction. 2. Optical instruments–Specifications. 3. Optical materials–Specifications. I. Title.
TS513.S39 2014
681'.4–dc23

2014029391

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +360.676.3290 Fax: +360.647.1445 Email: books@spie.org www.spie.org

Copyright © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing

Table of Contents

PrefaceixList of Acronymsxi				
1	Properties of Optical Systems 1			
	1.1	Optical	Properties of a Single Spherical Surface	1
		1.1.1	Sign conventions	1
		1.1.2	Planar refractive surfaces	2
		1.1.3	Spherical refractive surfaces	3
		1.1.4	Reflective surfaces	5
		1.1.5	Gaussian imaging equation	7
		1.1.6	Newtonian imaging equation	9
		1.1.7	The thin lens	10
	1.2	Apertur	e and Field Stops	10
		1.2.1	Aperture stop definition	10
		1.2.2	Marginal and chief rays	10
		1.2.3	Vignetting	12
		1.2.4	Field stop definition	13
	1.3	First-Or	der Properties of an Optical System	15
		1.3.1	Gaussian imaging with multiple surfaces	15
		1.3.2	Paraxial raytracing	16
		1.3.3	Cardinal points	24
		1.3.4	Entrance and exit pupils	28
		1.3.5	Extension of Gaussian imaging to thick systems	29
		1.3.6	Longitudinal magnification	31
		1.3.7	Lagrange invariant and the $A\Omega$ product	31
		1.3.8	Numerical aperture, f-number, and working f-number	33
		1.3.9	Depth of focus	37
		1.3.10	Field of view	39
		1.3.11	Front and back focal distances	39
	Biblio	graphy		41
2 Diffraction and Aberrations		ction and	d Aberrations	43
	2.1	Limitati	ons of Optical Systems	43
		2.1.1	Black box optical system based on cardinal points and pupils	43

	2.1.2	Wavefront picture of optical imaging	43
	2.1.3	Diffraction-limited systems and connection to Fresnel diffraction	45
	2.1.4	Point spread function (PSF)	49
	2.1.5	Sign and coordinate system conventions	50
	2.1.6	Optical path length (OPL), optical path difference (OPD),	
		and wavefront error	51
	2.1.7	Transverse ray error and spot diagrams	53
2.2	Aberra	tions of Rotationally Symmetric Optical Systems	55
	2.2.1	Piston and tilt	58
	2.2.2	Primary aberrations	63
		2.2.2.1 Spherical aberration	64
		2.2.2.2 Coma	65
		2.2.2.3 Astigmatism	67
		2.2.2.4 Field curvature	70
		2.2.2.5 Distortion	72
2.3	Aberra	itions of General Optical Systems	74
	2.3.1	Examples of non-rotationally symmetric systems	74
	2.3.2	Generalization of primary aberrations to the on-axis case	75
	2.3.3	Orthogonal functions	75
	2.3.4	Zernike polynomials	78
	2.3.5	Examples of different orders of Zernike polynomials	80
	2.3.6	Fitting Zernike polynomials to wavefront error	84
	2.3.7	Pupil size conversion	88
	2.3.8	Different variations found in the literature	89
Refe	rences		91
Bibli	ography		91
Optic	al Quali	ty Metrics	93
3.1	Introdu	uction	93
3.2	Throug	gh-Focus PSF and Star Test	93
	3.2.1	Diffraction-limited case (defocus)	93
	3.2.2	Seidel spherical aberration	94
	3.2.3	Zernike spherical aberration	95
	3.2.4	Seidel astigmatism	95
	3.2.5	Zernike astigmatism	96
	3.2.6	Seidel coma	96
	3.2.7	Zernike coma	96
3.3	Measu	ires of Distortion	97
	3.3.1	Conventional case	97
	3.3.2	Scheimpflug imaging	98
3.4	Resolu	ution Targets	100
	3.4.1	Rayleigh criterion	100
	3.4.2	1951 USAF target	101
3.5	PSF a	ind Wavefront-Based Metrics	102
	3.5.1	Strehl ratio	102

3

		3.5.2	Peak-to-valley, variance, and RMS wavefront error	103
		3.5.3	Relationship to Zernike coefficients	105
		3.5.4	Relationship to Strehl ratio	106
		3.5.5	Encircled and ensquared energy	107
		3.5.6	Example of optical quality metrics	107
	3.6	Optical	Transfer Function	109
		3.6.1	Modulation transfer function	110
		3.6.2	Phase transfer function	111
		3.6.3	Fourier transform relationship to PSF	111
		3.6.4	Autocorrelation of pupil function	112
		3.6.5	Line spread function	114
	Biblio	ography		117
4	Optica	al Surfac	es and Their Fabrication	119
	4.1	Introduo	ction	119
	4.2	Optical	Surfaces	119
		4.2.1	Flats	119
		4.2.2	Spheres	120
		4.2.3	Conoids	121
		4.2.4	Even and odd aspheres	125
		4.2.5	Forbes Q polynomials	126
		4.2.6	Astigmatic and freeform surfaces	133
	4.3	Optical	Materials	135
		4.3.1	Glass and plastics	135
		4.3.2	Dispersion formulas	139
		4.3.3	Infrared and ultraviolet materials	140
	4.4	Fabrica	tion Techniques	141
		4.4.1	Grinding and polishing spherical and flat surfaces	141
		4.4.2	Grinding and polishing aspheric surfaces	142
		4.4.3	Diamond turning and oscillating tool head	143
		4.4.4	Magnetorheological finishing	143
		4.4.5	lon beam figuring	144
		4.4.6	Molding optical elements	144
	Refe	rences		145
	Biblio	ography		145
5	Non-ii	nterferor	netric Testing	147
	5.1	Autocol	limator Tests	147
	5.2	Surface	e Radius of Curvature	148
		5.2.1	Lens gauge	148
		5.2.2	Spherometer	150
		5.2.3	Autostigmatic measurements	151
	5.3	Measur	ement of First-Order Properties of Optical Systems	152
		5.3.1	Measurements based on the Gaussian imaging equation	152
		5.3.2	Neutralization test	152

		5.3.3	Autocollimation technique	153
		5.3.4	Focimeter	153
		5.3.5	Focal collimator	154
		5.3.6	Reciprocal magnification	155
		5.3.7	Nodal-slide lens bench	156
	5.4	Measu	rement of Wavefront Error and Transverse Ray Error	158
		5.4.1	Foucault knife-edge test	158
		5.4.2	Wire and Ronchi test	162
		5.4.3	Hartmann screen test	163
		5.4.4	Shack–Hartmann sensor	164
		5.4.5	Fitting Shack-Hartmann data to Zernike polynomials	171
		5.4.6	Moiré deflectometry	174
	Refe	rences		176
	Bibli	ography		176
6	Basic	Interfe	rometry and Optical Testing	177
	6.1	Review	v of Two-Beam Interference	177
		6.1.1	Plane waves	177
		6.1.2	General wavefront shapes	179
		6.1.3	Visibility	180
		6.1.4	Coherence	181
	6.2	Fizeau	Interferometer	181
		6.2.1	Classical Fizeau interferometer	181
		6.2.2	Newton's rings	183
		6.2.3	Laser Fizeau interferometer	184
	6.3	Twyma	an-Green Interferometer	186
	6.4	Mach-Zehnder Interferometer		186
	6.5	Latera	I Shearing Interferometers	188
	6.6	Interfe	rograms	189
	6.7	Phase	-Shifting Interferometry	191
		6.7.1	Phase-shifting techniques	191
		6.7.2	Reconstruction algorithms	192
		6.7.3	Phase unwrapping	193
	6.8	Testing	g Aspheric Surfaces	195
	Refe	References		
	Bibli	ography		198

199

Preface

This book is a continued development of the notes for a course called Optical Specification, Fabrication and Testing that I teach at the University of Arizona College of Optical Sciences. The course is required for undergraduate optical engineering students in their final semester of study. At this point in their academic career, the students have a solid background in optics and are focusing on the next phase of their lives, typically securing a job in industry. In reviewing the coursework that the students have taken over their undergraduate career, I find that the topics tend to be compartmentalized. We teach geometrical optics in one course, interference and diffraction in another course, and aberrations in still another. The goal for the course and for this book is to connect the dots between these chunks of knowledge and to illustrate the development of an optical system from the initial layout, to design and aberration analysis, to fabrication, and finally to testing and verification of the individual components and the system performance. This book also seeks to cover more specialized topics such as fitting Zernike polynomials, representing aspheric surfaces with the Forbes Q polynomials, and testing with the Shack-Hartmann wavefront sensor. These topics are covered in more detail than is found in other textbooks, and the techniques are developed to the point where the reader can pursue their own analysis or modify to their particular situation. Finally, there is also a limit on the detail that can be provided on any of the topics found in the book. Bibliographic references have been provided at the end of each chapter to facilitate more in-depth study.

I would like to thank John Greivenkamp, José Sasián, Bill Duncan, Ping Zhou, and Greg Forbes for their valuable suggestions in improving the manuscript. I wish to also thank the peer reviewers. Their thorough reading of the material and constructive comments have greatly enhanced the content. Thanks also go to Tim Lamkins and editor Dara Burrows for their help in turning a batch of messy notes into a quality book. I appreciate all of the members of the SPIE staff who have helped in the production of the book. Finally, with much love, I owe many thanks to my wife, Diana, and to my children, Max and Marie, for their unwavering love and support.

Jim Schwiegerling September 2014

List of Acronyms

BFD	back focal distance
BFL	back (rear) focal length
bfs	best-fit sphere
CCD	charge-coupled device
CMOS	complementary metal-oxide semiconductor
DIN	Deutsche Industrie Norm
DOF	depth of focus
EE	encircled energy
EFL	effective focal length
FFD	front focal distance
FFL	front focal length
FFOV	full field of view
FOV	field of view
HFOV	half field of view
IBF	ion beam figuring
JIS	Japanese Industry Standard
LSI	linear-shift-invariant (optical system)
LWIR	long-wave infrared
MRF	magnetorheological finishing
MWIR	mid-wave infrared
NA	numerical aperture
OPD	optical path difference
OPL	optical path length
OTF	optical transfer function
PSF	point spread function
PTF	phase transfer function
PV	peak-to-valley (error)
PZT	lead zirconate titanate
TCE	thermal coefficient of expansion
TPI	threads per inch